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(Communicated by J. Pečarić)

Abstract. We prove some weighted Lp estimates for generalized harmonic extensions in the
half-space.

Let u = u(x) be a “good” function in R
n . Denote by Pu = (Pu)(x,y) its harmonic

extension to the half-space R
n+1
+ ≡ R

n× (0,∞) ,

(Pu)(x,y) =
Γ( n+1

2 )

π
n+1
2

∫
Rn

u(ξ ) · ydξ(|x− ξ |2 + y2
) n+1

2

, x ∈ R
n,y > 0.

By elementary convolution estimates, the linear mapping P : u �→ (Pu)( · ,y) is non-
expanding in Lp(Rn) for any p ∈ [1,∞] , that is, ‖(Pu)( · ,y)‖p � ‖u‖p for any y > 0.

In the breakthrough paper [1], Caffarelli and Silvestre introduced, for any s ∈
(0,1) , the following generalized s-harmonic extension u �→ Psu ,

(Psu)(x,y) = cn,s

∫
Rn

u(ξ ) · y2s dξ(|x− ξ |2 + y2
) n+2s

2

, cn,s =
Γ
(

n+2s
2

)
π

n
2 Γ(s)

.

One of the main results in [1] states that the L2 -norm of (−Δ)
s
2 u = F−1

[|ξ |sF [u]
]

on R
n (here F is the Fourier transorm in R

n ) coincides, up to a constant that depends
only on s , with some weighted L2 -norm of |∇(Psu)| on R

n+1
+ .

Notice that for arbitrary y > 0, the kernel

Ps(x,y) =
Γ
(

n+2s
2

)
π

n
2 Γ(s)

y2s(|x|2 + y2
) n+2s

2

(1)

has unitary L1 -norm, thus the linear mapping u �→ (Psu)(·,y) is non-expanding in
Lp(Rn) as well. In particular, we have∫

Rn

|(Psu)( · ,y)|p dx �
∫
Rn

|u|p dx for any s ∈ (0,1) , y > 0 , p ∈ [1,∞) .
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We are interested in similar results for weighted Lp -norms. More precisely, we deal
with inequalities of the form

∫
Rn

|(Psu)(x,y)|p(|x|2 + y2
)α dx � Cp

∫
Rn

|u(x)|p(|x|2 + y2
)α dx (2)

where Cp > 0 does not depend on y,u . These inequalities seems to be new even in the
classical case s = 1

2 .
The next statement is crucially used in [2].

THEOREM 1. Let s ∈ (0,1) , α � 0 .

i) If p = 1 , The inequality (2) holds if and only if α � n
2 + s.

ii) For arbitrary 1 < p < ∞ , the inequality (2) holds if and only if α < n
2 + sp.

Proof. Take a measurable function u , an arbitrary y > 0, and put uy(x) = u(yx) .
By dilation, we have (Psu)(x,y) = (Psuy)( x

y ,1) . Thus it suffices to prove (2) for y = 1.
In case p = 1, we rewrite the inequality

∫
Rn

|(Psu)(x,1)|(|x|2 +1
)α dx � C1

∫
Rn

|u(x)|(|x|2 +1
)α dx (3)

in the form

∫
Rn

∣∣∣∫
Rn

u(ξ )(|ξ |2 +1
)α

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
)α(|x|2 +1
)α dξ

∣∣∣dx � C1

∫
Rn

|u(ξ )|(|ξ |2 +1
)α dξ , (4)

to make evident that we are indeed estimating the norm of the transform

v �→ Lv , (Lv)(x) =
∫
Rn

v(ξ )
cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
)α(|x|2 +1
)α dξ

as a linear operator L1(Rn) → L1(Rn) . We use the duality L1(Rn)′ = L∞(Rn) , that
gives

‖L‖L1→L1 = sup
ξ∈Rn

∫
Rn

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
)α

(|x|2 +1)α dx. (5)

If α > n
2 + s , then the supremum in (5) is evidently infinite. If α � n

2 + s then easily

∫
|x|�|ξ |/2

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
)α(|x|2 +1
)α dx �

∫
Rn

22αPs(x− ξ ,1)dx = 22α .
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Further, |x| � |ξ |/2 implies |x− ξ |� |ξ |/2 and |x− ξ |� |x| . Therefore,∫
|x|�|ξ |/2

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
)α(|x|2 +1
)α dx �

∫
|x|�|ξ |/2

22αcn,s dx

(|x− ξ |2 +1)
n+2s

2 −α(|x|2 +1
)α

�
∫
Rn

22αPs(x,1)dx = 22α .

We can conclude that C1 = ‖L‖L1→L1 < ∞ , and i) is proved.

Next, we take p > 1. To handle the case α � n
2 + sp we notice that the function

u(x) :=
(|x|2 +1)

2α−n
2p

log(|x|2 +2)

satisfies ∫
Rn

|u(x)|p(|x|2 +1
)α dx =

∫
Rn

dx

(|x|2 +1)
n
2 logp(|x|2 +2)

< ∞ .

On the other hand, for any arbitrary x ∈ R
n we have∫

Rn

Ps(x− ξ ,1)u(ξ )dξ >

∫
Rn

C(x)dξ
(|ξ |2 +1)

n
2 log(|ξ |2 +2)

,

and the last integral diverges. Thus, for p > 1 and α � n
2 + sp the inequality (2) does

not hold with a finite constant C in the right hand side.
If α < n

2 + sp , we use Hölder’s inequality to get

|(Psu)(x,1)| �
(∫

Rn

Ps(x− ξ ,1)
|u(ξ )|p(|ξ |2 +1

)β dξ
) 1

p

×
(∫

Rn

Ps(x− ξ ,1)
(|ξ |2 +1

) β
p−1 dξ

) p−1
p

, (6)

where β := max{α − n
2 − s,0} < s(p−1) .

If α � n
2 + s then β = 0 and the last integral equals 1. In this case we obtain∫

Rn

|(Psu)(x,1)|p(|x|2 +1
)α dx �

∫
Rn

L

[ |u(·)|p(| · |2 +1
)α

]
(x)dx � ‖L‖L1→L1

∫
Rn

|u(x)|p(|x|2 +1
)α dx , (7)

and (2) follows from the first part of the proof.
If n

2 + s < α < n
2 + sp , we estimate

∫
Rn

|(Psu)(x,1)|p(|x|2 +1
)α dx �

(∫
Rn

∫
Rn

Ps(x− ξ ,1)

(|ξ |2 +1
) n+2s

2(|x|2 +1
) n+2s

2

|u(ξ )|p(|ξ |2 +1
)α dξdx

)

×
(

sup
x∈Rn

∫
Rn

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
) β

p−1(|x|2 +1
) β

p−1

dξ
)p−1

.
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If we prove that the last supremum is finite then (2) again follows from the first state-
ment of the present theorem. We have

∫
|ξ |�2|x|

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
) β

p−1(|x|2 +1
) β

p−1

dξ � 2
2β
p−1

∫
Rn

Ps(x− ξ ,1)dξ = 2
2β
p−1 .

Further, |ξ | � 2|x| implies |x− ξ |� |ξ |/2. Therefore, from β < s(p−1) we get

∫
|ξ |�2|x|

cn,s

(|x− ξ |2 +1)
n+2s

2

(|ξ |2 +1
) β

p−1(|x|2 +1
) β

p−1

dξ

�
∫

|ξ |�2|x|

2
2β
p−1 cn,s dξ

(|x− ξ |2 +1)
n
2 +s− β

p−1

� C(n,s,β , p), (8)

and the proof of (2) is complete.
The following statement partially solves the problem whether the mapping u �→

(Psu)(·,y) is non-expanding in weighted Lp spaces.

THEOREM 2. Let s ∈ (0,1) .

i) If 0 � α � n
2 − s then for arbitrary 1 � p < ∞ the best constant in (2) is Cp = 1 .

ii) If α > n
2 then the best constant Cp in (2) is greater than 1 , at least for p close

to 1+ .

REMARK 1. We conjecture that the statement ii) holds for all 1 � p < ∞ . The
value of Cp for n

2 − s < α � n
2 is a completely open problem.

Proof. We again suppose y = 1.

Firstly, we prove i) in case p = 1. It has been proved in [1] that the function

ω(ξ ,y) =
∫
Rn

Ps(ξ − x,y)
dx(|x|2 +1

)α (9)

solves the following boundary value problem in R
n+1
+ ,

−div(y1−2s∇ω) = 0; ω(ξ ,0) =
(|ξ |2 +1

)−α
. (10)
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Consider the barrier function ω̃(ξ ,y) =
(|ξ |2 + y2 +1

)−α . A direct computation gives

−div(y1−2s∇ω̃) = 2αy1−2sω̃1+ 2
α
(
(n−2s+2)+ (n−2s−2α)(|ξ |2+ y2)

)
� 0

because of the assumption on α . Since ω̃(ξ ,0) = ω(ξ ,0) , we have that ω � ω̃ in
R

n+1
+ by the maximum principle. In particular,

(|ξ |2 +1)αω(ξ ,1) <
( |ξ |2 +1
|ξ |2 +2

)α
< 1.

Therefore, the supremum in (5) does not exceed 1, and thus the best constant in (3) is
C1 = ‖L‖L1→L1 � 1.

Since ‖L‖L1→L1 � 1, the inequalities in (7) readily give Cp � 1, for any p � 1.
Finally, to prove that Cp = 1 if α � n

2 − s , it suffices to consider the sequence
u(εx) , where u ∈ C ∞

0 (Rn) , u � 0, is a fixed nontrivial function, and then to push ε to
0. The proof of i) is complete.

To prove ii) consider the function v(x) =
(|x|2 +1

)−α
. Clearly v ∈ L1(Rn) and

∫
Rn

(Pv)(x)dx =
∫
Rn

Ps(ξ − x,1)dx
∫
Rn

v(ξ )dξ =
∫
Rn

v(ξ )dξ .

Since

(Pv)(0) =
∫
Rn

Ps(ξ ,1)v(ξ )dξ < maxv(ξ ) = v(0),

there exists a point ξ such that (Pv)(ξ ) > v(ξ ) . Therefore, the supremum in (5) is
greater then 1, and the best constant in (3) is C1 = ‖L‖L1→L1 > 1. By continuity, the
best constant in (2) is greater than 1 for p sufficiently close to 1.
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