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NORM INEQUALITIES OF DAVIDSON-POWER TYPE

AHMAD AL-NATOOR, WASIM AUDEH* AND FUAD KITTANEH

(Communicated by J.-C. Bourin)

Abstract. Let A,B, and X be n xn complex matrices such that A and B are positive semidef-
inite. It is shown, among other inequalities, that

1 1
AX + XB] < 5 max (AL [XBX"[) + 5 max(|X“AX]|, | Bl) +||4" x|

This norm inequality extends an inequality of Kittaneh, which improves an earlier inequality of
Davidson and Power.

1. Introduction

Let M, (C) denote the algebra of all n x n complex matrices. For A € M,(C),
let s1(A),s2(A),...,sn(A) denote the singular values of A (i.e., the eigenvalues of |A| =
(A*A) 1/ 2) arranged in decreasing order and repeated according to multiplicity.

Let |||.]|| denote any unitarily invariant norm on M, (C) (and its extension on
M, (C)). Every unitarily invariant norm satisfies the invariance property |||UAV ||| =
[||A]]| for all A € M, (C) and for all unitary matrices U,V € M, (C). It is known that
unitarily invariant norms are increasing symmetric gauge functions of singular values
(see, e.g., [1] or [7]). Among the most important examples of unitaiily invariant norms

n ! P
are the Schatten p-norms |[.[|,, defined by [|A|[, = 255)(‘4) for 1 < p < oo,
j=1

which include the spectral (operator) norm ||.|| corresponding to the case p = oo. Thus,
IA[] = s1(A).
Kittaneh [9] proved that if A, B € M,,(C) are positive semidefinite, then

A+ B < max((JAll,|B]) + |28 o)

A weaker version of the inequality (1), where HAl/zBl/2 H is replaced by ||AB|| 172
has been given in Davidson and Power [6], and an equivalent formulation of the in-
equality (1) has been recently given in [5].

An improvement of the inequality (1) has been given in [10] so that
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1 2 2
lA+BlI< 3 (An 1B+ /Al - 181)? +4 4128172 ) G
which also improves the triangle inequality for norms of positive semidefinite matrices.
Moreover, Kittaneh [9] proved that if A, B € M,(C) are positive semidefinite, then

1/p
a+8l, < (Al +1l5) " +2/r 41282 3

for 1 < p Koo,

In this paper, we give a considerable generalization of the inequality (1). Our new
result involves arbitrary unitarily invariant norms and concave increasing functions.
Generalizations of the inequalities (2) and (3) are also given. Finally, we present a
relevant singular value inequality involving increasing convex functions.

2. Main results

In our analysis, we need the following lemmas. The first lemma is a consequence
of the spectral theorem (see, e.g., [1, p. 5]). For the second lemma, we refer to [2]. The
third lemma can be found in [4]. Throughout this paper, all functions are assumed to be
continuous.

LEMMA 1. Let A € M,(C) and let f be a nonnegative increasing function on
[0,00). Then
si (f(IA]) = f (s; (A))
for j=1,2,....n.

LEMMA 2. Let A,B € M,(C). Then
* 1 * *
Sj(AB ) < ESJ'(A A+B B)
for j=1,2,....n.

LEMMA 3. Let Ay,...,A, € M, (C) be normal and let f be a nonnegative con-
cave function on [0,0). Then

A UAL+ -+ AnDI < A UALD) + -+ f(ARDI
for every unitarily invariant norm.

The following is our first main result.

THEOREM 1. Let A,B,X € M,(C) such that A and B are positive semidefinite
and let f be a nonnegative concave function on [0,°). Then

117 ([(AX +XB) ©0])[|] )
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<[lrGe)er o)+l Grax) e (o)
|l (ja 2o (faxm 2] ]
for every unitarily invariant norm.

12 ypl/2 1/2
Proof. Let S = [A XB ] and T* = {A X0

} . Then, for j=1,2,...,2n,

0 0 B2 0
we have
5;(f(|(AX +XB)©0]))
= s;(f(IST*|)) = f(s;(ST*)) (by Lemma 1)

( (S*S+T"T) ) (by Lemma 2)

AI/ZXBI/Z | A1/2 ‘X*‘2A1/2 AI/ZXBI/Z
Sj BI/ZX*A1/2 Bl/2‘X‘ Bl/2 +3 Bl/2x*A1/2 B
=f(s;(K+T+Y))=s;(f(|IK+T+Y|)),

NI'—‘

<f

1 LA1/2y*(2 41/2
where K = {20[\ %Bl/z |§)(|2Bl/2] T = [2A \)(() "4 ;9] , and
0 Al/2XBl/2
Y = [Bl/2X*Al/2 0 } :
Since unitarily invariant norms are increasing functions of singular values, it fol-
lows that

117 ([(AX +XB) @ 0]
< IFIK+T+ Y]]
< A UKD + AT + (Y [)]]] (by Lemma 3)
< UKD+ HAAT DT+ Y DI

_ Lo lp2yp2pe Lzl
i O 4 e

0 AI/ZXBI/Z
+|Hf(Hszx*Aw i

Bl/2x*Al/2 0
+||\f([' ; ’|A1/2XB1/2D

_ f(l )@f( ~B\2|xP? B1/2> n f(%A1/2|X*2A1/2)@f<%B>

#lr (xeatm) o s (jaexs2)

N———
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=l Ge)es (aon (o) s Go) |
ol (s s s

as required. [
Now, specializing the inequality (4) for the usual operator norm and the Schatten
p—norms, we have the following two corollaries.

COROLLARY 1. Let A,B,X € M,,(C) suchthat A and B are positive semidefinite.
Then

1 1
X +XB| < 5 max(A], [IXBX"[) + 5 max(|X“AX || B]) + |4' X B2

Proof. The result follows from Theorem 1 by letting f(¢) = ¢ and by considering
the spectral norm. [

COROLLARY 2. Let A,B,X € M,(C) such that A and B are positive semidefinite,
1< p<eoo. Then
p> 1/p (H | p> 1/p
+(||=B
P 2 P

Proof. The result follows from Theorem 1 by letting f(¢) = and by considering
the Schatten p-norms. [

The above corollaries represent generalizations of the inequalities (1) and (3),
which can be retained by letting X = I. Specializing Theorem 1 for certain types of
functions, enables us to get the following two corollaries.

1
lAX +XB||,, < (HEA

.l
+ || =XBX*
» 12

P
- greax
, 112

+21/”HA1/2XBI/2HP.

COROLLARY 3. Let A,B,X € M,,(C) such that A and B are positive semidefinite.
|[[log (|(AX +XB)|+1)]]|

Then
1 | | 1
log EA—i—I @ log EXBX +1 log EX AX+1 ) Dlog EB—i—I

+ ‘ ‘ )1og (‘AWXBW‘ +1) @ log ()A1/2X31/2) +1> ‘ H

< ‘

+

for every unitarily invariant norm.

Proof. The result follows from Theorem 1 by letting f(¢) =log(r+1). O
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COROLLARY 4. Let A,B,X € M,,(C) suchthat A and B are positive semidefinite.

Then, for r € (0,1], we have
| [(AX +XB)|"|]|
1 " 1 "
—X"AX —B

<[|Ge) o (roe)

oy

+

for every unitarily invariant norm.

Proof. The result follows from Theorem 1 by letting f(z) =¢", r € (0,1]. O
A generalization of the inequality (2) is given in the following theorem, which is
based on a folklore lemma (see, e.g., [8]).

LEMMA 4. Let A,B,C,D € M,,(C).Then

IL22]] <t izl
CD Icl D]

THEOREM 2. Let A,B,X € M,,(C) such that A and B are positive semidefinite.
Then

la+al2ixpal?| + B+ 52 1x P B2

I
[AX+XB| < 1 2
+\/<HA+A1/2 xe a2 ||Bst2 X 2B12) 6 Al 2xB 2|
12 ypl/2 1/2
Proof. Let S [AO XB ] and T = [ABl/g( 8} . Then

1
IAX+XB|| = [IST"]| < S |IS"S+T°T|

A AI/ZXBI/Z A1/2 |X*‘2A1/2 AI/ZXBI/Z
B1/2x*A1/2 Bl/2 |X|2Bl/2 B1/2x*A1/2 B
A+AV2X*PAV2 242X B!/

Bl/2x*Al/2 B+Bl/2|x|2Bl/2

= =

N
N =

la+ai2ixepat?||  2)atxp2
2(B2xA2||B+ B2 B|
(by Lemma 4)
la+al2ixepal?| + B+ 512 1xP B2

—_

AL (e s e s ] ) s e |
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Using an argument similar to that used in the proof of Theorem 1, we have the
following norm inequality. [J

THEOREM 3. Let A,B,X € M,(C) such that A and B are positive semidefinite
and let f be a nonnegative concave function on [0,). Then

IWrax -xmywopli < ||r(54) £(5xBx)

[+ lrax-wnre s

for every unitarily invariant norm.

1/2 ypl/2 1/2
Proof. Let § = [A XB ] and R* = [A X0

} . Then, for j=1,2,...,2n,

0 0 _Bl/2 ¢
we have
5;(f(|(AX —XB) ©0]))
= s;(f(ISR*[)) = f(s;(SR")) (by Lemma 1)

(
1
AT

1/2y pl/2 *
=f<s,< [ Al2XB }Jr [AWXAI/2 A1/2XB1/2]>)

(S*S+R* R)) (by Lemma 2)

B1/2x*Al/2 Bl/2 ‘X‘ Bl/2 Bl/2x*Al/2 B

0 TAV2|x*7A2 0
Sa S S R R 1))

1A 0 LA2|x* 2412 0
— g 2
= (r([5 %BWX%W]*[z )]

Since unitarily invariant norms are increasing functions of singular values, it follows
that

[I(1(AX —XB) & 0])|]]

1A 0 1 [LAY2|x*2AY2 o
< ||f 20 131/2\X\ Bl/2 +|:2 ‘0| lB])H’
—lA 0 7] 1A1/2|X*‘ Al/2
2
SV Lo s xppre )*f([ 0 1BD‘H (byLemma )
1A1/2|X*‘ Al/2
<
< (5 )

= ||/

)or (armtn )|l Gameeaz)or ()|
e (e )|+l (ra) = (32

as required. [

=1||f

{

(6 i
(15 o] )
(

(

[\)|>—t DN | = T
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Letting f(#) =t and X = I in Theorem 3, we obtain an earlier norm inequality of
Bhatia and Kittaneh [2], which says that

II(A—B)&0[[| < [[|A® Bl (5)

For extensions and generalizations of the inequality (5), we refer to [11] and [12].
An application of Theorem 3 for special types of functions can be seen in the
following two corollaries.

COROLLARY 5. Let A,B,X € M,,(C) suchthat A and B are positive semidefinite.
Then

I og (I(AX —XB)|+ )]

1 1

for every unitarily invariant norm.

< ‘

1 1
log <§X*AX+I) @ log <§B+1)H'

Proof. The result follows from Theorem 3 by letting f(¢) =log(r+1). O

COROLLARY 6. Let A,B,X € M,,(C) such that A and B are positive semidefinite.

Then, for r € (0,1], we have
+ lX*AX r@ lB '
2 2

Proof. The result follows from Theorem 3 by letting f(z) =¢", r€ (0,1]. O
The last inequality in this paper is a singular value inequality based on the follow-
ing lemma, which can be found in [3]

Il 1(aX —XB)l| < 'H@A)@Gm)

for every unitarily invariant norm.

LEMMA 5. Let Ay,...,A, € M, (C) be Hermitian and let f be increasing convex
function on an interval [a,b] containing the spectra of A;, i=1,...m. If Z; , i=
m
1,...,m, is an isometric column, (i.e., if Y. Z*Z; =1), then there exists a unitary matrix

i=1
U such that

f (Zmsziz,) <U (fz;‘ f(A,-)z,) U*.
i=1

i=1

Our inequality can be seen in the following theorem.

THEOREM 4. Let A,B,X,Y € M, (C) such that |X|*+|Y|* =1 and let f be a
nonnegative increasing convex function on [0,). Then

max(s; (f (X" [A]X),s;(f(Y"|B|Y)) < s; (X" f(|A)X +Y" f(|B|)Y)
for j=1,2,....n.



696 A. AL-NATOOR, W. AUDEH AND F. KITTANEH

Proof. For j=1,2,...,n, we have

sj(f(XTIA[X)) = f(s;(X7[|A]X)) (by Lemma 1)
f(s;(X"|A|X+Y"|B|Y)) (by the Weyl monotonocity principle)
sj(f(XT|A[X+Y"|B|Y))

sj (X" f(|ADX +Y"f(|B|)Y) (by Lemma 5).

N

N

Similarly,
si(f(Y"[BIY)) <s;(X"f(IADX +Y*£(|B])Y),

and so
max (s; (f (X" |A[X),s;(f(Y"[B|Y)) < s; (X" f(IADX +Y"f([B])Y),
as required. [

COROLLARY 7. Let A,B,X,Y € M,(C) such that |X|*+|Y|* =I. Then, for r
[1,%0), we have

max(s; (X [A]X) s (1 [BIY)") < 55 (X° A X +° B Y)
for j=1,2,...,n.
Proof. The result follows from Theorem 4 by letting f(¢t) =¢", r € [1,00). O
COROLLARY 8. Let A,B,X,Y € M,,(C) such that |X|* +|Y|* = 1. Then
max(s; (eX*IA‘X —I) Y (eY*‘BIY —I)) < (ex*‘Alx + eV B 21)
for j=1,2,...,n.

Proof. The result follows from Theorem 4 by letting f(r) =¢' — 1. O
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