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NORM INEQUALITIES OF DAVIDSON–POWER TYPE

AHMAD AL-NATOOR, WASIM AUDEH ∗ AND FUAD KITTANEH

(Communicated by J.-C. Bourin)

Abstract. Let A,B, and X be n×n complex matrices such that A and B are positive semidef-
inite. It is shown, among other inequalities, that

‖AX +XB‖� 1
2

max(‖A‖ ,‖XBX∗‖)+
1
2

max(‖X∗AX‖ ,‖B‖)+
∥∥∥A1/2XB1/2

∥∥∥ .

This norm inequality extends an inequality of Kittaneh, which improves an earlier inequality of
Davidson and Power.

1. Introduction

Let Mn(C) denote the algebra of all n× n complex matrices. For A ∈ Mn(C),
let s1(A),s2(A), ...,sn(A) denote the singular values of A (i.e., the eigenvalues of |A| =
(A∗A)1/2) arranged in decreasing order and repeated according to multiplicity.

Let |||.||| denote any unitarily invariant norm on Mn(C) (and its extension on
M2n(C)) . Every unitarily invariant norm satisfies the invariance property |||UAV ||| =
|||A||| for all A ∈ Mn(C) and for all unitary matrices U,V ∈ Mn(C). It is known that
unitarily invariant norms are increasing symmetric gauge functions of singular values
(see, e.g., [1] or [7]). Among the most important examples of unitarily invariant norms

are the Schatten p-norms ‖.‖p , defined by ‖A‖p =

(
n

∑sp
j

j=1

(A)

)1/p

for 1 � p � ∞,

which include the spectral (operator) norm ‖.‖ corresponding to the case p = ∞. Thus,
‖A‖ = s1(A).

Kittaneh [9] proved that if A,B ∈ Mn(C) are positive semidefinite, then

||A+B|| � max(‖A‖ ,‖B‖)+
∥∥∥A1/2B1/2

∥∥∥ . (1)

A weaker version of the inequality (1), where
∥∥A1/2B1/2

∥∥ is replaced by ‖AB‖1/2

has been given in Davidson and Power [6], and an equivalent formulation of the in-
equality (1) has been recently given in [5].

An improvement of the inequality (1) has been given in [10] so that
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||A+B|| � 1
2

(
‖A‖+‖B‖+

√
(‖A‖−‖B‖)2 +4

∥∥A1/2B1/2
∥∥2
)

, (2)

which also improves the triangle inequality for norms of positive semidefinite matrices.
Moreover, Kittaneh [9] proved that if A,B∈Mn(C) are positive semidefinite, then

‖A+B‖p �
(
‖A‖p

p +‖B‖p
p

)1/p
+21/p

∥∥∥A1/2B1/2
∥∥∥

p
(3)

for 1 � p � ∞.
In this paper, we give a considerable generalization of the inequality (1) . Our new

result involves arbitrary unitarily invariant norms and concave increasing functions.
Generalizations of the inequalities (2) and (3) are also given. Finally, we present a
relevant singular value inequality involving increasing convex functions.

2. Main results

In our analysis, we need the following lemmas. The first lemma is a consequence
of the spectral theorem (see, e.g., [1, p. 5]). For the second lemma, we refer to [2]. The
third lemma can be found in [4]. Throughout this paper, all functions are assumed to be
continuous.

LEMMA 1. Let A ∈ Mn(C) and let f be a nonnegative increasing function on
[0,∞) . Then

s j ( f (|A|)) = f (s j (A))

for j = 1,2, ...,n.

LEMMA 2. Let A,B ∈ Mn(C). Then

s j(AB∗) � 1
2
s j(A∗A+B∗B)

for j = 1,2, ...,n.

LEMMA 3. Let A1, ...,Am ∈ Mn(C) be normal and let f be a nonnegative con-
cave function on [0,∞) . Then

||| f (|A1 + ...+Am|)||| � ||| f (|A1|)+ ...+ f (|Am|)|||
for every unitarily invariant norm.

The following is our first main result.

THEOREM 1. Let A,B,X ∈ Mn(C) such that A and B are positive semidefinite
and let f be a nonnegative concave function on [0,∞) . Then

||| f (|(AX +XB)⊕0|)||| (4)
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�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A

)
⊕ f

(
1
2
XBX∗

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
X∗AX

)
⊕ f

(
1
2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣∣∣∣∣∣ f (∣∣∣A1/2XB1/2

∣∣∣)⊕ f
(∣∣∣A1/2XB1/2

∣∣∣)∣∣∣∣∣∣∣∣∣
for every unitarily invariant norm.

Proof. Let S =
[

A1/2 XB1/2

0 0

]
and T ∗ =

[
A1/2X 0
B1/2 0

]
. Then, for j = 1,2, ...,2n ,

we have

s j( f (|(AX +XB)⊕0|))
= s j( f (|ST ∗|)) = f (s j(ST ∗)) (by Lemma 1)

� f

(
1
2
s j(S∗S+T ∗T )

)
(by Lemma 2)

= f

(
s j

(
1
2

[
A A1/2XB1/2

B1/2X∗A1/2 B1/2 |X |2 B1/2

]
+ 1

2

[
A1/2 |X∗|2 A1/2 A1/2XB1/2

B1/2X∗A1/2 B

]))
= f (s j (K +T +Y)) = s j( f (|K +T +Y |)),

where K =
[ 1

2A 0
0 1

2B1/2 |X |2 B1/2

]
,T =

[
1
2A1/2 |X∗|2 A1/2 0

0 1
2B

]
, and

Y =
[

0 A1/2XB1/2

B1/2X∗A1/2 0

]
.

Since unitarily invariant norms are increasing functions of singular values, it fol-
lows that

||| f (|(AX +XB)⊕0|)|||
� ||| f (|K +T +Y |)|||
� ||| f (|K|)+ f (|T |)+ f (|Y |))||| (by Lemma 3)
� ||| f (|K|)|||+ ||| f (|T |)|||+ ||| f (|Y |)|||
=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A⊕ 1

2
B1/2 |X |2 B1/2

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A1/2 |X∗|2 A1/2⊕ 1

2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(∣∣∣∣
[

0 A1/2XB1/2

B1/2X∗A1/2 0

]∣∣∣∣
)∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A

)
⊕ f

(
1
2
B1/2 |X |2 B1/2

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A1/2 |X∗|2 A1/2

)
⊕ f

(
1
2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
([ ∣∣B1/2X∗A1/2

∣∣ 0
0

∣∣A1/2XB1/2
∣∣
])∣∣∣∣

∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A

)
⊕ f

(
1
2
B1/2 |X |2 B1/2

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A1/2 |X∗|2 A1/2

)
⊕ f

(
1
2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣∣∣∣∣∣ f (∣∣∣B1/2X∗A1/2

∣∣∣)⊕ f
(∣∣∣A1/2XB1/2

∣∣∣)∣∣∣∣∣∣∣∣∣
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=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A

)
⊕ f

(
1
2
XBX∗

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
X∗AX

)
⊕ f

(
1
2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣∣∣∣∣∣ f (∣∣∣A1/2XB1/2

∣∣∣)⊕ f
(∣∣∣A1/2XB1/2

∣∣∣)∣∣∣∣∣∣∣∣∣ ,
as required. �

Now, specializing the inequality (4) for the usual operator norm and the Schatten
p−norms, we have the following two corollaries.

COROLLARY 1. Let A,B,X ∈Mn(C) such that A and B are positive semidefinite.
Then

‖AX +XB‖� 1
2

max(‖A‖ ,‖XBX∗‖)+
1
2

max(‖X∗AX‖ ,‖B‖)+
∥∥∥A1/2XB1/2

∥∥∥ .

Proof. The result follows from Theorem 1 by letting f (t) = t and by considering
the spectral norm. �

COROLLARY 2. Let A,B,X ∈Mn(C) such that A and B are positive semidefinite,
1 � p � ∞ . Then

‖AX +XB‖p �
(∥∥∥∥1

2
A

∥∥∥∥
p

p
+
∥∥∥∥1

2
XBX∗

∥∥∥∥
p

p

)1/p

+

(∥∥∥∥1
2
B

∥∥∥∥
p

p
+
∥∥∥∥1

2
X∗AX

∥∥∥∥
p

p

)1/p

+21/p
∥∥∥A1/2XB1/2

∥∥∥
p
.

Proof. The result follows from Theorem 1 by letting f (t) = t and by considering
the Schatten p-norms. �

The above corollaries represent generalizations of the inequalities (1) and (3),
which can be retained by letting X = I . Specializing Theorem 1 for certain types of
functions, enables us to get the following two corollaries.

COROLLARY 3. Let A,B,X ∈Mn(C) such that A and B are positive semidefinite.
Then

|||log(|(AX +XB)|+ I)|||
�
∣∣∣∣
∣∣∣∣
∣∣∣∣log

(
1
2
A+ I

)
⊕ log

(
1
2
XBX∗+ I

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣log

(
1
2
X∗AX + I

)
⊕ log

(
1
2
B+ I

)∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣∣∣∣∣∣log

(∣∣∣A1/2XB1/2
∣∣∣+ I

)
⊕ log

(∣∣∣A1/2XB1/2
∣∣∣+ I

)∣∣∣∣∣∣∣∣∣
for every unitarily invariant norm.

Proof. The result follows from Theorem 1 by letting f (t) = log(t +1). �
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COROLLARY 4. Let A,B,X ∈Mn(C) such that A and B are positive semidefinite.
Then, for r ∈ (0,1] , we have

||| |(AX +XB)|r|||
�
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
2
A

)r

⊕
(

1
2
XBX∗

)r∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
2
X∗AX

)r

⊕
(

1
2
B

)r∣∣∣∣
∣∣∣∣
∣∣∣∣

+
∣∣∣∣∣∣∣∣∣∣∣∣A1/2XB1/2

∣∣∣r ⊕ ∣∣∣A1/2XB1/2
∣∣∣r∣∣∣∣∣∣∣∣∣

for every unitarily invariant norm.

Proof. The result follows from Theorem 1 by letting f (t) = tr , r ∈ (0,1] . �
A generalization of the inequality (2) is given in the following theorem, which is

based on a folklore lemma (see, e.g., [8]).

LEMMA 4. Let A,B,C,D ∈ Mn(C).Then

∥∥∥∥
[

A B
C D

]∥∥∥∥�
∥∥∥∥
[ ‖A‖ ‖B‖
‖C‖ ‖D‖

]∥∥∥∥ .

THEOREM 2. Let A,B,X ∈ Mn(C) such that A and B are positive semidefinite.
Then

‖AX+XB‖� 1
4

⎡
⎢⎣

∥∥∥A+A1/2 |X∗|2 A1/2
∥∥∥+

∥∥∥B+B1/2 |X |2 B1/2
∥∥∥

+
√(∥∥∥A+A1/2 |X∗|2 A1/2

∥∥∥−∥∥∥B+B1/2 |X |2 B1/2
∥∥∥)2

+16
∥∥A1/2XB1/2

∥∥
⎤
⎥⎦ .

Proof. Let S =
[

A1/2 XB1/2

0 0

]
and T ∗ =

[
A1/2X 0
B1/2 0

]
. Then

‖AX+XB‖ = ‖ST ∗‖ � 1
2
‖S∗S+T∗T‖

=
1
2

∥∥∥∥
[

A A1/2XB1/2

B1/2X∗A1/2 B1/2 |X |2 B1/2

]
+
[

A1/2 |X∗|2 A1/2 A1/2XB1/2

B1/2X∗A1/2 B

]∥∥∥∥
=

1
2

∥∥∥∥
[

A+A1/2 |X∗|2 A1/2 2A1/2XB1/2

2B1/2X∗A1/2 B+B1/2 |X |2 B1/2

]∥∥∥∥
� 1

2

∥∥∥∥∥∥
⎡
⎣
∥∥∥A+A1/2 |X∗|2 A1/2

∥∥∥ 2
∥∥A1/2XB1/2

∥∥
2
∥∥B1/2X∗A1/2

∥∥ ∥∥∥B+B1/2 |X |2 B1/2
∥∥∥
⎤
⎦
∥∥∥∥∥∥

(by Lemma 4)

=
1
4

⎡
⎢⎣

∥∥∥A+A1/2 |X∗|2 A1/2
∥∥∥+

∥∥∥B+B1/2 |X |2 B1/2
∥∥∥

+
√(∥∥∥A+A1/2 |X∗|2 A1/2

∥∥∥−∥∥∥B+B1/2 |X |2 B1/2
∥∥∥)2

+16
∥∥A1/2XB1/2

∥∥
⎤
⎥⎦.
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Using an argument similar to that used in the proof of Theorem 1, we have the
following norm inequality. �

THEOREM 3. Let A,B,X ∈ Mn(C) such that A and B are positive semidefinite
and let f be a nonnegative concave function on [0,∞) . Then

||| f (|(AX −XB)⊕0|)|||�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f (1

2
A)⊕ f (

1
2
XBX∗)

∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f (1

2
X∗AX)⊕ f (

1
2
B)
∣∣∣∣
∣∣∣∣
∣∣∣∣

for every unitarily invariant norm.

Proof. Let S =
[

A1/2 XB1/2

0 0

]
and R∗ =

[
A1/2X 0
−B1/2 0

]
. Then, for j = 1,2, ...,2n ,

we have

s j( f (|(AX −XB)⊕0|))
= s j( f (|SR∗|)) = f (s j(SR∗)) (by Lemma 1)

� f

(
1
2
s j(S∗S+R∗R)

)
(by Lemma 2)

= f

(
s j

(
1
2

[
A A1/2XB1/2

B1/2X∗A1/2 B1/2 |X |2 B1/2

]
+ 1

2

[
A1/2 |X∗|2 A1/2 −A1/2XB1/2

−B1/2X∗A1/2 B

]))

= f

(
s j

([ 1
2A 0
0 1

2B1/2 |X |2 B1/2

]
+
[

1
2A1/2 |X∗|2 A1/2 0

0 1
2B

]))

= s j

(
f

([ 1
2A 0
0 1

2B1/2 |X |2 B1/2

]
+
[

1
2A1/2 |X∗|2 A1/2 0

0 1
2B

]))
.

Since unitarily invariant norms are increasing functions of singular values, it follows
that

||| f (|(AX −XB)⊕0|)|||

�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
([ 1

2A 0
0 1

2B1/2 |X |2 B1/2

]
+
[

1
2A1/2 |X∗|2 A1/2 0

0 1
2B

])∣∣∣∣
∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
([ 1

2A 0
0 1

2B1/2 |X |2 B1/2

])
+ f

([
1
2A1/2 |X∗|2 A1/2 0

0 1
2B

])∣∣∣∣
∣∣∣∣
∣∣∣∣ (by Lemma 3)

�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
([ 1

2A 0
0 1

2B1/2 |X |2 B1/2

])∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
([

1
2A1/2 |X∗|2 A1/2 0

0 1
2B

])∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A

)
⊕ f

(
1
2
B1/2 |X |2 B1/2

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A1/2 |X∗|2 A1/2

)
⊕ f

(
1
2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
A

)
⊕ f

(
1
2
XBX∗

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(

1
2
X∗AX

)
⊕ f

(
1
2
B

)∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

as required. �
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Letting f (t) = t and X = I in Theorem 3, we obtain an earlier norm inequality of
Bhatia and Kittaneh [2], which says that

|||(A−B)⊕0||| � |||A⊕B||| . (5)

For extensions and generalizations of the inequality (5), we refer to [11] and [12].
An application of Theorem 3 for special types of functions can be seen in the

following two corollaries.

COROLLARY 5. Let A,B,X ∈Mn(C) such that A and B are positive semidefinite.
Then

||| log(|(AX −XB)|+ I)|||
�
∣∣∣∣
∣∣∣∣
∣∣∣∣log

(
1
2
A+ I

)
⊕ log

(
1
2
XBX∗+ I

)∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣log

(
1
2
X∗AX + I

)
⊕ log

(
1
2
B+ I

)∣∣∣∣
∣∣∣∣
∣∣∣∣

for every unitarily invariant norm.

Proof. The result follows from Theorem 3 by letting f (t) = log(t +1) . �

COROLLARY 6. Let A,B,X ∈Mn(C) such that A and B are positive semidefinite.
Then, for r ∈ (0,1] , we have

||| |(AX −XB)|r||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
2
A

)r

⊕
(

1
2
XBX∗

)r∣∣∣∣
∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
2
X∗AX

)r

⊕
(

1
2
B

)r∣∣∣∣
∣∣∣∣
∣∣∣∣

for every unitarily invariant norm.

Proof. The result follows from Theorem 3 by letting f (t) = tr , r ∈ (0,1] . �
The last inequality in this paper is a singular value inequality based on the follow-

ing lemma, which can be found in [3]

LEMMA 5. Let A1, ...,Am ∈ Mn(C) be Hermitian and let f be increasing convex
function on an interval [a,b] containing the spectra of Ai, i = 1, ...,m. If Zi , i =

1, ...,m, is an isometric column, (i.e., if
m

∑Z∗
i

i=1
Zi = I), then there exists a unitary matrix

U such that

f

(
m

∑Z∗
i

i=1

AiZi

)
� U

(
m

∑Z∗
i

i=1

f (Ai)Zi

)
U∗.

Our inequality can be seen in the following theorem.

THEOREM 4. Let A,B,X ,Y ∈ Mn(C) such that |X |2 + |Y |2 = I and let f be a
nonnegative increasing convex function on [0,∞) . Then

max(s j( f (X∗ |A|X),s j( f (Y ∗ |B|Y )) � s j (X∗ f (|A|)X +Y∗ f (|B|)Y )

for j = 1,2, ...,n.
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Proof. For j = 1,2, ...,n, we have

s j( f (X∗ |A|X)) = f (s j(X∗ |A|X)) (by Lemma 1)

� f (s j(X∗ |A|X +Y ∗ |B|Y )) (by the Weyl monotonocity principle)

= s j( f (X∗ |A|X +Y ∗ |B|Y ))
� s j (X∗ f (|A|)X +Y ∗ f (|B|)Y ) (by Lemma 5).

Similarly,
s j( f (Y ∗ |B|Y )) � s j(X∗ f (|A|)X +Y ∗ f (|B|)Y ),

and so

max(s j( f (X∗ |A|X),s j( f (Y ∗ |B|Y )) � s j (X∗ f (|A|)X +Y ∗ f (|B|)Y ) ,

as required. �

COROLLARY 7. Let A,B,X ,Y ∈ Mn(C) such that |X |2 + |Y |2 = I. Then, for r ∈
[1,∞) , we have

max(s j (X∗ |A|X)r ,s j (Y ∗ |B|Y )r) � s j (X∗ |A|r X +Y ∗ |B|r Y )

for j = 1,2, ...,n.

Proof. The result follows from Theorem 4 by letting f (t) = tr, r ∈ [1,∞) . �

COROLLARY 8. Let A,B,X ,Y ∈ Mn(C) such that |X |2 + |Y |2 = I. Then

max(s j

(
eX∗|A|X − I

)
,s j

(
eY ∗|B|Y − I

)
) � s j

(
eX∗|A|X + eY∗|B|Y −2I

)
for j = 1,2, ...,n.

Proof. The result follows from Theorem 4 by letting f (t) = et −1. �
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