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THE POLAR ORLICZ–BRUNN–MINKOWSKI INEQUALITIES

LIJUAN LIU

(Communicated by M. A. Hernández Cifre)

Abstract. In this paper, we establish some Orlicz-Brunn-Minkowski type inequalities for (dual)
quermassintegrals of polar bodies and star dual bodies, respectively.

1. Introduction

The Brunn-Minkowski inequality for quermassintegrals can be stated as follows:
Let K and L be convex bodies (compact convex sets with nonempty interior) in R

n

and let 0 � i � n−1. Then(
Wi(K)

Wi(K +L)

) 1
n−i

+
( Wi(L)
Wi(K +L)

) 1
n−i � 1, (1.1)

with equality if and only if K and L are homothetic. Here K +L = {x+ y : x ∈ K,y ∈
L} , and Wi(K) denotes the i-th quermassintegral of K . The case i = 0 of (1.1) is
the classical Brunn-Minkowski inequality. It works as the cornerstone of the Brunn-
Minkowski theory. There are a huge amount of work on its generalizations and on its
connections with other areas. An excellent survey on this inequality is provided by
Gardner [3].

The Lp -Minkowski addition +p was introduced by Firey [2]. Let K n
o denote the

set of convex bodies in R
n that contain the origin in their interiors. For K,L ∈K n

o and
p � 1, the Lp -Minkowski addition +p is defined by

hK+pL(x)
p = hK(x)p +hL(x)p,

for x ∈ R
n , where hM denotes the support function of the set M . In the mid 1990’s,

it was shown in [11, 12], that when Lp -addition is combined with volume the result
is an embryonic Lp -Brunn-Minkowski theory. The Lp -Brunn-Minkowski inequality
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for quermassintegrals was established by Lutwak [11]: Let K,L ∈ K n
o , p � 1, and let

0 � i � n−1. Then (
Wi(K)

Wi(K +p L)

) p
n−i

+
(

Wi(L)
Wi(K +p L)

) p
n−i

� 1,

with equality if and only if K and L are dilates.
The Orlicz-Brunn-Minkowski theory was launched by Lutwak, Yang and Zhang

in a series of papers [8, 13, 14]. This theory has been considerably developed in the
recent years. In 2014, Gardner, Hug and Weil [5] introduced the concept of the Orlicz
addition. Let Φ be the class of convex, strictly increasing functions, φ : [0,∞)→ [0,∞)
with φ(0) = 0. For K,L ∈ K n

o , and φ ∈ Φ , the Orlicz addition +φ is defined by

φ

(
hK(x)

hK+φ L(x)

)
+ φ

(
hL(x)

hK+φ L(x)

)
= φ(1), (1.2)

for x ∈ R
n . In particular, if φ(t) = t p (p � 1) , then +φ = +p .

Xiong and Zou [21] established the following Orlicz-Brunn-Minkowski inequality
for quermassintegrals. Let K,L ∈ K n

o , φ ∈ Φ , and 0 � i � n−1. Then

φ

((
Wi(K)

Wi(K +φ L)

) 1
n−i
)

+ φ

((
Wi(L)

Wi(K +φ L)

) 1
n−i
)

� φ(1). (1.3)

If φ is strictly convex, equality holds if and only if K and L are dilates. The case i = 0
was established by Gardner, Hug and Weil [5] (see also Xi, Jin and Leng [20]).

One aim of this paper is to establish the following Orlicz-Brunn-Minkowski type
inequality for dual quermassintegrals of polar bodies. From now on, K∗ will denote
the polar body of K .

THEOREM 1.1. Let K,L ∈ K n
o , φ ∈ Φ , and 0 � i � n−1 . Then

φ

⎛⎝( W̃i(K∗)
W̃i((K +φ L)∗)

)− 1
n−i
⎞⎠+ φ

⎛⎝( W̃i(L∗)
W̃i((K +φ L)∗)

)− 1
n−i
⎞⎠� φ(1).

If φ is strictly convex, equality holds if and only if K and L are dilates.

The dual Brunn-Minkowksi theory for star bodies was initiated by Lutwak [10]
in 1970’s. In the dual Brunn-Minkowski theory, mixed volumes and Minkowski ad-
dition are replaced by dual mixed volumes and radial addition, respectively. Gard-
ner, Hug, Weil and Ye [6] introduced the concept of radial Orlicz additions. Let S n

denote the set of star bodies with respect to the origin in R
n , i.e., the family of all star-

shaped sets with positive and continuous radial function. Let Φ̃ be the set of all contin-
uous functions ψ : [0,∞) → [0,∞) that are strictly increasing and such that ψ(0) =
0 and lim

t→∞
ψ(t) = ∞ . Let Ψ̃ be the set of all continuous functions ψ : (0,∞) →
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[0,∞) that are strictly decreasing and such that lim
t→0+

ψ(t) = ∞ and lim
t→∞

ψ(t) = 0. For

K,L ∈ S n and ψ ∈ Φ̃∪ Ψ̃ , the radial Orlicz addition +̃ψ is defined by

ψ

(
ρK(x)

ρK+̃ψL(x)

)
+ ψ

(
ρL(x)

ρK+̃ψL(x)

)
= ψ(1), (1.4)

for x ∈ R
n\{o} .

We also establish the following dual Orlicz-Brunn-Minkowski inequality for quer-
massintegrals of polar bodies, which is the dual form of Theorem 1.1.

THEOREM 1.2. Let K,L ∈ K n
o , ψ ∈ Ψ̃ such that φ(t) = ψ(t−1) is strictly con-

vex, and 0 � i � n−1 . Then

ψ

((
Wi(K∗)

Wi((K+̃ψL)∗)

)− 1
n−i
)

+ ψ

((
Wi(L∗)

Wi((K+̃ψL)∗)

)− 1
n−i
)

� ψ(1),

with equality if and only if K and L are dilates.

We would like to notice that both Theorem 1.1 and Theorem 1.2 are stated in a
non-natural setting: Theorem 1.1 deals with dual quermassintegrals and classical Orlicz
addition whereas Theorem 1.2 does it for classical quermassintegrals and radial Orlicz
addition. Unfortunately, we have not been able to obtain here the suitable versions of
these results in their usual framework.

Another aim of this paper is to establish the following Orlicz-Brunn-Minkowski
type inequality for dual quermassintegrals of star dual bodies. From now on, Ko

will denote the dual star body of K .

THEOREM 1.3. Let K,L ∈ S n , ψ ∈ Φ̃ ∪ Ψ̃ , and 0 � i � n− 1 . If ψ0(t) =
ψ(t−

1
n−i ) is concave, then

ψ

⎛⎝( W̃i(Ko)
W̃i((K+̃ψL)o)

)− 1
n−i
⎞⎠+ ψ

⎛⎝( W̃i(Lo)
W̃i((K+̃ψL)o)

)− 1
n−i
⎞⎠� ψ(1),

while if ψ0 is convex, the inequality is reversed. If ψ0 is strictly concave (or convex, as
appropriate), equality holds if and only if K and L are dilates.

2. Notation and background material

A convex body is a compact convex set of R
n with nonempty interior. For a

convex body K , the support function hK : R
n → R is defined by hK(x) = sup{x · y :

y ∈ K}, where x · y denotes the standard inner product of x and y in R
n . For 0 � i �

n− 1, let Wi(K) denote the i th quermassintegral of K . It has the following integral
representation:

Wi(K) =
1
n

∫
Sn−1

hK(u)dSn−i−1(K,u),
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where Sn−i−1(K, ·) is (n− i−1) th surface area measure of K . In particular, W0(K) =
V (K) , nW1(K) = S(K) , and Wn(K) = V (B) , where B is the unit ball in R

n and V,S
denote, respectively, the volume and the surface area of the set involved. For a general
reference about quermassintegrals we refer the reader to [18].

A compact set K ⊂ R
n is a star-shaped set (with respect to the origin) if the inter-

section of every straight line through the origin with K is a line segment.
The radial function ρK : R

n\{0}→R of a compact star-shaped set K (with respect
to the origin) is defined by ρK(x) = max{λ � 0 : λx ∈ K} . If ρK is positive and
continuous, then we call K a star body (with respect to the origin).

Given star bodies K1, . . . ,Kn in R
n , the dual mixed volume Ṽ (K1, . . . ,Kn) is de-

fined by (see [10])

Ṽ (K1, . . . ,Kn) =
1
n

∫
Sn−1

ρK1(u) · · ·ρKn(u)dS(u), (2.1)

where dS(u) is the spherical Lebesgue measure of Sn−1 . If K1 = · · · = Kn−i = K and
Kn−i+1 = · · · = Kn = B , then the dual mixed volume Ṽ (K, . . . ,K︸ ︷︷ ︸

n−i

,B, . . . ,B︸ ︷︷ ︸
i

) is written as

W̃i(K) and is called the dual quermassintegral of K . In particular, W̃0(K) = V (K) and
W̃n(K) = V (B) . The dual mixed quermassintegral W̃i(K,L) is defined by

(n− i)W̃i(K,L) = lim
ε→0+

W̃i(K+̃ε ·L)−W̃i(K)
ε

.

And it has the following integral representation:

W̃i(K,L) =
1
n

∫
Sn−1

ρK(u)n−i−1ρL(u)dS(u).

In particular, W̃i(K,K) = W̃i(K) .
The dual Minkowski inequality for dual mixed quermassintegrals states that (see

[4]): Let K,L be star bodies in R
n and let 0 � i < n−1. Then

W̃i(K,L)n−i � W̃i(K)n−i−1W̃i(L),

with equality if and only if K and L are dilates.
Let ψ ∈ Φ̃∪ Ψ̃ and K,L be star bodies in R

n . For 0 � i � n−1, the dual mixed
Orlicz-quermassintegral W̃ψ,i(K,L) is defined by

n− i
ψ ′

r(1)
W̃ψ,i(K,L) = lim

ε→0+

W̃i(K+̃ψε ·L)−W̃i(K)
ε

. (2.2)

Here ψ ′
r denotes the right derivative of ψ .

The polar body K∗ of a convex body K is the convex body defined by

K∗ = {x ∈ R
n : x · y � 1 for all y ∈ K}.
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It is easy to see that (K∗)∗ = K . If K is a convex body in R
n that contains the origin

in its interior then, for every u ∈ Sn−1 ,

hK∗(u) =
1

ρK(u)
. (2.3)

A possible way to define the ‘polar’ body of a star body K was provided by
Moszyńska [15] (see also [16]). Let i : R

n\{o}→ R
n\{o} be defined by

i(x) :=
x
|x|2 .

Moszyńska [15] introduced the dual star body Ko of a star body K as

Ko = cl(Rn\i(K)).

It is easy to verify that for every u ∈ Sn−1 (see [15]),

ρKo(u) =
1

ρK(u)
.

Suppose that μ is a probability measure on a space X and g : X → I ⊂ R is a
μ -integrable function, where I is a possibly infinite interval. Jensen’s inequality states
that if φ : I → R is a convex function, then

∫
X

φ(g(x))dμ(x) � φ
(∫

X
g(x)dμ(x)

)
. (2.4)

When φ is strictly convex, equality holds if and only if g(x) is a constant for μ -almost
all x ∈ X (see [7]). If φ is a concave function, the inequality is reversed.

3. Proof of the main results

LEMMA 3.1. [22] Let K,L ∈ S n and ψ ∈ Φ̃∪ Ψ̃ . Then

lim
ε→0+

ρK+̃ψ ε·L(u)−ρK(u)

ε
=

ρK(u)
ψ ′

r(1)
ψ
(

ρL(u)
ρK(u)

)
,

uniformly for all u ∈ Sn−1 .

LEMMA 3.2. Let K,L ∈ S n , ψ ∈ Φ̃∪ Ψ̃ , and 0 � i � n−1 . Then

W̃ψ,i(K,L) =
1
n

∫
Sn−1

ψ
(

ρL(u)
ρK(u)

)
ρn−i

K (u)dS(u). (3.1)
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Proof. Suppose ε > 0,K,L ∈ S n , and u ∈ Sn−1 . By Lemma 3.1, it follows that

lim
ε→0+

ρn−i
K+̃ψ ε·L(u)−ρn−i

K (u)

ε
= (n− i)ρn−i−1

K+̃ψ ε·L(u)|ε=0 · lim
ε→0+

ρK+̃ψ ε·L(u)−ρK(u)

ε

=
(n− i)ρn−i

K (u)
ψ ′

r(1)
ψ
(

ρL(u)
ρK(u)

)
,

uniformly on Sn−1 . Then, using (2.1),

lim
ε→0+

W̃i(K+̃ψ ε ·L)−W̃i(K)
ε

=
n− i

nψ ′
r(1)

∫
Sn−1

ψ
(

ρL(u)
ρK(u)

)
ρn−i

K (u)dS(u).

Hence, by (2.2), we have

W̃ψ,i(K,L) =
1
n

∫
Sn−1

ψ
(

ρL(u)
ρK(u)

)
ρn−i

K (u)dS(u). �

Taking L = K in (3.1), we obtain W̃ψ,i(K,K) = ψ(1)W̃i(K) . The case i = 0 of
the dual Orlicz mixed quermassintegral W̃ψ,i(K,L) is the dual Orlicz mixed volume
Ṽψ(K,L) , which was defined by Zhu, Zhou and Xu [22] (see also [6]).

For K ∈ S n , since
1
n

∫
Sn−1

ρn−i
K (u)dS(u) = W̃i(K) , then the measure μ on Sn−1

given by dμ(u) = ρn−i
K (u)dS(u)/(nW̃i(K)) is a probability measure. Next, we will

establish the following dual Orlicz-Minkowski inequality for dual quermassintegrals.

THEOREM 3.1. Let K,L∈S n , ψ ∈ Φ̃∪Ψ̃ , and 0 � i � n−1 . If ψ0(t) = ψ(t
1

n−i )
is concave, then

W̃ψ,i(K,L)

W̃i(K)
� ψ

⎛⎝( W̃i(L)
W̃i(K)

) 1
n−i
⎞⎠ ,

while if ψ0(t) is convex, the inequality is reversed. When ψ0 is strictly concave (or
convex, as appropriate), equality holds if and only if K and L are dilates.

Proof. If ψ0(t) = ψ(t
1

n−i ) is concave, from (3.1) and (2.4), it follows that

W̃ψ,i(K,L)

W̃i(K)
=

1

nW̃i(K)

∫
Sn−1

ψ0

((
ρL(u)
ρK(u)

)n−i
)

ρn−i
K (u)dS(u)

� ψ0

(
1

nW̃i(K)

∫
Sn−1

ρn−i
L (u)dS(u)

)
=ψ0

(
W̃i(L)
W̃i(K)

)
=ψ

⎛⎝(W̃i(L)
W̃i(K)

) 1
n−i
⎞⎠ .

This gives the desired inequality. When ψ0 is strictly concave, from the equality con-
dition of Jensen’s inequality (2.4), we have that K and L are dilates.

The case in which ψ0 is convex is completely analogous. �
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REMARK 1. The case i = 0 of Theorem 3.1 is the dual Orlicz-Minkowski in-
equality, which was established by Zhu, Zhou and Xu [22] (see also [6]).

The above result can be used to deduce the corresponding Orlicz-Brunn-Minkowski
inequality, as follows.

THEOREM 3.2. Let K,L∈S n , ψ ∈ Φ̃∪Ψ̃ , and 0 � i � n−1 . If ψ0(t) = ψ(t
1

n−i )
is concave, then

ψ

⎛⎝( W̃i(K)
W̃i(K+̃ψL)

) 1
n−i
⎞⎠+ ψ

⎛⎝( W̃i(L)
W̃i(K+̃ψL)

) 1
n−i
⎞⎠� ψ(1),

while if ψ0(t) is convex, the inequality is reversed. When ψ0 is strictly concave (or
convex), equality holds if and only if K and L are dilates.

Proof. Let Kψ = K+̃ψL . If ψ0(t) = ψ(t
1

n−i ) is concave, from (1.4), (3.1) and
Theorem 3.1, it follows that

ψ(1) =
1

nW̃i(Kψ )

∫
Sn−1

(
ψ

(
ρK(u)
ρKψ (u)

)
+ ψ

(
ρL(u)

ρKψ (u)

))
ρn−i

Kψ
(u)dS(u)

=
1

W̃i(Kψ)
W̃ψ,i(Kψ ,K)+

1

W̃i(Kψ )
W̃ψ,i(Kψ ,L)

� ψ

⎛⎝( W̃i(K)
W̃i(Kψ )

) 1
n−i
⎞⎠+ ψ

⎛⎝( W̃i(L)
W̃i(Kψ )

) 1
n−i
⎞⎠ .

When ψ0 is strictly concave, equality holds if and only if K and L are dilates.
The case in which ψ0 is convex is analogous. �

REMARK 2. The case i = 0 of Theorem 3.2 is the dual Orlicz-Brunn-Minkowski
inequality, which was established by Zhu, Zhou and Xu [22] (see also [6]).

LEMMA 3.3. [19] Let K,L ∈ K n
o and φ ∈ Φ . If ψ(t) = φ(t−1) , then

K∗+̃ψL∗ = (K +φ L)∗.

Proof of Theorem 1.1. Set ψ(t) = φ(t−1) . We clearly have that ψ ∈ Ψ̃ and,

moreover, that ψ0(t) = ψ(t
1

n−i ) is convex. From Theorem 3.2 (for K∗ and L∗ ) together
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with Lemma 3.3, we get

φ(1) = ψ(1) � ψ

⎛⎝( W̃i(K∗)
W̃i(K∗+̃ψL∗)

) 1
n−i
⎞⎠+ ψ

⎛⎝( W̃i(L∗)
W̃i(K∗+̃ψL∗)

) 1
n−i
⎞⎠

= φ

⎛⎝( W̃i(K∗)
W̃i((K +φ L)∗)

)− 1
n−i
⎞⎠+ φ

⎛⎝( W̃i(L∗)
W̃i((K +φ L)∗)

)− 1
n−i
⎞⎠ .

The equality case follows from the equality case of Theorem 3.2. �

REMARK 3. When ψ(t) = t p, p � 1, the above result for the volume case (i = 0)
was previously stated by Firey [1]. Its natural extension for any i-th (classical) quer-
massintegral was recently obtained by Hernández Cifre and Nicolás [9]. The latter has
been generalized to both the setting p � 0 (by Saroglou [17]) and the Orlicz case (by
Wang and Huang [19]). Hence, all the above results involve the classical quermass-
integrals, the usual framework when dealing with Minkowski/ Lp -/ Orlicz additions;
however, here we provide with an alternative Orlicz version for dual quermassintegrals
(which allows us to recover the previous results for i = 0).

LEMMA 3.4. Let K,L∈K n
o and ψ ∈ Ψ̃ such that φ(t) = ψ(t−1) is convex. Then

K +φ L = (K∗+̃ψL∗)∗.

Proof. It is clear that φ ∈ Φ . By the definition of the radial Orlicz addition (1.4),
(2.3), and the fact that ψ(1) = φ(1) , we have

φ(1) = ψ(1) = ψ

(
ρK∗(x)

ρK∗+̃ψL∗(x)

)
+ ψ

(
ρL∗(x)

ρK∗+̃ψL∗(x)

)

= φ

(
hK(x)

h(K∗+̃ψL∗)∗(x)

)
+ φ

(
hL(x)

h(K∗+̃ψL∗)∗(x)

)
,

for all x ∈ R
n . Thus, from (1.2), we get that K +φ L = (K∗+̃ψL∗)∗ . �

Proof of Theorem 1.2. Set φ(t) = ψ(t−1) . We clearly have that φ ∈ Φ . By (1.3)
for K∗ and L∗ together with Lemma 3.4, we get

ψ(1) = φ(1) � φ

((
Wi(K∗)

Wi(K∗ +φ L∗)

) 1
n−i
)

+ φ

((
Wi(L∗)

Wi(K∗ +φ L∗)

) 1
n−i
)

= ψ

((
Wi(K∗)

Wi((K+̃ψL)∗)

)− 1
n−i
)

+ ψ

((
Wi(L∗)

Wi(K+̃ψL)∗)

)− 1
n−i
)

,

with equality if and only if K and L are dilates. �
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LEMMA 3.5. [19] Let K,L ∈ S n and ψ ∈ Φ̃∪ Ψ̃ . If ϕ(t) = ψ(t−1) , then

K◦+̃ϕL◦ = (K+̃ψL)◦.

Proof of Theorem 1.3. Without loss of generality, we may consider that ψ0 is
concave. Assume also that ψ ∈ Φ̃ , which implies that the function ϕ given by ϕ(t) =
ψ(t−1) belongs to Ψ̃ . So, by Theorem 3.2 (for ϕ , K◦ and L◦ ) together with Lemma
3.5 we have

ψ(1) = ϕ(1) � ϕ

⎛⎝( W̃i(K◦)
V (K◦+̃ϕL◦)

) 1
n−i
⎞⎠+ ϕ

⎛⎝( W̃i(L◦)
W̃i(K◦+̃ϕL◦)

) 1
n−i
⎞⎠

= ψ

⎛⎝( W̃i(K◦)
W̃i((K+̃ψL)◦)

)− 1
n−i
⎞⎠+ ψ

⎛⎝( W̃i(L◦)
W̃i((K+̃ψL)◦)

)− 1
n−i
⎞⎠ .

The equality case follows from the equality case of Theorem 3.2. �

REMARK 4. The case i = 0 of Theorem 1.3 is the dual Orlicz-Brunn-Minkowski
inequality for star dual bodies, which was obtained by Wang and Huang [19].

Acknowledgement. I am extremely grateful to the referee for the valuable sugges-
tions and the careful reading of the original manuscript.
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[9] M. A. HERNÁNDEZ CIFRE AND J. Y. NICOLÁS, On Brunn-Minkowski-type inequalities for polar

bodies, J. Geom Anal., 26 (2014), 1–13.
[10] E. LUTWAK, Dual mixed volumes, Pacific J. Math., 58 (1975), 531–538.
[11] E. LUTWAK, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J.

Differential Geom., 38 (1993), 131–150.
[12] E. LUTWAK, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math.,

118 (1996), 244–294.
[13] E. LUTWAK, D. YANG AND G. ZHANG, Orlicz projection bodies, Adv. Math., 223 (2010), 220–242.



662 L. LIU

[14] E. LUTWAK, D. YANG AND G. ZHANG, Orlicz centroid bodies, J. Differential Geom., 84 (2010),
365–387.
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