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ON EXTREMALS FOR THE TRUDINGER–MOSER INEQUALITY

WITH VANISHING WEIGHT IN THE N–DIMENSIONAL UNIT BALL

MENGJIE ZHANG

(Communicated by S. Varošanec)

Abstract. In this paper, we study the extremal function for the Trudinger-Moser inequality with
vanishing weight in the unit ball B⊂R

N (N � 3). To be exact, let S be the set of all decreasing

radially symmetrical functions and αN = Nω1/(N−1)
N−1 , where ωN−1 is the area of the unit sphere

in R
N . Suppose h is a nonnegative radially symmetrical function belonging to C0(B) satisfying

h(x) > 0 in B\{0} and h(x)|x|−Nβ → 1 as x → 0 for some real number β � 0 . By means of
blow-up analysis, we prove that the supremum

Λβ := sup
u∈W1,N

0 (B)∩S ,‖∇u‖N�1

∫
B

exp
{

αN (1+β) |u| N
N−1

}
h(x)dx

can be attained by some u0 ∈W 1,N
0 (B)∩S with ‖∇u0‖N = 1 . This improves a recent result

of Yang-Zhu [39].

1. Introduction and main results

Let Ω⊆R
N(N � 2) be a smooth bounded domain and W 1,N

0 (Ω) be the completion
of C∞

0 (Ω) under the Sobolev norm

‖∇u‖N =
(∫

Ω
|∇u|Ndx

)1/N

,

where ‖ · ‖N denotes the standard LN -norm and ∇ denotes the gradient operator. Let

αN = Nω1/(N−1)
N−1 , where ωN−1 represents the area of the unit sphere in R

N . Then the
classical Trudinger-Moser inequality [26, 30, 31, 33, 40], as a limit case of the Sobolev
embeddings, says

sup
u∈W1,N

0 (Ω),‖∇u‖N�1

∫
Ω

exp
{

α|u| N
N−1

}
dx < ∞, ∀ α � αN . (1)

When α > αN , all integrals in (1) are still finite, but the supremum is infinite. In this
sense, αN is called the best constant of this inequality. While the existence of extremal
functions for it was solved by Carleson-Chang [6], Flucher [15], Lin [23].
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Through a change of variables and a symmetrization argument, the Trudinger-
Moser inequality (1) was extended by Adimurthi-Sandeep [2] to a singular version,
namely

sup
u∈W1,N

0 (Ω),‖∇u‖N�1

∫
Ω

exp
{

αNγ|u| N
N−1

}
|x|Nβ dx < ∞, ∀ −1 < β � 0, 0 < γ � 1+ β .

(2)
When γ > 1+ β , all integrals in (2) are still finite, but the supremum is infinite. Thus
αN(1+ β ) is the best constant of (2). Later, (2) was generalized to the case of whole
Euclidean space R

N by Adimurthi-Yang [3] via the Young inequality and the Hardy-
Littlewood inequality. When N = 2, the existence of extremals for (2) was obtained
by Casto-Roy [7], Iula-Mancini [17], Li-Yang [19] and Yang-Zhu [38]. Note that (2)
reduces to (1) when β = 0, but (2) does not hold any more when β > 0.

Let S be the set of all decreasing radially symmetric functions and B be the unit
ball in R

N . For the case of N = 2, de Figueiredo-do Ó-dos Santos [10] replaced the
function space W 1,N

0 (B)∩S with W 1,N
0 (Ω) in (2), and obtained

sup
u∈W 1,2

0 (B)∩S ,‖∇u‖2�1

∫
B

exp
{
4π(1+ β )u2} |x|2β dx < ∞, ∀ β � 0. (3)

Moreover, extremals of the above supremum exist. It was generalized by Yang-Zhu
[39] to higher dimensional case. In particular, for any β � 0, the supremum

sup
u∈W1,N

0 (B)∩S ,‖∇u‖N�1

∫
B

exp
{

αN(1+ β )|u| N
N−1

}
|x|Nβ dx (4)

can be attained.
We suppose that h is a nonnegative and radially symmetrical function belonging

to C0(B) satisfying h(x) > 0 in B\{0} and h(x)|x|−Nβ → 0 as x→ 0 for some β � 0.
In this paper, we consider more general weight h(x) instead of |x|Nβ in (4). Our main
result reads

THEOREM 1. Let N � 3 , β � 0 , S be the set of all decreasing radially sym-

metrical functions, B be the unit ball in R
N and αN = Nω1/(N−1)

N−1 , where ωN−1 is the
area of the unit sphere in R

N . Suppose h is a nonnegative and radially symmetrical
function belonging to C0(B) satisfying h(x) > 0 in B\ {0} and

lim
x→0

h(x)
|x|Nβ = 1. (5)

Then the supremum

Λβ := sup
u∈W1,N

0 (B)∩S ,‖∇u‖N�1

∫
B

exp
{

αN (1+ β ) |u| N
N−1

}
h(x)dx (6)

can be attained by some nonnegative function u0 ∈W 1,N
0 (B)∩S with ‖∇u0‖N = 1 .
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The structure of the proof of Theorem 1 is as follows: Firstly, we discuss the
asymptotic behavior of maximizers for subcritical Trudinger-Moser functionals by means
of blow-up analysis, which was originally used by Adimurthi-Struwe [2], Carleson-
Chang [6], Ding-Jost-Li-Wang [11], Li [20, 21], and widely used by do Ó-de Souza
[12, 13], Li [18], Li-Yang [19], Li-Ruf [22], Lu-Yang [25], Nguyen [27, 28], Yang
[34, 35, 36, 37], Zhu [41], Fang-Zhang [14] and others. Secondly, we derive an upper
bound of Λβ defined as in (6). Finally, we construct a sequence of functions to reach a
contradiction. Throughout this paper, we do not distinguish sequence and subsequence.

2. Blow-up analysis

In this section, we first consider the existence of extremals and its Euler-Lagrange
equation. Let N � 3, β � 0 be fixed, and B be the unit ball in R

N . According to ([34],
Lemma 3.1) and ([38], Lemma 4), for any ε > 0, the supremum

Λβ−ε := sup
u∈W1,N

0 (B)∩S ,‖∇u‖N=1

∫
B

exp
{

αN (1+ β − ε) |u| N
N−1

}
h(x)dx

can be attained by some nonnegative function uε ∈ W 1,N
0 (B)∩S with ‖∇uε‖N = 1

and
lim
ε→0

Λβ−ε = Λβ . (7)

The maximizers uε satisfies the Euler-Lagrange equation

−ΔNuε =
1

λε
u

1
N−1
ε exp

{
αN (1+ β − ε)u

N
N−1
ε

}
h(x) in B, (8)

where ΔNuε = div
(|∇uε |N−2∇uε

)
and

λε :=
∫

B

u
N

N−1
ε exp

{
αN (1+ β − ε)u

N
N−1
ε

}
h(x)dx. (9)

Moreover, there holds
liminf

ε→0
λε > 0. (10)

Since ‖∇uε‖N = 1, there exists some nonnegative function u0 in W 1,N
0 (B)∩S

with ⎧⎪⎨
⎪⎩

uε ⇀ u0 weakly in W 1,N
0 (B) ,

uε → u0 strongly in Lp (B) ,∀p > 1,

uε → u0 a.e. in B.

(11)

Without loss of generality, we assume in the following,

cε = max
B

uε = uε(0) → +∞ as ε → 0. (12)
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LEMMA 1. Assume uε ∈ W 1,N
0 (B) with ‖∇uε‖N = 1 and uε ⇀ u0 weakly in

W 1,N
0 (B) . Then for any q < 1/

(
1−‖∇u0‖N

N

)1/(N−1)
, we have

limsup
ε→0

∫
B

exp
{

αN(1+ β )p|uε | N
N−1

}
|x|Nβ dx <+ ∞. (13)

Proof. By a change of variables, we define a function sequence

mε(r) = (1+ β )
N−1
N uε(r

1
1+β ).

In view of (11), we get mε ∈ W 1,N
0 (B) , mε ⇀ m0 weakly in W 1,N

0 (B) . A straightfor-
ward calculation shows ∫

B

|∇mε |Ndx =
∫

B

|∇uε |Ndx = 1.

According to P. L. Lions [24], we have

limsup
ε→0

∫
B

exp
{

αN p|mε | N
N−1

}
dx <+ ∞

for any q < 1/
(
1−‖∇m0‖N

N

)1/(N−1) . This together with the fact

∫
B

exp
{

αN (1+ β ) p|uε | N
N−1

}
|x|Nβ dx

=ωN−1

∫ 1

0
exp
{

αN p(1+ β ) |uε (r) | N
N−1

}
rN−1+Nβ dr

=ωN−1

∫ 1

0
exp

{
αN p

∣∣∣mε

(
r1+β

)∣∣∣ N
N−1
}

rN−1+Nβ dr

=
ωN−1

1+ β

∫ 1

0
exp
{

αN p|mε (t) | N
N−1

}
tN−1dt

=
1

1+ β

∫
B

exp
{

αN p|mε | N
N−1

}
dx

leads to (13). �
Then we have the following:

LEMMA 2. u0 ≡ 0 in B and |∇uε |Ndx ⇀ δ0 in sense of measure, where δ0 is the
usual Dirac measure centered at the origin.

Proof. Suppose u0 
≡ 0. By (5) and Lemma 1, exp
{

αN (1+ β − ε)uN/(N−1)
ε

}
h(x)

is bounded in Lq (B) for 1 < q < 1/
(
1−‖∇u0‖N

N

)1/(N−1) . Combining this and (10),
we know that ΔNuε is bounded in Lq (B) . Then applying elliptic estimates to (8), we
conclude that uε is uniformly bounded in B , which contradicts (12). Therefore u0 ≡ 0.
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Suppose |∇uε |Ndx does not weakly converge to δ0 in sense of measure. There
exists a constant r0 > 0 such that Br0 ⊂ B and

lim
ε→0

∫
Br0

|∇uε |Ndx = η < 1.

Since uε is nonnegative decreasing radially symmetric, we have∫
Br0

uN
ε (x)dx � uN

ε (r0) rN
0 ωN−1

N
.

This together with ‖∇uε‖N = 1 and the Pocaré inequality gives

uε (r0) �
(

N
ωN−1

) 1
N C

r0

for some constant C . Let uε(x) = uε(x)−uε(r0) for x∈Br0 . Then uε(x)∈W 1,N
0

(
Br0

)
and

∫
Br0

|∇uε |Ndx = η < 1. For any real number v > 0, there exists some constant C

depending only on N and v such that for all x ∈ Br0 ,

u
N

N−1
ε (x) � (1+ v)u

N
N−1
ε (x)+Cu

N
N−1
ε (r0) .

Here and in the sequel, we denote various constants by the same C . It follows that∫
Br0

exp

{
αN (1+ β − ε) pu

N
N−1
ε

}
h(x)dx

�C
∫

Br0

exp

⎧⎨
⎩αN (1+ β − ε) p(1+ v)η

1
N−1

(
uε

η
1
N

) N
N−1

⎫⎬
⎭h(x)dx

where C is a constant depending only on N , v and r0 . Choose p > 1 sufficiently close
to 1 and v > 0 sufficiently small such that p(1+ v)η1/(N−1) � 1. By the inequali-

ties (4) and (5), exp
{

αN (1+ β − ε)uN/(N−1)
ε

}
h(x) is bounded in Lp

(
Br0

)
. Applying

elliptic estimates to (8), we conclude that uε is uniformly bounded in Br0/2 , which
contradicts (12) and completes the proof of the lemma. �

Let rε > 0 be such that

rN
ε = λεc

N
1−N
ε exp

{
−αN (1+ β − ε)c

N
1−N
ε

}
. (14)

For any 0 < δ < 1, in view of (4), (5) and (12), there is a constant C depending only
on δ such that

λε =
∫

B

u
N

N−1
ε exp

{
αN (1+ β − ε)u

N
N−1
ε

}
h(x)dx

� c
N

N−1
ε exp

{
δαN (1+ β − ε)c

N
N−1
ε

}∫
B

exp

{
(1− δ )αN (1+ β − ε)u

N
N−1
ε

}
h(x)dx

� Cc
N

N−1
ε exp

{
δαN (1+ β − ε)c

N
N−1
ε

}
.
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According to this and ( 14), we get rN
ε �Cexp

{
(δ −1)αN (1+ β − ε)cN/(N−1)

ε

}
. This

immediately leads to rε → 0 and B
r
−1/(1+β)
ε

:=
{

x ∈ R
N : r1/(1+β )

ε x ∈ B

}
→R

N as ε →
0. We now define on B

r
−1/(1+β)
ε

two blow-up sequences of functions as

ψε := c−1
ε uε

(
r

1
1+β
ε x

)
(15)

and

φε := c
1

N−1
ε

(
uε

(
r

1
1+β
ε x

)
− cε

)
. (16)

In view of (5), (8) and (14)-(16), a direct computation shows

−ΔNψε = c−N
ε ψ

1
N−1

ε exp

{
αN (1+ β − ε)

(
u

N
N−1
ε

(
r

1
1+β
ε x

)
− c

N
N−1
ε

)}
r
−Nβ
1+β

ε h

(
r

1
1+β
ε x

)
(17)

and

−ΔNφε = ψ
1

N−1
ε exp

{
αN (1+ β − ε)

(
u

N
N−1
ε

(
r

1
1+β
ε x

)
− c

N
N−1
ε

)}
r
−Nβ
1+β

ε h

(
r

1
1+β
ε x

)
.

(18)
Now we study the convergence behavior of ψε and φε . Using the same argument as in
the proof of ([19], Lemma 17), we conclude that

ψε → 1 in C1
loc

(
R

N) as ε → 0 (19)

and
φε → φ in C1

loc

(
R

N) as ε → 0. (20)

In view of the mean value theorem, we have

u
N

N−1
ε

(
r

1
1+β
ε x

)
− c

N
N−1
ε =

N
N−1

ξ
N

N−1
ε

(
uε

(
r

1
1+β
ε x

)
− cε

)

=
N

N−1

(
ξε
cε

) N
N−1

φε (x)

=
N

N−1
φε (x) (1+oε (1)) ,

(21)

where ξε lies between uε

(
r1/(1+β )

ε x
)

and cε . According to (18)-(21), we can see that

φ solves ⎧⎪⎪⎨
⎪⎪⎩

−ΔNφ = exp

{
αN (1+ β )

N
N−1

φ
}
|x|Nβ ,

φ (0) = 0 = sup
RN

φ
(22)
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in the distributional sense. The unique solution of (22) can be written as

φ (x) = − N−1
αN (1+ β )

log

(
1+CN |x|

N(1+β)
N−1

)
, (23)

where CN =
(
ω−1

N−1N (1+ β )
)1−N

. It follows that

∫
RN

exp

{
αN (1+ β )

N
N−1

φ
}
|x|Nβ dx =

∫ +∞

0

ωN−1rN(1+β )−1(
1+CN |x|

N
N−1 (1+β )

)N dx

=
ωN−1

CN−1
N N (1+ β )

= 1.

(24)

Following ([19], Lemma 19), we have that the supremum Λβ (with Λβ given in (6))
satisfies

Λβ =
∫

B

h(x)dx+ lim
R→+∞

lim
ε→0

∫
B

Rr
1/(1+β)
ε

exp

{
αN (1+ β − ε)u

N
N−1
ε

}
h(x)dx

=
∫

B

h(x)dx+ lim
ε→0

c
N

1−N
ε λε .

(25)

Moreover, using the same arguments of the proof of ([34], Lemma 4.11), we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
1

N−1
ε uε ⇀ G weakly in W 1,q

0 (B) , ∀1 < q < N,

c
1

N−1
ε uε → G strongly in Lp (B) , ∀1 < p <

Nq
N−q

,

c
1

N−1
ε uε → G in C1

loc

(
B\{0}) ,

(26)

where G is a distributional solution of −ΔNG = δ0 in B . Explicitly G can be written
as

G = − 1
2π

log |x| . (27)

3. Upper bound estimate

To estimate the supremum Λβ defined as in (6), we need the following:

LEMMA 3. When cε → +∞ in B as ε → 0 , there holds

lim
ε→0

c
N

1−N
ε λε � ωN−1

N(1+ β )
exp

{
N−1

∑
j=1

1
j

}
. (28)

Proof. We take small δ > 0 such that Bδ ⊂ B and define a function space

Wa, b :=
{

u ∈W 1,N(Bδ \B
Rr

1/(1+β)
ε

)∩S : a = u(δ ), b = u

(
Rr

1
1+β
ε

)}
,
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where

a := c
1

1−N
ε

(
N
αN

log
1
δ

+oε(1)
)

, (29)

b := cε + c
1

1−N
ε

(
1−N

αN (1+ β )
log
(
1+CNR

N(1+β)
N−1

)
+oε (1)

)
. (30)

In view of the direct method of variation, we get infu∈Wa,b

∫
Rr

1/(1+β)
ε �|x|�δ

|∇u|Ndx can

be attained by

m(x) =
a

(
log |x|− log

(
Rr

1
1+β
ε

))
−b(logδ − log |x|)

logδ − log

(
Rr

1
1+β
ε

)

belonging to Wa, b with ΔNm(x) = 0. After a direct calculation, one gets

∫
Rr

1/(1+β)
ε �|x|�δ

|∇m(x) |Ndx =
ωN−1|a−b|N(

logδ − log

(
Rr

1
1+β
ε

))N−1 . (31)

Recalling (14), we have

logδ − log

(
Rr

1
1+β
ε

)
= logδ − logR− 1

N (1+ β )
log

(
c

N
1−N
ε λε

)
+

αN (1+ β − ε)
N(1+ β )

c
N

N−1
ε .

(32)
According to (29)-(32), we obtain∫

Rr1/(1+β)
ε �|x|�δ

|∇m(x) |Ndx

=
(

1+ β
1+ β − ε

)N−1

c
N

1−N
ε ×

(
N(1−N)

αN (1+ β )
log
(
1+CNR

N(1+β)
N−1

)
+

N2

αN
logδ + c

N
N−1
ε

− (1+ β )(N−1)N
(1+ β − ε)αN

log
δc

1
(1+β)(N−1)
ε

Rλ
1

(1+β)N
ε

+o(1)

⎞
⎠ ,

(33)
where o(1)→ 0 as ε → 0 first and then δ → 0. Denote uε := max{a, min{b, uε}} ∈
Wa,b . For sufficiently small ε , |∇uε | � |∇uε | in Bδ\B

Rr
1/(1+β)
ε

. It follows that

∫
Rr1/(1+β)

ε <|x|�δ
|∇m(x) |Ndx �

∫
Rr1/(1+β)

ε <|x|�δ
|∇uε (x) |Ndx

�
∫

Rr
1/(1+β)
ε <|x|�δ

|∇uε (x) |Ndx

� 1−
∫

δ<|x|�1
|∇uε (x) |Ndx−

∫
|x|�Rr1/(1+β)

ε
|∇uε (x) |Ndx.

(34)
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We next compute
∫

δ<|x|�1 |∇uε (x) |Ndx and
∫
|x|�Rr

1/(1+β)
ε

|∇uε (x) |Ndx . Integration by

parts leads to∫
δ<|x|�1

|∇G|Ndx = G(δ )
∫
|x|=δ

|∇G|N−1ds = G(δ )
∫

δ<|x|�1
(−ΔNG)dx = − N

αN
logδ .

In view of (26), we obtain∫
δ<|x|�1

|∇uε (x) |Ndx = c
N

1−N
ε

(
− N

αN
logδ +oε (1)

)
. (35)

Let t = rN(1+β )/(N−1) and A = RN(1+β )/(N−1) . Recalling (23), one gets

∫
|x|�R

|∇φ (x) |Ndx = ωN−1

∫ R

0
|φ ′ (r) |NrN−1dr =

(N−1)ωN−1

(N (1+ β ))
2N−1
N−1

∫ A

0

tN−1

(1+CNt)N dt.

(36)
Note that

IN : =
∫ T

0

tN−1

(1+bt)N
dt = − 1

(N−1)bN +
1
b
IN−1 +O

(
T−1)

= − 1
bN

N−1

∑
j=1

1
j
+

1
bN−1 I1 +O

(
T−1)=

1
bN

(
−

N−1

∑
j=1

1
j
+ log(1+bT)+O

(
T−1)) ,

(37)
for any T, b > 0. According to (20), (36) and (37), we get

∫
|x|�Rr1/(1+β)

ε
|∇uε (x)|Ndx =

c
N

1−N
ε (N−1)
αN (1+ β )

(
log(1+CNA)−

N−1

∑
j=1

1
j
+O

(
A−1)+oε (1)

)
.

(38)
Combining (34), (35) and (38), we get∫

Rr1/(1+β)
ε <|x|�δ

|∇m(x) |Ndx

�c
N

1−N
ε
αN

(
N−1
1+ β

(
log(1+CNA)−

N−1

∑
j=1

1
j

)
−N logδ +O

(
A−1)+oε (1)

)
.

(39)

In view of (33) and (39), we have

(1+oε(1)) log

(
c

N
1−N
ε λε

)
�

N−1

∑
j=1

1
j
+ log

ωN−1

N (1+ β )
+oε (1)+oR(1).

Hence the lemma is followed. �
According to (25) and (28), we conclude the supremum

Λβ �
∫

B

h(x)dx+
ωN−1

N(1+ β )
exp

{
N−1

∑
j=1

1
j

}
. (40)
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4. A blow-up sequence

Let N � 3, β � 0 be fixed. We construct a blow-up sequence of functions

vε :=

⎧⎪⎪⎨
⎪⎪⎩

c+ c
1

1−N

(
1−N

αN (1+ β )
log

(
1+CN

( r
ε

)N(1+β)
N−1

)
+B

)
, for r � Rε,

c
1

1−N G, for Rε < r � 1,
(41)

with ‖∇vε‖N = 1, where CN =
(
ω−1

N−1N (1+ β )
)1−N

, R = (− logε)1/(1+β ) , G given
in (27), B and c are constants depending only on ε and β . In order to assure that
vε ∈W 1,N

0 (B)∩S , we set

c+ c
1

1−N

(
1−N

αN (1+ β )
log
(
1+CNR

N(1+β)
N−1

)
+B

)
= c

1
1−N G(Rε).

This gives

c
N

N−1 = −B− N
αN

log(Rε)+
N−1

αN (1+ β )
log
(
1+CNR

N(1+β)
N−1

)
. (42)

Combining a change of variable t := CN (r/ε)N(1+β )/(N−1) and (37), we have

∫
|x|�Rε

|∇vε |Ndx = ωN−1

∫ Rε

0

∣∣∣∣∂vε

∂ r

∣∣∣∣
N

rN−1dr

=
N−1

αN (1+ β )c
N

N−1

∫ CNR
N(1+β)

N−1

0

tN−1

(1+ t)N
dt

=
N−1

αN (1+ β )c
N

N−1

(
log
(
1+CNR

N(1+β)
N−1

)
−

N−1

∑
j=1

1
j
+O

(
R

N(1+β)
1−N

))
.

(43)
The divergence theorem leads to∫

Rε<|x|�1
|∇vε |N dx = c

N
1−N

∫
Rε<|x|�1

|∇G|N dx = c
N

1−N G(Rε) =
−N

αNc
N

N−1
log(Rε) .

(44)
Applying (43), (44) and ‖∇vε‖N = 1, we have

αN (1+ β )c
N

N−1

N−1
= log

(
1+CNR

N(1+β)
N−1

)
− N (1+ β )

N−1
log(Rε)−

N−1

∑
j=1

1
j
+O

(
R

N(1+β)
1−N

)
.

(45)
Inserting (42) into (45), we get

αN (1+ β )B = (N−1)
N−1

∑
j=1

1
j
+O

(
R

N(1+β)
1−N

)
. (46)
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Let

Bε(x) :=
1−N

αN (1+ β )
log

(
1+CN

( r
ε

)N(1+β)
N−1

)
+B.

In view of the Taylor formula, one gets

v
N

N−1
ε (x) = c

N
N−1

(
1+ c

N
1−N Bε (x)

) N
N−1

= c
N

N−1

(
1+

N
N−1

c
N

1−N Bε (x)+
N

2(N−1)2
(1+ ξ )

2−N
N−1

(
c

N
1−N Bε (x)

)2
)

� c
N

N−1 +
N

N−1
Bε (x) ,

(47)
where ξ lies between cN/(1−N)Bε (x) and 0. By (42), (46) and (47), for all x ∈ BRrε ,
we obtain

αN (1+ β )v
N

N−1
ε �

N−1

∑
j=1

1
j
−N log

(
1+CN

( r
ε

) N(1+β)
N−1

)
−N(1+ β ) log(Rε)

+ (N−1) log
(
1+CNR

N(1+β)
N−1

)
+O

(
R

N(1+β)
1−N

)
.

It follows that

∫
BRε

exp

{
αN (1+ β )v

N
N−1
ε

}
h(x)dx � ωN−1

N (1+ β )
exp

{
N−1

∑
j=1

1
j

}
+O

(
R

N(1+β)
1−N

)
. (48)

Moreover, using the fact of et � t +1 for any t > 0 and (41), we have

∫
B\BRε

exp

{
αN (1+ β )v

N
N−1
ε

}
h(x)dx

�
∫

B\BRε

(
1+ αN (1+ β )v

N
N−1
ε

)
h(x)dx

�
∫

B

h(x)dx+ αN (1+ β )c
−N

(N−1)2
∫

B

h(x)G
N

N−1 dx+O
(
R

N(1+β)
1−N

)
.

(49)

Combining (48) and (49), we obtain

∫
B

exp

{
αN (1+ β )v

N
N−1
ε

}
h(x)dx

�
∫

B

h(x)dx+
ωN−1

N (1+ β )
exp

{
N−1

∑
j=1

1
j

}

+ αN (1+ β )c
−N

(N−1)2
∫

B

h(x)G
N

N−1 dx+O
(
R

N(1+β)
1−N

)
.

(50)
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From R = (− logε)1/(1+β ) , (42) and (46), we get RN(1+β )/(1−N) = o
(
c−N/(N−1)2

)
.

Then we have

αN (1+ β )c
−N

(N−1)2
∫

B

h(x)G
N

N−1 dx+O
(
R

N(1+β)
1−N

)
> 0

for sufficiently small ε . In view of (50), one gets

∫
B

exp

{
αN (1+ β − ε)v

N
N−1
ε

}
h(x)dx >

∫
B

h(x)dx+
ωN−1

N(1+ β )
exp

{
N−1

∑
j=1

1
j

}
.

This contradicts (40).
Hence cε must be bounded, and thus Theorem 1 follows immediately from elliptic

estimates on (8). �
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