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OPERATOR NORM AND NUMERICAL RADIUS

ANALOGUES OF COHEN’S INEQUALITY

ROMAN DRNOVŠEK

(Communicated by P. Tradacete Perez)

Abstract. Let D be an invertible multiplication operator on L2(X ,μ) , and let A be a bounded
operator on L2(X ,μ) . In this note we prove that ‖A‖2 � ‖DA‖‖D−1A‖ , where ‖ · ‖ denotes
the operator norm. If, in addition, the operators A and D are positive, we also have w(A)2 �
w(DA)w(D−1A) , where w denotes the numerical radius.

1. Introduction

Let A be a nonnegative matrix and D a diagonal matrix with positive diagonal
entries. J. E. Cohen [1, inequality (3.7)] proved that

r(A)2 � r(DA)r(D−1A) (1)

where r denotes the spectral radius. In fact, he proved slightly more general inequality
[1, inequality (3.6)]. Let D1 , . . . , Dm be diagonal matrices with positive diagonal
entries such that D1 · · ·Dm = I , where I is the identity matrix. Then

r(A)m � r(D1A)r(D2A) · · · r(DmA). (2)

This inequality is important in the theory of population dynamics in Markovian
environments; see [2]. In this note we consider this inequality with the spectral radius
replaced by the operator norm and by the numerical radius. In fact, we introduce a more
general setting.

Throughout the note, let μ be a σ -finite positive measure on a set X . We consider
bounded (linear) operators on the complex Banach space Lp(X ,μ) (1 � p � ∞). The
adjoint of an operator A on Lp(X ,μ) is denoted by A∗ . An operator A on Lp(X ,μ) is
said to be positive if it maps nonnegative functions to nonnegative ones. Given operators
A and B on Lp(X ,μ) , we write A � B if the operator A−B is positive. The norm in
Lp(X ,μ) and the operator norm are denoted by ‖ · ‖p and ‖ · ‖ , respectively. The
numerical radius of an operator A on L2(X ,μ) is defined by

w(A) := sup{|〈A f , f 〉| : f ∈ L2(X ,μ),‖ f‖2 = 1}.
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If, in addition, A is positive, then we have

w(A) = sup{〈A f , f 〉 : f ∈ L2(X ,μ), f � 0,‖ f‖2 = 1}.
Indeed, this follows from the estimate

|〈A f , f 〉| �
∫

X
|A f | | f |dμ � 〈A| f |, | f |〉

that holds for any f ∈ L2(X ,μ) . It is well-known [4] that

r(A) � w(A) � ‖A‖
for all bounded operators A on L2(X ,μ) .

We will make use of the following generalized Hölder’s inequality; see e.g. [3, p.
196, Exercise 31], or [5] for its proof.

LEMMA 1.1. Assume that r ∈ [1,∞] and p1 , . . . , pm ∈ [1,∞] satisfy the equality

m

∑
i=1

1
pi

=
1
r
,

where (as usual) we interpret 1/∞ as 0 . If fi ∈ Lpi(X ,μ) for i = 1, . . . ,m, then
f1 · · · fm ∈ Lr(X ,μ) and

‖ f1 · · · fm‖r � ‖ f1‖p1 · · · ‖ fm‖pm .

2. Results

We begin with the operator norm analogue of Cohen’s inequality (2).

THEOREM 2.1. Let D1 , . . . , Dm be multiplication operators on Lp(X ,μ) (1 �
p � ∞) such that D1 · · ·Dm = I . Let A be a bounded operator A on Lp(X ,μ) . Then

‖A‖m � ‖D1A‖‖D2A‖· · ·‖DmA‖. (3)

If A is the adjoint operator of an operator, then we also have

‖A‖m � ‖AD1‖‖AD2‖· · ·‖ADm‖. (4)

Proof. For each i = 1, . . . ,m , let di be the function in L∞(X ,μ) such that Di f =
di f for all f ∈ Lp(X ,μ) . Therefore, d1 · · ·dm = 1 a.e. on X . There is no loss of
generality in assuming that A �= 0. Choose an arbitrary number c ∈ (0,‖A‖) . Then
there exists a function f ∈ Lp(X ,μ) such that ‖ f‖p = 1 and the function g := A f has
norm more than c . Since ‖DiA‖ � ‖DiA f‖p = ‖dig‖p , we have

‖D1A‖‖D2A‖· · ·‖DmA‖ � ‖d1g‖p‖d2g‖p · · ·‖dmg‖p.
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Now Lemma 1.1 gives the inequality

‖d1g‖p‖d2g‖p · · ·‖dmg‖p � ‖(d1g) · · ·(dmg)‖p/m = ‖gm‖p/m = ‖g‖m
p > cm .

It follows that
‖D1A‖‖D2A‖· · ·‖DmA‖ > cm.

Since the number c ∈ (0,‖A‖) is arbitrary, we obtain the inequality (3).
To prove the inequality (4), we assume first that p < ∞ . Then the adjoint operators

A∗ , D∗
1 , . . . , D∗

m are operators on the Banach space Lq(X ,μ) , where q ∈ (1,∞] is the
conjugate exponent to p . Applying the inequality (3) for them, we have

‖A‖m = ‖A∗‖m � ‖D∗
1A

∗‖ · · ·‖D∗
mA∗‖ = ‖(AD1)∗‖ · · · ‖(ADm)∗‖ = ‖AD1‖· · ·‖ADm‖,

proving the inequality (4) in this case.
Assume now that p = ∞ . We are assuming that there exists an operator B on

L1(X ,μ) such that B∗ = A . Let Ei ( i = 1, . . . ,m) be the multiplication operator on
L1(X ,μ) with the function di , so that E∗

i = Di . Applying the inequality (3) for the
operators B , E1 , . . . , Em , we obtain that

‖A‖m = ‖B‖m � ‖E1B‖· · ·‖EmB‖ = ‖(E1B)∗‖ · · ·‖(EmB)∗‖ = ‖AD1‖· · ·‖ADm‖.

This completes the proof of the theorem.

COROLLARY 2.2. Let D be an invertible multiplication operator on Lp(X ,μ)
(1 � p < ∞), and let A be a bounded operator on Lp(X ,μ) . Then

‖A‖2 � ‖DA‖‖D−1A‖ (5)

and
‖A‖2 � ‖AD‖‖AD−1‖.

We now turn to the numerical radius analogue of Cohen’s inequality.

THEOREM 2.3. Let D1 , . . . , Dm be positive multiplication operators on L2(X ,μ)
such that D1 · · ·Dm � I . Then, for any positive operator A on L2(X ,μ) ,

w(A)m � w(D1A)w(D2A) · · ·w(DmA) (6)

and
w(A)m � w(AD1)w(AD2) · · ·w(ADm). (7)

Proof. For each i = 1, . . . ,m , let di be the function in L∞(X ,μ) such that Di f =
di f for all f ∈ L2(X ,μ) . By the assumption, we have d1 · · ·dm � 1 a.e. on X .
There is no loss of generality in assuming that A �= 0. Choose an arbitrary num-
ber c ∈ (0,w(A)) . Then there exists a nonnegative function f ∈ L2(X ,μ) such that
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‖ f‖2 = 1 and the nonnegative function g := A f satifies the inequality 〈g, f 〉> c . Since
w(DiA) � 〈DiA f , f 〉 = 〈dig, f 〉 = ‖√dig f‖2

2 , we have

w(D1A)w(D2A) · · ·w(DmA) �
(
‖
√

d1g f‖2 ‖
√

d2g f‖2 · · ·‖
√

dmg f‖2

)2
.

Using Lemma 1.1 we obtain the inequality

‖
√

d1g f‖2 ‖
√

d2g f‖2 · · · ‖
√

dmg f‖2 �
(∫

X
(d1 · · ·dm)1/mg f dμ

)m/2

�
(∫

X
g f dμ

)m/2

> cm/2.

It follows that
w(D1A)w(D2A) · · ·w(DmA) > cm.

Since the number c ∈ (0,w(A)) is arbitrary, we get the inequality (6).
To prove (7), we apply (6) for the adjoint operator A∗ :

w(A)m = w(A∗)m � w(D1A
∗) · · ·w(DmA∗) = w(AD1) · · ·w(ADm).

COROLLARY 2.4. Let D be an invertible positive multiplication operator on
L2(X ,μ) , and let A be a positive operator on L2(X ,μ) . Then

w(A)2 � w(DA)w(D−1A) (8)

and
w(A)2 � w(AD)w(AD−1).

The following example shows that in Theorem 2.3 and Corollary 2.4 we cannot
omit the assumption that multiplication operators are positive. The same example also
shows that Cohen’s inequality does not hold without the positivity assumption.

EXAMPLE 2.5. Define the matrices A and D by

A =
(

1 1
1 1

)
and D =

(
1 0
0 −1

)
.

One can verify that r(A) = ‖A‖ = 2. Since r(A) � w(A) � ‖A‖ , we conclude that
w(A) = 2 as well. Since

DA = D−1A =
(

1 1
−1 −1

)

is unitarily equivalent to a multiple of a Jordan nilpotent J and w(J) = 1/2, we have
w(D−1A) = w(DA) = ‖DA‖/2 = 1, and so the inequality (8) does not hold. Since
r(D−1A) = r(DA) = 0, the inequality (1) is not true either.

One may ask whether the inequality

w(A)2 � w(DA)w(AD−1)

holds for an invertible positive multiplication operator D on L2(X ,μ) and for a positive
operator A on L2(X ,μ) . The following example show that this is not the case.
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EXAMPLE 2.6. Define the matrices A and D by

A =
(

0 1
0 0

)
and D =

(
d 0
0 1

)
,

where d ∈ (0,1) . Then w(A) = w(AD−1) = 1/2 and w(DA) = d/2, so that w(A)2 >
w(DA)w(AD−1) .

We conclude this note by posing an open question.

QUESTION 2.7. Is Cohen’s inequality (1) true for operators on the space L2(X,μ)?
That is, does it the inequality

r(A)2 � r(DA)r(D−1A) (9)

hold for an invertible positive multiplication operator D on L2(X ,μ) and for a positive
operator A on L2(X ,μ)?

If the operator A has rank one, the answer is affirmative. Namely, if A = u⊗ v
for some nonnegative functions u and v in L2(X ,μ) and if the positive function ϕ ∈
L∞(X ,μ) corresponds to the multiplication operator D , then we have

r(A) =
∫

X
uvdμ =

∫
X

√
ϕuv

√
uv/ϕ dμ ,

r(DA) =
∫

X
ϕuvdμ , r(D−1A) =

∫
X

uv/ϕ dμ ,

so that (9) holds by the Cauchy-Schwarz inequality.
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