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A NEW IMPROVED FORM OF THE HILBERT
INEQUALITY AND ITS APPLICATIONS

XUEMEI GAO AND MINGZHE GAO*

(Communicated by M. Praljak)

Abstract. In this paper, it shows a new improved form of the Hilbert inequality by introducing a
proper weight function Q(A4,x) with a parameter A (A > %) As applications, a new refinement
of Widder’s inequality and an extension of Hardy-Littlewood’s inequality are given.

1. Introduction

If 0 < [5°f?(x)dx < o and 0 < [5°g*(y)dy < o, then we have the following
Hilbert’s integral inequality(see [14]):

/0‘”/0‘” %giy)d’“jy < (/Omfz(@dx/omgz(y)dy) : , (1.1)

where the constant factor 7 is the best possible. In 1925, by introducing one pair of
conjugate exponents (p,q), Hardy [3] gave an extension of (1.1) as follows:

For p>1, I%—i—é =1, f(x),8(y) 20,0< [; fP(x)dx <eoand 0 < f;”g7(x)dx <
o, then

/0°° /O°° %giy)dxdy < % (/Omf”(x)dxy (/Omg‘f(y)dy> %, (1.2)

where the constant factor m is the best possible. Inequalities (1.1) and (1.2) are

important in analysis and its applications (see [3, 13]).
In 1934, Hardy gave an extension of (1.2) as follows:

If k1 (x,y) is a non-negative homogeneous function of degree —1,
el -1
kp :/ ki(u, D)u? du € Ry = (0,+o0),
0
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then

/Ow /Owkl (x,y)f(x)g(y)dxdy < k) (/Omfﬁ(x)dx> ’ (/Owgq(y)dy> g ’ (1.3)

where the constant factor &, is the best possible (see [3, Theorem 319]). Additionally,
a Hilbert-type integral inequality with the non-homogeneous kernel is proveded (see [3,
Theorem 350 ]) as follows:

if h(u) >0, ¢(0) = [;h(u)u® 'du € Ry, then

| [ renrstasy < o )( /waﬂf”(X)dX>%< /Owg%y)dy)%, (1.4)

where the constant factor ¢ (};) is still the best possible.

By introducing an independent parameter A € (0,) and the beta function, in
1998, Yang [1] gave an extension of (1.1) as follows:

// x+y dXd <B(/2l g)(/ 1_Afz(X)dX/:yl‘%;z(y)dy>%, (1.5)

where the constant factor B(%, %) is the best possible, and

oo Z‘V_l
B(u,v) ::/0 Wdt, (u,v>0)

is the Beta function.
In 1999, by introducing matrix method, Gao [10] gave another extension of (1.1)
as follows:
If 0 < [ f2(x)dx < e and 0 < [;” g?(y)dy < oo, the inner product (f,g) and the
1

norm ||f|| of f are defined (f,g) = [y f(¢)g(r)dr and ||f|| = (f(;”fz(t)dt)j,respec—

tively. Then
(/ [ s )2 < 72(1-A)||fIPlgl P (1.6)
s+t ’ |

where A = <H;H HfH) with x = (%) l (g,e) and y = (2 n:)%(ﬁe‘s), e is exponen-
tial integral with parameter.

In recent years, there has been increasing interest in extending of (1.1) and (1.2);
see, for example, [2,4,5,7,8,9,11,12,15] and the references cited therein.

In this paper, by using a new method with a parameter A (A > %), applying the
weight functions and the technique of real analysis, we establish a improvement of the
Hilbert inequality. As application, we give a new refinement of Widder’s inequality and

an extension of Hardy-Littlewood’s inequality to illustrate the main results.
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2. Some Lemmas

In what follows, we use the following notation for the convenience of the

der.
o My = LEI0) "
) 7y xl—’_yk )
F(.X,y) = 1—C(.X)+C(y), (2)
and
_ [P xys [T 0) (vt
Jl_/() o xl—l—yk <;> F(x7y)d‘Xdy? JZ—/O 0 xl—l—yk (;) F(x7y)d‘Xdy? (3)

where A > §, f:[0,00) — R™ is areal function and c: [0,+0) — R is a non-negative
function.
In order to prove the main results, we need the following four lemmas.

LEMMA 2.1. Let H(A,x,y) and F(x,y) be defined as (1) and (2),respectively.
Then

| [ Gty = [ ["HOx0) Flxy)dxay.
0 Jo 0 Jo
Proof. Ttis obvious that
| [ Gty = [ ["HOx0) Flxy)dxay.
0 Jo 0 Jo
Hence, Lemma 2.1 holds. [

LEMMA 2.2. Let A > %, then

oo tm—l T
dr = . 2.1
/o 1+14 A sin ZX 21

Proof. By the integral formula(see, [6, page 591])

oo tm—l m
/ —mdt = a_lb_EB<@,m+n— ﬂ),
0 <1+bt“> 4 a

where a,b > 0, m and n are real numbers, B(p,q) is Beta function. We have equal-
ity(2.1) immediately. [J

LEMMA 2.3. Let Ji, Jo be defined as (3). Then

I = (A = %>2 (/Omxl—lf?(x)dx)2 _ (/:Q(/Lx)fz(x)dx)27 2.2)
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where the weight function Q(A,x) is defined by
oo 1 %
Q,x) =i (W) —/ claw) =) ). 23
(A,%) =x (lsin% 0 l+u7t<u " 2-3)
Proof. Let u=%. Then

Ji _/N ON 20) ()—C)% F(x,y)dxdy

xh oyt y

_/ ( /0 T <1>%(1—c()+c(xu))du)f2(x)dx

By Lemma?2.2, we have

n= [ (20w i [T (1) ) g
o [ 12 . |
- (</ < ()0
S - N .
- Tom g e L A(?Ln;fnm 10 du)fz(wdx

/.HJJ%@dvi/SXAJM(@dn (2.4)
0

p— n l
Asin 37 /0

where the weight function Q(A,x) is defined by (2.3).
Similarly, we have

b= [T EL ) e
/ TR 2 () de + /O “Q(,x) 2 (x)dx. 2.5)

p— n 7[
/lsmﬁ 0

T

It follows from (2.4) and (2.5) that (2.2) holds. [
REMARK 2.1. let A = 1, we get from (2.2)
oo 2 oo 2
=7 ( [ ) - ([ 2w mar) 2.6)
0 0

where

Q(x) = me(x) — /Om Cl(j_uj (i) %du.

Let u = 72, we have

O(x) = me(x) —2/:

c(xt?)
1412

2.7)
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LEMMA 2.4. Let ¢(x) = 1—ix (x> 0), then (2.7) becomes

T 3

00 =T T

Proof. By the integral formula(see, [ 16, page 158, formula 97])

/°° dx _ T
0 (@+x2)(b2+x2)  2abla+b)’

it is ease to deduce that

/ (xt?) G /°° dr =
o 1+227  Jo (1+)(1+x2) 1+
Substituting (2.9) into (2.7), we obtain (2.8). O

3. Main results

We may now state and prove our main results.

501

(2.8)

(2.9)

THEOREM 3.1. Let H(A,x,y) and F(x,y) be defined as (1) and (2),respectively.

Then

(/ / x7L+y )2

<<ﬁ>2</0 A2 (x ) (/Q?Lx dx>7 3.1

where the weight function Q(A,x) is defined by (2.3).

Proof. By Schwarz’s inequality and Lemma 2.1, we have
S AC) )2 ( [r )2
———=dxdy | = H(A,x,y)dxd
</0/0 x* 4yt Y 0 Jo (A,x,y)dxdy
oo oo 2
([ [Hsnren)
0 Jo

=
~<

1 1 . 2
iy <$§11<f>4w<x’y»z><ﬁ<z> s s |

g/o S ( l dxdy/ i X)%F(x,y)dxd»

0 x* 4yt x’L + v
Since f(x) # 0, it is impossible to take equality in (3.2), we obtain

</0w/0m %Jc)g)dxdy)2 <)o

By Lemma 2.3, we get (3.1). This completes the proof. [l

(3.2)
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THEOREM 3.2. Let F(x,y) be defined as (2) and let f,g: [0,+o) — RT be real
function. Then

e Md>4<{<asizﬁ>2</:xllf2<x>dx)2
- (/:wa)fz(x)dxy} «
X{<M£%>2</‘) e ) ([ at0e )} 33)

where the weight function Q(A,x) is defined by (2.3).

Proof. By Schwarz’s inequality, we have

() = { [ ([ S )] }
{0 () o {1 </>}
([ [ ) ([ [ 0a) o

Similarly to the proof of Theorem 3.1, we obtain

(// x7L+y )22
<(®> (/0 1=k (x ) </Q7Lx dx>. (3.5)

Since g(x) # 0, it is impossible to take equality in (3.5).
Substituting (3.1) and (3.5) into (3.4), we get (3.3). This completes the proof. [
In particular, let A = 1, we have a new improvement of the Hilbert inequality as
following corollary.

COROLLARY 3.1. Let F(x,y) be defined as (2) and let f,g :[0,+o) — R" be
real function. Then

([[%)4 < {7* ( /:fz(wdx)2 - ( /0 °°§z<x>f2(x>dx>2} y
X {n2 (/Owgz(x)dx)2 - </Ow§2(x)g2(x)dx>2}, (3.6)

where the weight function Q(x) is defined by (2.7).
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If we choose c(x) = 11? (x> 0), by (2.8), then (3.6) becomes

([ [y {</f >—</:a<x>f2<x>dx>2}x

where Q(x) = - — 1

REMARK 3.1. The non-negative function c(x) is chosen for maximum flexibility,
because it only satisfies condition: F(x,y) = 1 —c(x) +c¢(y) = 0. Therefore, if we
choose ¢(x) = % cos /x, then by the integral formula(see, [ 16, page 189, formula 534])

~ cosax T _u
PP Y= e (a>0,Reb > 0).
0 Pl T gt @z 0Reb>0)

It is easy to calculate that

/ cos\/_t g = TR
0 2

1+12

b

1 + t2
hence, we get

Q(x) = (cos\/_—e ").

NI'—‘

COROLLARY 3.2. With the same assumptions as Corollary 3.1, let A = 2, then
4 2 =1, 2 - , 2
— - - Q2
([ [ ) <05 ([ e (] <,x>f<x>dx) x
T 1 2(x
— Q 2,
A5 ([ 3ew) = ([anaee) .

where the weight function Q(2,x) is defined by
- 1 (7e(x) < c(xu) (1\73
Q2,x)= - - - .
2o =1 (25 [T ()

4. Applications

In this section, we give a new refinement of Widder’s inequality and an extension
of Hardy-Littlewood’s inequality as follows.
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4.1. A new refinement of Widder’s inequality

The following inequality is Widder’s inequality (see [15]):
Let a, > 0(n=0,1,2,...), A(x) = X ganx", A*(x) = X . If A(x) #0,

then X _ ,
/O A2(x)dx < 7 /O (4" () dx @.1)

We give a new refinement of (4.1) as follows:

THEOREM 4.1. Let a, > 0(n=10,1,2,...), A(x) =X, qax", A(x) #0 and
A*(x) =20 “’;q’fn . Let F(x,y) be defined as (3). then

(['#eu) < ([(ew)a) ~([[aw(aw)e) @

where the weight function Q(x) is defined by (2.7).

2

Proof. First, we have following relation:

00 L anxn /oo =
e~ tx)dr = t"e'dt
/o A=) - ,Z n! Jo
= Z apx" =
n=0

Squaring and integrating both sides of aforementioned equality from O to 1, we obtain

/A2 )dx = /(/ A tx)dt)2dx.

Let tx = s, from right side of aforementioned equality, we have

/A2 )dx = /(/ ’A*tx)dt)jdx
—/ (/ e iAX( )d) )%dx.

8

Lety:%,weget

/A2 )dx = /(/ VA )d)zdy.

Let u=y—1,then

[ [ ([Femaon) o
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oo - 2
= / (/ e“'”f(s)ds) du
0 0
o oo t
— / / SO 4 qr. 4.3)
0 Jo s+t
where f(x) = e *A*(x).
Thus, by Theorem (3.1) (choose A = 1), we get (4.2) from (4.3). This completes the
proof. [
4.2. An extension of Hardy-Littlewood’s inequality

Hardy-Littlewood proved the following inequality(see [3]):
Let f(x),x € ]0,1), be a non-negativereal function, a, = fol X'f(x)dx,n=0,1,2,....
Then

oo 1
Sai<n / 2(x)dx, (4.4)
n=0 0

where 7 is the best constant.

In 1997, Gao [9] extended the inequality (4.4) and established the following in-
equality, named the Hardy-Littlewood integral inequality.

/ TP < / LR (0, 4.5)
0 0

where f(x) = [y t*h(x)dx, x € [0, +oo).
In 1999, Gao [11] refined (4.5) as following inequality:

/mfz(x)dx < n/l 1R (1)de. (4.6)
0 0

In this paper, we will further extend the inequality (4.6). For notational simplicity,
define

! 1
7w = [ (>04>3) @7

where h(t) # 0, (t €]0,1)), is a real function.
We are in position to state and show the following theorem.

THEOREM 4.2. Suppose that f(x) be defined as (4.7), and F(x,y) be defined as
(2). Then

<‘/Ooof2(x)dx)4 < {(xsiz%/owxl_kfz(x)dx)z_ <‘/O°°Q(A’x)f2(x)dx)2} y
1 2
X (/0 thz(t)dt) , (4.8)

where the weight function Q(A,x) is defined by (2.3).
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Proof. In view of definition of f(x), we rewrite f2(x) as

_ / L0 (o) dr.
0

By Schwarz’s inequality and Theorem 3.1, we have

([ ) ~{[ ([ o
([ ([ e “—%dx)r%how}
[ ([ 1Yo s
e
(o om)e oo
(CFma o

<{<ﬁ/o RN ) (/Q?Lx ))2}2/()lth2(z)dt,

(4.9)

where the weight function Q(A,x) is defined by (2.3).
Since h(r) # 0, f(x) # 0, it is impossible to take equality in (4.9). Thus, we get
inequality (4.8). This completes the proof. [J
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