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AN INTERPOLATION FORMULA IN RELATION

TO A POLYNOMIAL INEQUALITY OF SCHUR

RICHARD FOURNIER

(Communicated by T. Erdélyi)

Abstract. We study a recent interpolation formula for algebraic polynomials due to Dryanov,
Fournier and Ruscheweyh and its links to a polynomial inequality of Schur.

1. Introduction

Let Pn denote the class of polynomials p(z) = ∑n
k=0 akzk with complex coeffi-

cients. We write D for the unit disk in the complex plane C . Let also Tn be the class of
trigonometric polynomials t(θ ) := ∑n

k=−n akeikθ with coefficients in C . Given a subset
E of C and a function f defined on E , let

| f |E = sup
z∈E

| f (z)| = | f (z)|E .

The famous S. Bernstein inequality says that for p ∈ Pn

|p′|D � n |p|D (1)

while for t ∈ Tn

|t ′|[0,2π ] � n |t|[0,2π ]. (2)

We refer the reader to the book [11] by Rahman and Schmeisser concerning these in-
equalities and their generalizations. The books by Sheil-Small [14] or Borwein and
Erdélyi [1] also are very valuable sources concerning these and other polynomial in-
equalities. We shall also be concerned with the so-called Markov inequality for p∈Pn

and k ∈ {1,2, . . . ,n}
|p(k)|[−1,1] � T (k)

n (1) |p|[−1,1] (3)

where Tn stands for the nth Chebyshev polynomial and T (k)
n (1)= n2(n2−12)···(n2−(k−1)2)

1·3···(2k−1) .
The inequality (3) is also well-known: apart the books quoted above, we refer to a
relatively recent paper by Shadrin [13] which contains a number of detailed proofs
of (3) together with interesting and pertinent historical remarks. The goal of this paper
is to review some consequences of an interpolation formula due to Dryanov, Fournier
and Ruscheweyh in relation with variants of the above quoted inequalities.
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2. The interpolation formula

The following formula holds for all p ∈ Pn and θ ∈ [0,π ] :

p(eiθ )− p(e−iθ)
eiθ − e−iθ =

n

∑
j=0

cn( j,θ )
p
(
ei jπ/n

)
+ p

(
e−i jπ/n

)
2

(4)

with

cn( j,θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1) j
(
cos( jπ)−cos(nθ)

)
n
(
cos

(
jπ
n

)
−cosθ

) , 1 � j � n−1

(−1) j
(
cos( jπ)−cos(nθ)

)
2n

(
cos

(
jπ
n

)
−cosθ

) , j = 0 or j = n

and
n

∑
j=0

|cn( j,θ )| � n .

The formula was first obtained in [2] mainly as an application of a known quadra-
ture formula; another proof was given in [3], based essentially on the Lagrange inter-
polation formula. The formula has also been studied and extended in [4], [6] and [7]. It
contains in particular a refinement of (1) valid for p ∈ Pn and θ real:

|p′(eiθ )| � n max
j∈Jn

∣∣∣∣∣
p
(
ei(θ+ jπ/n))+ p

(
ei(θ− jπ/n))

2

∣∣∣∣∣ (5)

with Jn = {0}∪ { j |1 � j � n and j is odd} . This inequality is reminiscent and in
some sense sharpens the Frappier-Rahman-Ruscheweyh inequality (see for example
[9] or [11, p.524]). It is also true that the refinement of (3) with k = 1 due to Duffin
and Schaeffer [5], namely,

|p′|[−1,1] � n2 max
0� j�n

∣∣∣∣p
(

cos

(
jπ
n

))∣∣∣∣ , (6)

follows from (4) without much efforts (see [11] for details). In the sequel we shall
need two other known consequences of (4). The interpolation formula (4) contains the

Lagrange interpolation formula for Pn at the modes
{

cos
(

jπ
n

)}n

j=0
: let P ∈ Pn ;

then p ∈ P2n if p(z) = znP

(
z+ 1

z
2

)
. Applying the interpolation formula (6), with n

replaced by 2n , yields

sin(nθ )
sin(θ )

P(cosθ ) =
2n

∑
j=0

j even

c2n( j,θ ) cos

(
jπ
2

)
P

(
cos

jπ
2n

)

=
n

∑
k=0

c2n(2k,θ )(−1)kP

(
cos

kπ
n

)
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i.e.,

P(cosθ ) =
n

∑
k=0

c2n(2k,θ )sin(θ )
sin(nθ )

P

(
cos

kπ
n

)
. (7)

By unicity, we clearly have that (7) is the interpolation formula of Lagrange at the
given modes. We shall also need the following known fact: the formula (4) contains
the Marcel Riesz interpolation formula for trigonometric polynomials. Let t ∈ Tn and
define p ∈ P2n by p(eiθ ) = einθ t(θ ) ; it follows that

it ′(0) = np(1)− p′(1) =
1
2n

2n−1

∑
j=1
j odd

ei jπ/2 t
(

jπ
2n

)
+ e−i jπ/2 t

(
− jπ

2n

)

2
(
1− cos

(
jπ
2n

)) (8)

and mild computations done in [9] lead to the Marcel Riesz formula

t ′(θ ) =
2n

∑
k=1

(−1)k−1

4nsin2
(

(2k−1)π
4n

) t
(

θ + (2k−1)π
2n

)
(9)

valid for any t ∈ Tn . It is a well-known fact that (2) follows from (9): first setting
t(θ ) = sin(nθ ) ∈ Tn in (9) with θ = 0 yields

n =
2n

∑
k=1

(−1)k−1

4nsin2
(

(2k−1)π
4n

) sin
(

(2k−1)π
2

)

=
2n

∑
k=1

1

4nsin2
(

(2k−1)π
4n

)

and then again by (9) for arbitrary t ∈ Tn and θ ∈ [0,2π ] ,

|t ′(θ )| =
∣∣∣∣∣∣

2n

∑
k=1

(−1)k−1

4nsin2
(

(2k−1)π
4n

) t
(

θ + (2k−1)π
2n

)∣∣∣∣∣∣
�

2n

∑
k=1

1

4nsin2
(

(2k−1)π
4n

) ∣∣∣t(θ + (2k−1)π
2n

)∣∣∣

�

⎛
⎝ 2n

∑
k=1

1

4nsin2
(

(2k−1)π
4n

)
⎞
⎠ |t|[0,2π ]

= n |t|[0,2π ].
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3. The inequality of Riesz-Schur

The following inequality is valid for all p ∈ Pn and all θ ∈ [0,π ] :
∣∣∣∣ p(eiθ )− p(e−iθ)

eiθ − e−iθ

∣∣∣∣ � n

∣∣∣∣ p(eiθ )− p(e−iθ )
2

∣∣∣∣
[0,2π ]

. (10)

As explained by Paul Nevai in his very charming paper [10], there are problems of
“priority” concerning this inequality and also the inequality (2) of Bernstein for trigono-
metric prolynomials. We refer to [10] for the full story and shall content ourselves with
attributing (10) to both Marcel Riesz and Isai Schur. In his paper [10], Nevai remarked
that (10) is in fact equivalent with

∣∣∣∣ t(θ )
sin(θ )

∣∣∣∣
[0,2π ]

� n |t(θ )|[0,2π ] (11)

for any odd polynomial t ∈ Tn . It is also equivalent with

|p(x)|[−1,1] � n
∣∣∣√1− x2 p(x)

∣∣∣
[−1,1]

(12)

for any polynomial p ∈ Pn−1 . Moreover, Nevai also observed that (10), (11) and (12)
are in fact equivalent with (2). It therefore follows from our remarks above that the
following holds:

THEOREM 1. The inequality (10) of Riesz and Schur follows from the interpola-
tion formula (4).

4. Comparision of two inequalities

The following inequality

∣∣∣∣ p(eiθ )− p(e−iθ )
eiθ − e−iθ

∣∣∣∣
[0,2π ]

� n max
0� j�n

∣∣∣∣∣
p(ei jπ/n)+ p(e−i jπ/n)

2

∣∣∣∣∣ (13)

holds for all polynomials p ∈ Pn . It is clearly a simple consequence of (4). Of course,
it is rather similar to (10) and these two inequalities should be in some sense or an-
other compared. We first note that sometimes (10) is stronger than (13), i.e., there are
polynomials p ∈ Pn such that

∣∣∣p(eiθ )− p(e−iθ )
∣∣∣
[0,2π ]

� max
0� j�n

∣∣∣p(ei jπ/n)+ p(e−i jπ/n)
∣∣∣ , (14)

it suffices clearly to consider polynomials p(z) = A+Bzn since in that case

|p(eiθ )− p(e−iθ)|[0,2π ] = 2|B|
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and

max
0� j�n

∣∣∣p(ei jπ/n)+ p(e−i jπ/n)
∣∣∣ = max

0� j�n

∣∣∣∣2A+2Bcos

(
jπ
n

)∣∣∣∣
� 2|A|−2|B|.

It follows that (14) holds whenever |A| is large enough compared to |B| , that is |A| >
2|B| . To give explicit examples of polynomials p ∈ Pn such that

max
0� j�n

|p(ei jπ/n)+ p(e−i jπ/n)| < |p(eiθ )− p(e−iθ)|[0,2π ] (15)

is perhaps not that easy but the following construction seems to work. Let f be a
conformal map of D onto the rectangle R in the plane with vertices (±α,±5α) where
α > 0. Let also Qn(z) = ∑n+1

k=0

(
1− k

n+1

)
zk ; then, as well known [12], ReQn(z) > 1

2 if
z ∈ D and Qn admits a representation

Qn(z) =
∫

∂D

1
1− ζ z

dμn(ζ )

where μn is a probability measure. We set

pn(z) = Qn(z)∗ f (z) = fn+1(z)−
z f ′n+1(z)

n+1
(16)

where ∗ denotes the Hadamard product of two functions analytic in D and fn+1 is the
(n+1)th section of the conformal map f . Then

pn(z) = Qn ∗ f (z) =
∫

∂D

f (ζ z)dμn(ζ ), z ∈ D,

and pn(D) ⊂ R . It follows from (16) that pn → f uniformly on compact subsets
of D and the polynomial pn ∈ Pn has real Taylor coefficients because Qn has real
coefficients and f has real coefficients because R is symmetrical with respect to the
real axis. We have

max
0� j�n

∣∣∣∣∣
pn(ei jπ/n)+ pn(e−i jπ/n)

2

∣∣∣∣∣ = max
0� j�n

∣∣∣∣∣
pn(ei jπ/n)+ pn(ei jπ/n)

2

∣∣∣∣∣ (17)

= max
0� j�n

|Re pn(ei jπ/n)|

� α.
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Let also 0 < r < 1. Since pn → f locally uniformly on D , we shall have for r close
enough to 1 and n large,

4α � max
|z|�r

|Im pn(z)| (18)

� max
|z|�1

|Im pn(z)|

= max
|z|=1

|Im pn(z)|

=

∣∣∣∣∣
pn(eiθ )− pn(eiθ )

2

∣∣∣∣∣
[0,2π ]

=
∣∣∣∣ pn(eiθ )− pn(e−iθ )

2

∣∣∣∣
[0,2π ]

It clearly follows from (17) and (18) that (15) holds for p = pn with n large enough
and we have obtained

THEOREM 2. The inequalities (10) and (13) are not comparable.

Note: The above argument is perhaps a bit tricky but it has at least some geometric
content and it is self-contained. A more direct reasoning is available. Notice first that
it follows from the work of Nevai [10] and from the known cases of equality in (2) that
the equality ∣∣∣∣ p(eiθ )− p(e−iθ )

eiθ − e−iθ

∣∣∣∣
[0,2π ]

= n

∣∣∣∣ p(eiθ )− p(e−iθ )
2

∣∣∣∣
[0,2π ]

can hold for some p ∈ Pn if and only if p(z) = A+Bzn for some complex numbers
A , B . It is also known [4] that for n > 1, there exist polynomials p ∈ Pn which are
not binomials and such that∣∣∣∣ p(eiθ )− p(e−iθ)

eiθ − e−iθ

∣∣∣∣
[0,2π ]

= n max
0� j�n

∣∣∣∣∣
p(ei jπ/n)+ p(e−i jπ/n)

2

∣∣∣∣∣ .
Therefore any such p satisfies

∣∣∣p(eiθ )− p(e−iθ)
∣∣∣
[0,2π ]

>
2
n

∣∣∣∣ p(eiθ )− p(e−iθ)
eiθ − e−iθ

∣∣∣∣
[0,2π ]

= max
0� j�n

|p(ei jπ/n)+ p(e−i jπ/n)|

5. Conclusion

We would like to end this paper with some remarks concerning higher order ana-
logues of (4). It has been obtained in [3] that by defining for a given p ∈ Pn

p0 = p and p�+1(z) = zp′�(z), � � 0,
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we have
∣∣∣∣ p�(eiθ )− p�(e−iθ )

eiθ − e−iθ

∣∣∣∣
[0,2π ]

� n1+� max
0� j�n

∣∣∣∣∣
p(ei jπ/n)+ p(e−i jπ/n)

2

∣∣∣∣∣ .
Of course, the case � = 0 is just (13) and it has been observed that the case � = 1 is
equivalent with the Duffin and Schaeffer inequality (6). It is indeed a consequence of
(4) that for any p ∈ Pn and any real θ

p′(cosθ ) =
n

∑
j,k=0

cn( j,0)cn(k,θ )
p
(
cos

(
j+k
n

)
π
)

+ p
(
cos

(
j−k
n

)
π
)

2

and (6) follows. We even have for � � 1

p(�)(cosθ ) =
n

∑
j,k=0

cn( j,0)(−1)�−1D�(cn(k,θ ))
p
(
cos

(
j+k
n

)
π
)

+ p
(
cos

(
j−k
n

)
π
)

2

where the differential operator D� is defined recursively by

D1(C) =
1

sinθ
dC
dθ

, D�(C) =
1

sinθ
d
dθ

D�−1(C)

for any polynomial C in cosθ . It would be of interest to decide if the full Markov
inequality (3) or the analogue statement by Duffin and Schaeffer follow more or less
directly from (4).
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e-mail: fournier@dms.umontreal.ca

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


