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Abstract. In this paper we consider the space of polynomials of degree at most three in the real
line endowed with the sup norm over the unit interval. We provide, explicitly, all the extreme
points of the unit ball of this space. Using the previous geometrical description, we obtain the
Bernstein function for the first and second derivative of the polynomials of degree at most 3.

1. Introduction and preliminaries

Let Pn(R) stand for the space of real polynomials in the real line of degree at
most n endowed with the norm

‖P‖ = max{|P(x)| : x ∈ [−1,1]},

and let
Bn = {P ∈ Pn(R) : ‖P‖ � 1},

be the closed unit ball of Pn(R) . The first results of this paper are devoted to the
study of the geometry of Bn . We are interested in providing an explicit description
of the set ext(Bn) of the extreme points of Bn . We recall that e is an extreme point
of a convex set C in a linear space if e is not an interior point of any segment with
endpoints in C . The case where n = 2 was solved in [2]. The solution of this problem
for general n is perhaps a far too complicated problem. However, we show in Section
2 that for n = 3 a reasonable characterization of ext(B3) can be found. Our approach
to solve the problem for n = 3 is based on an interesting result by Konheim and Rivlin
(see [21]) where the authors find a simple property that characterizes the elements of
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ext(Bn) for all n ∈ N (see Section 2 for details). Unfortunately, Konheim and Rivlin’s
characterization does not include an explicit description of ext(Bn) .

The study of the extreme points of finite dimensional polynomial spaces has raised
the interest of a great many authors in the past. We mention below just a few of the
publications that preceded this work. In [2] Aron and Klimek provide the set ext(B2)
explicitly. Additionally, they also find a complete description of the real polynomials
of degree at most 2 endowed with the sup norm over the unit disk in the complex
plane D . In [31] the authors extended the study done in [2] to the space of all the
real trinomials with independent term on the real line with the sup norm on symmetric
intervals. The same question was solved by Neuwirth [32] for trinomials on D . In
a similar direction, Choi and Kim [7, 8, 9] considered the same problem for scalar-
valued 2−homogeneous polynomials on the real spaces �2

1 , �2
2 and �2

∞ whereas Grecu
[15] treated the case of scalar-valued 2−homogeneous polynomials on the real spaces
�2
p with 1 < p < ∞ . See also [13, 14, 15, 16, 17, 18] for related questions concerning

real or complex homogeneous polynomials of degree 2 or 3.
The geometry of finite dimensional spaces of polynomials on non-symmetric con-

vex bodies has also been studied. Recall that a convex body is a closed bounded convex
set with nonempty interior and therefore, a convex body in a finite dimensional space is
a compact convex set with nonempty interior. For instance, in [28] it can be found a full
description of the extreme points of the space of 2-homogeneous polynomials on R

2

with the sup norm over the simplex Δ (the triangle of vertices (0,0) , (0,1) and (1,0)).
An explicit description of the extreme 2-homogeneous polynomials on the square �

with vertices (0,0) , (0,1) , (1,0) and (1,1) can be found in [12]. Also, the extreme
polynomials of degree at most 2 on Δ have also been characterized in [24], [25] and
[26]. The extreme 2-polynomials on a sector D(β ) of amplitude β in R

2 , namely
D(β ) = {reiθ : θ ∈ [0,β ] and r ∈ [0,1]} , can be found in [27] for β = π

4 , β = π
2 ,

β = 3π
4 and β � π . For an arbitrary β ∈ [0,2π ] see [3].
A deep understanding of the geometrical properties of a polynomial space may be

of help in order to obtain sharp polynomial inequalities (see for instance [19, 1]). As
a matter of fact, in Section 3 we use the geometrical results obtained in Section 2 to
obtain sharp Bernstein inequalities for the first and second derivatives of polynomials
of degree at most 3. This question was addressed already by A. A. Markov at the
end of the 19th century. Voronovskaja [33] solved the problem for the first derivative
of polynomial of arbitrary degree whereas V. A. Gusev [20] (see also the appendix
of [33] for an English translation) completed the solution of the Bernstein problem for
higher derivatives. However, both Gusev and Voronovskaja’s results are not explicit. To
motivate the study of Bernstein type inequalities let us introduce a few historical results.
Firstly, recall that Markov and Bernstein inequalities are estimates on the derivative of
a polynomial.

A sharp estimate on the norm of the derivative of a polynomial in Pn(R) for all
n is due to one of the brothers Markov:

THEOREM 1. (A. A. Markov, 1889) If P is a polynomial of degree at most n∈N ,
then |P′(x)|� n2‖P‖ for all x∈ [−1,1] . Equality is attained at the end points of [−1,1]
for the n-th Chebyshev polynomial of the first kind, defined by Tn(x) = cos(narccosx)
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for x ∈ [−1,1] .

In particular, it follows that ‖P′‖� n2‖P‖ for all P∈Pn(R) and n2 cannot be replaced
by a smaller constant. Interestingly, it is said in [6] that the first to solve successfully
a Markov type problem was the famous chemist D. Mendeleev (the author of the Pe-
riodic Table of the Elements), who proved Markov’s inequality for n = 2. Markov’s
original paper ([22]) is written in old Russian, but an English translation can be found
in [23]. For a modern proof we refer to [6], where many other interesting results and
comments are presented in connection with the problem of estimating the derivatives
of a polynomial. An important generalization of Theorem 1 was published just three
years later by the other brother Markov, and it provides a sharp estimate for the norm
of any derivative of a polynomial. In the following, P(k) denotes the k -th derivative of
P .

THEOREM 2. (V. A. Markov, 1892) If P is a polynomial of degree at most n∈ N ,
then

|P(k)(x)| � |T (k)
n (±1)| = n2(n2−12) · · · (n2− (k−1)2)

1 ·3 · · ·(2k−1)
‖P‖,

for all x ∈ [−1,1] . Obviously, equality is attained at the end points of [−1,1] for Tn .

Although Markov’s estimates are sharp since they are achieved for any derivative
for Tn at x =±1, they could be improved for any fixed point in (−1,1) . If x∈ [−1,1] is
fixed, then we define Bn,k(x) as the best (smallest) constant in the following inequality:

|P(k)(x)| � Bn,k(x) · ‖P‖, (1)

for every P ∈ Pn(R) . For simplicity, we set Bn,1 = Bn for all n ∈ N . An estimate on
Bn(x) can be easily derived from the complex version of Markov’s Theorem due to S.
Bernstein ([4], [5]):

THEOREM 3. (S. Bernstein, 1912) If P ∈ Pn(R) then

|P′(x)| � n√
1− x2

· ‖P‖,

for every x ∈ (−1,1) . In other words,

Bn(x) � n√
1− x2

(2)

in (−1,1) .

Bernstein’s estimate coincides with Bn(x) in n points in [−1,1] , but it is far from
being optimal in most of the interval [−1,1] . The importance of Bernstein’s estimate
rests on the fact that it has been used in modern proofs of Markov’s Theorem in order to
simplify the original proof. In order to obtain a pointwise estimate of the k -th derivative
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of a polynomial in Pn(R) , we may simply iterate Bernstein’s Theorem. Doing so, we
find

Bn,k(x) � n(n−1) · · ·(n− k+1)√
(1− x2)k

,

for all x ∈ (−1,1) . Duffin and Schaeffer [11] improved the previous estimate:

THEOREM 4. (R. Duffin & A. C. Schaeffer, 1938) If P∈Pn(R) and x∈ (−1,1) ,
then for 1 � k � n we have

|P(k)(x)| �
√[

T (k)
n (x)

]2
+

[
S(k)

n (x)
]2 · ‖P‖,

where Sn(x) = sin(narccosx) , for all x ∈ [−1,1] . Thus

Bn,k(x) � Mn,k(x), (3)

where Mn,k(x) :=

√[
T (k)
n (x)

]2
+

[
S(k)

n (x)
]2

in (−1,1) .

Observe that (2) coincides with (3) for k = 1. Also, from Theorem 2 we deduce that
Bn,k(x) � |T (k)(±1)| for all x ∈ [−1,1] . Inequality (3) improves the previous estimate
in most of the interval [−1,1] , although it is not good in any neighborhood of ±1.
Interestingly, Duffin and Schaeffer [11] used Theorem 4 to provide an alternative (and
simpler) proof of V. A. Markov’s estimate, Theorem 2.

In Section 3 we will find an explicit formula for B2(x) , B3(x) and B3,2(x) for
all x ∈ R . The technique we will use in order to obtain those Bernstein functions relies
on the following easily verified consequence of the Steinitz’ Theorem, which in its turn,
is nothing but a finite dimensional version of the Krein-Milman’s Theorem:

REMARK 1. If C is a convex body in a finite dimensional Banach space and f :
C → R is a convex function that attains its maximum, then there is an extreme point
e ∈C so that f (e) = max{ f (x) : x ∈C} .

In particular, notice that for a fixed x ∈ [−1,1] , Bn,k(x) is the maximum of the
convex function Bn � P 	→ |P(k)(x)| ∈ R . To optimize that function we just need to
maximize it at the points in ext(Bn) . This is what we do in Section 3 using the char-
acterization of ext(B2) given in [2] and our own description of ext(B3) provided in
Section 2, to find, exactly, the functions B2(x) , B3(x) and B3,2(x) in [−1,1] .

2. Extreme polynomials of the unit ball of P3(R)

We begin by defining the multiplicity of a polynomial P at a point y ∈ R .

DEFINITION 1. Let P(x) = a0 +a1x+ · · ·+anxn be a polynomial in R of degree
at most n and let y ∈ R . The multiplicity of P at y , denoted by N(P,y) , is defined as
the sum of the multiplicities of the roots of the polynomial P− y . We say that P has q
points of multiplicity p when P−1 or P+1 intersects y = 0 with multiplicity p at q
points. For simplicity, we let N(P) := N(P,1)+N(P,−1) .
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Now, we provide a formal definition of extreme polynomial.

DEFINITION 2. Let P ∈ Pn(R) . We say that P is extreme if it is an extreme
point of the convex set Bn , or in other words, if P does not lie in the interior of any
segment joining two polynomials of Bn . Alternatively, P is extreme if P = 1

2 (P1 +P2)
with P1, P2 ∈ Pn(R) , implies P = P1 = P2 .

Our main goal in this section is to obtain, explicitly, all the extreme polynomials
of Bn . We will use many times the following simple lemma, whose simple proof is
spared to the interested reader.

LEMMA 1. If P(x) is an extreme polynomial of Bn , then −P(x) , P(−x) and
−P(−x) are also extreme polynomials of Bn .

Also, the main result of this section depends on the following theorem by Konheim
and Rivlin (see [21]) that provides a characterization of the extreme polynomials of Bn

for any n .

THEOREM 5. A polynomial P ∈ Pn(R) is an extreme point of Bn if, and only if,
N(P) > n.

REMARK 2. Theorem 5 states, basically, that the condition of being an extreme
polynomial relies, heavily, on the sum of the multiplicities of the roots of the polyno-
mials P± 1. Thus, we only need to find all the polynomials P of degree at most 3
such that N(P) > 3. To do so, we will proceed in a constructive manner considering all
possibilities.

Notice that we have the following four cases that give all the possible extreme
polynomials depending on the multiplicities of the roots of P+ 1 and P− 1 (for the
sake of simplicity, we will be stating the cases of the multiplicities for P , instead of
considering the multiplicities of the roots of P−1 and P+1):

(1) P has infinite multiplicity. Notice that in this case P ≡±1.

(2) P has one point of multiplicity 3 and one point of multiplicity 1. In particular,
N(P) = 4.

(3) P has one point of multiplicity 2 and two points of multiplicity 1. In particular,
N(P) = 4.

(4) P has two points of multiplicity 2. In this case notice that 4 � N(P) � 6.

Next, we state the main result of this section. The proof will be divided into three
lemmas.

THEOREM 6. Let P ∈ B3 . Then, P is an extreme polynomial of B3 if, and only
if, P is of one of the following forms:

(i) P(x) = ±1 ;
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(ii) P(x) = ±
[
1− 1

4 (±x+1)3
]
;

(iii) P(x) = ±(2x2−1);

(iv) P(x) = ±
[
1− 1

(1−q2)2 (x−q)2(
4qx+2+2q2)] or

P(x) = ±
[
1+

1
(1−q2)2 (x+q)2 (

4qx−2−2q2)
)]

,

for every q ∈ (− 1
3 ,0

)
;

(v) P(x) = ±
[
1+

1
(1+ t)2 (x− t)2(x−1)

]
or

P(x) = ±
[
1− 1

(1+ t)2 (x+ t)2(x+1)
]
,

for every t ∈ (− 1
2 ,1

)
;

(vi) P(x) = ±
[
1+

4
(s− r)3 (x− r)2

(
x− 3s− r

2

)]
or

P(x) = ±
[
1− 4

(s− r)3 (x+ r)2
(

x+
3s− r

2

)]
,

for every −1 � r < s � 1 such that s � min
{
3r+2, r+2

3

}
.

We begin by studying case (2) in Remark 2 which proves case (ii) in Theorem 6.

LEMMA 2. Assume P ∈ B3 satisfies one of the following conditions:

(a) P− 1 has one root of multiplicity 3 and P + 1 has one root of multiplicity 1 ,
both in [−1,1] .

(b) P+ 1 has one root of multiplicity 3 and P− 1 has one root of multiplicity 1 ,
both in [−1,1] .

Then P is an extreme polynomial in B3 and P is of the form

P(x) = ±
[
1− 1

4
(±x+1)3

]
.

Proof. First of all, notice that case (b) can be deduced from case (a) by multiplying
by -1, so assume case (a). Observe that the only possible numbers such that P−1 has
multiplicity 3 in a single root are 1 and −1 since otherwise ‖P‖> 1. Suppose, without
loss of generality by Lemma 1, that −1 is a root of P−1 with multiplicity 3. Therefore
P(−1) = 1 and P(1) = −1. Indeed, since P+ 1 has one root of multiplicity 1, there
exists a point in (−1,1] such that P+1 vanishes. But if it were not 1, then ‖P‖ > 1.
An sketch of such polynomials can be seen in Figure 1.

Using these assumptions, notice that P satisfies

P(x)−1 = α(x+1)3.
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1

1−1

−1

0

Figure 1: Sketch of a polynomial with a point of multiplicity 3 and a point of multi-
plicity 1.

Since P(1) = −1, we have

α = −1
4
.

Thus,

P(x) = −1
4
(x+1)3 +1.

Now, we prove case (3) in Remark 2 which proves cases (iii), (iv) and (v) in
Theorem 6.

LEMMA 3. Assume P ∈ B3 satisfies one of the following conditions:

(a) P− 1 has one root of multiplicity 2 and P+ 1 has two roots of multiplicity 1 ,
the three of them in [−1,1] .

(b) P+ 1 has one root of multiplicity 2 and P− 1 has two roots of multiplicity 1 ,
the three of them in [−1,1] .

Then P is an extreme polynomial in B3 and P has one of the following forms:

(1) P(x) = ±(−1+2x2) .

(2) P(x) = ±
[
1− 2

(1−q2)2 (±x−q)2
(±2qx+1+q2

)]
, for every q ∈ (− 1

3 ,0
)
.

(3) P(x) = ±
[
1+ 1

(1+t)2 (±x− t)2(±x−1)
]
, for every t ∈ (− 1

2 ,1
)
.

Proof. Case (b) can be easily deduced from case (a) multiplying by -1. Assume
that P+1 has two roots of multiplicity 1, P−1 has one root of multiplicity 2 and P
is of degree 2, that is, P(x) = a+bx+cx2 with c �= 0. Then P(1) = 1 and P(−1) = 1.
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Indeed, if there exists x0 ∈ (−1,1) such that P(x0) = 1, then ‖P‖> 1. Therefore, there
exists x0 ∈ (−1,1) such that x0 is a root of P+1 with multiplicity 2. In particular, P
achieves a local minimum at x0 . An sketch of such polynomials can be seen in Figure 2.

Figure 2: Sketch of a polynomial of degree 2 with a point of multiplicity 2 and two
points of multiplicity 1.

Using these assumptions, we know that

1 = a+b+ c,

1 = a−b+ c.

Thus, b = 0 and a+ c = 1. We know that there exists x0 ∈ (−1,1) such that P(x0) =
−1 = a+cx2

0 is the absolute minimum of P . Thus, by applying the derivate P , we have

cx0 = 0.

If x0 �= 0, then c = 0 which is absurd. If x0 = 0, then either c = 0 (which is absurd) or
c �= 0. Thus, x0 = 0, which implies that a = −1 and c = 2, that is,

P(x) = −1+2x2.

Now, assume that P is a polynomial of degree 3 such that P− 1 has one root
of multiplicity 2 and P+ 1 has two roots of multiplicity 1. Notice that if P+ 1 has
two roots of multiplicity 1, then P(1) = −1 and P(−1) = −1. Indeed, if there exists
x0 ∈ (−1,1) such that P(x0) = −1, then ‖P‖> 1. Therefore, there exists x1 ∈ (−1,1)
such that x1 is a root of P−1 with multiplicity 2. In particular, P has a local maximum
at x1 , and this means that there exists x2 �= −1, 1, x1 such that P has a local minimum
at x2 . Assume, without loss of generality, that x2 /∈ [−1,1] and, in particular, x2 > 1
(the case where x2 is in the interior of [−1,1] is treated at the end of this proof). Now,
since P has a relative minimum at x2 and a relative maximum at x1 , there exists a > x2

such that P(a) = 1. An sketch of such polynomials can be seen in Figure 3.
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x2

ax1

1

1−1

−1

Figure 3: Sketch of a polynomial with a point of multiplicity 2 and two points of
multiplicity 1 with a critical point outside [−1,1] .

Using these assumptions, P satisfies

P(x)−1 = α(x− x1)2(x−a).

Since P(1) = −1 and P(−1) = −1, we have

α(1− x1)2(1−a) = −2,

α(−1− x1)2(−1−a) = −2. (4)

Notice that α > 0, because x− a � 0 for every x ∈ [−1,1] so that P(x) � 0. If we
solve a in equations (4) in terms of x1 we have

a = −x2
1 +1
2x1

.

This implies that

−2 = P(1)−1 = α(1− x1)2
(

1+
x2
1 +1
2x1

)
.

Therefore,

α = − 4x1

(1− x2
1)2

> 0

if, and only if, x1 < 0. Also,

a = −x2
1 +1
2x1

> 1,

for every x1 ∈ (−1,1) . Now, by applying the derivative to P and evaluating it at x2 ,
we have

0 = 2α(x2− x1)(x2−a)+ α(x2− x1)2. (5)
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Notice that we can solve x2 in terms of x1 and we have

x2 = − 1
3x1

> 1

if, and only if, x1 > − 1
3 . Thus,

P(x) = 1− 4x1

(1− x2
1)2

(x− x1)2
(

x+
x2
1 +1
2x1

)

= 1− 2

(1− x2
1)2

(x− x1)2 (
2x1x+1+ x2

1

)
,

for every x1 ∈
(− 1

3 ,0
)
.

Finally, assume that P is a polynomial of degree 3 such that P+ 1 has one root
of multiplicity 2 and one root of multiplicity 1, and P−1 has one root of multiplicity
1. Notice, using the same arguments as above, either P(1) = −1 and P(−1) = 1
or P(1) = 1 and P(−1) = −1. By Lemma 1 we can assume that P(1) = −1 and
P(−1) = 1 (the other case is proved changing x by −x ). Therefore, there exists x1 ∈
(−1,1) (the root of multiplicity 2 of P+ 1) such that P has a local minimum at x1 .
This construction also guarantees the existence of x2 �= −1, 1, x1 such that P has
a local maximum at x2 which lies, necessarily in (x1,1) . In this case, notice that
−1 < P(x2) < 1. A sketch of such polynomials can be seen in Figure 4.

0
x2

x1 1

1

−1

−1

Figure 4: Sketch of a polynomial with a point of multiplicity 2 and two points of
multiplicity 1, with a critical point inside (−1,1) .

Using these assumptions, P is of the form

P(x)+1 = α(x− x1)2(x−1).
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We begin by expressing x2 in terms of x1 . If we derivate the previous formula, we have

P′(x) = 2α(x− x1)(x−1)+ α(x− x1)2.

Using similar arguments as above, notice that α < 0. Since P′(x2) = 0, α < 0 and
x1 < x2 , we have

x2 =
x1 +2

3
.

Thus,

P(x2) = −1− 4α
27

(1− x1)3.

Since −1 < P(x2) < 1, it can be checked that

− 27
2(1− x1)3 < α < 0.

Now, since P(−1) = 1, it can be proved that

α = − 1
(1+ x1)2 .

So far we have found x2 and α in terms of x1 . Now we are going to find the interval
in which x1 lies. We know that

− 27
2(1− x1)3 < − 1

(1+ x1)2 < 0.

Then it can be checked that

x1 ∈
(
−1

2
,1

)
.

To sum it up, we have

P(x) = −1− 1
(1+ x1)2 (x− x1)2(x−1),

where x1 ∈
(− 1

2 ,1
)
.

REMARK 3. It is interesting to investigate the limiting cases q = 0,−1/3 and
t = −1/2,1 in Lemma 3. If q = 0 we obtain P(x) = ±(1−2x2) , which are the poly-
nomials appearing in Lemma 3, case (1). If q = −1/3, we obtain the polynomials

P(x) =±
[
1+ (±3x+1)(±3x−5)

16

]
, which satisfy N(P) = 5 and will appear in Lemma 4 as

extreme points with r = −1/3 and s = 1. If t = −1/2 then we obtain the Chebyshev
polynomial P(x) = ±(4x3 − 3x) . The Chebyshev polynomial satisfies N(P) = 6 and
will appear as an extreme point in Lemma 4 with r = −1/2 and s = 1/2. Finally,

if t = 1, then we recover the polynomials P(x) = ±
[
1− (±x−1)3

4

]
, which appeared

already in Lemma 2.
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Finally, we tackle case (4) in Remark 2, which proves case (vi) in Theorem 6.

LEMMA 4. If P ∈ B3 is such that P−1 has one root of multiplicity 2 and P+1
has one root of multiplicity 2 , both in [−1,1] , then P is an extreme polynomial in B3

and P is of the form

P(x) = ±
[
1+

4
(s− r)3 (±x− r)2

(
±x− 3s− r

2

)]
,

where −1 � r < s � 1 , 3s− r � 2 and 3r− s � −2 .

Proof. Without loss of generality, there exist −1 � x1 < x2 � 1 such that P has
a local maximum and a local minimum at x1 and at x2 , respectively, with P(x1) = 1
and P(x2) = −1. The case where the minimum is attained before the maximum can be
proved multiplying by −1. Therefore, there exist b � 1 and a � 1 such that P(b) =−1
and P(a) = 1. Notice that a and b cannot be inside (−1,1) , since otherwise we would
have ‖P‖ > 1. An sketch of such polynomials can be seen in Figure 5.

a

x2
0x1

b

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

Figure 5: Sketch of a polynomial of degree 3 with two points of multiplicity 2.

Using the previous assumptions, notice that P satisfies

P(x)−1 = α(x− x1)2(x−a) (6)

P(x)+1 = β (x− x2)2(x−b). (7)

We determine now α , β , a and b in terms of x1 and x2 . If we derivate (6), we have

P′(x) = 2α(x− x1)(x−a)+ α(x− x1)2.

Thus,

0 = P′(x2) = 2α(x2− x1)(x2 −a)+ α(x2− x1)2.
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Notice that x−a � 0 for every x∈ [−1,1] for a � 1. Therefore α > 0 so that P(x) � 0
for every x ∈ [−1,1] . Also, since x1 < x2 , we have

a =
3x2− x1

2
.

The latter implies that 3x2− x1 � 2. On the other hand, using the same arguments for
(7), we have

b =
3x1− x2

2
.

Just as above we have 3x1− x2 � −2. Now, it is easy to see that

P(x) = αx3 +(−2αx1−αa)x2 +(αx2
1 +2αax1)x−αax2

1 +1,

P(x) = βx3 +(−2βx2−βb)x2 +(βx2
2 +2βbx2)x−βbx2

2−1.

Since it is the same polynomial, we have

β = α,

−2αx1−αa = −2βx2−βb,

αx2
1 +2αax1 = βx2

2 +2βbx2,

−αax2
1 +1 = −βbx2

2−1. (8)

We are going to find α . Since P(x2) = −1 and a = 3x2−x1
2 , it can be easily seen that

from
−1 = 1+ α(x2− x1)2(x2−a),

we have

α =
4

(x2− x1)3 .

It can also be checked by using these values of α , a and b in terms of x1 and x2 that
the last three equations from (8) are satisfied. To sum it up, P is of the form

P(x) = 1+
4

(x2− x1)3 (x− x1)2(x− 3x2− x1

2
),

where −1 � x1 < x2 � 1, 3x2− x1 � 2 and 3x1− x2 � −2.
Once we have obtained, constructively, an explicit formula for the extreme points

of the unit ball of P3 , in the following section we shall use this in order to obtain the
Bernstein function for P3 .

3. Bernstein’s functions for P3

Using the description of ext(B2) provided in [2] and the Krein-Milman approach,
it is easy to prove (see for instance [30]) that

B2(x) =

{
1

1−|x| if 0 � |x| � 1
2 ,

4|x| if |x| � 1
2 .

(9)
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Moreover, it can be easily verified that, for every x0 ∈ R , the following polynomials
are extremal for B2 :

1. P(x) = ± 1
2(1−x0)2

[
x2 +2(1−2x0)x+2x2

0−1
]
, for 0 � x0 � 1/2.

2. P(x) = ± 1
2(1+x0)2

[
x2−2(1+2x0)x+2x2

0−1
]
, for −1/2 � x0 � 0.

3. P(x) = 1−2x2 for |x0| � 1/2.

Similarly, using Theorem 6:

THEOREM 7. The Benstein’s function for polynomials in P3(R) is given by

B3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3(1−4x2) if |x| �
√

7−2
6 ,

7
√

7+10
9(|x|+1)

if
√

7−2
6 � |x| � 2

√
7−1
9 ,

−16x3

(1−9x2)(1− x2)
if 2

√
7−1
9 � |x| � 1+2

√
7

9 ,

7
√

7−10
9(1−|x|) if 1+2

√
7

9 � |x| �
√

7+2
6 ,

3(4x2−1) if |x| �
√

7+2
6 .

(10)

Moreover, for every x0 � 0 , the following polynomials are extremal for B3 :

1. P(x) = ±(4x3−3x) , for x0 ∈
[
0,

√
7−2
6

]
∪ [√7+2

6 ,∞
)
.

2.

P(x)=±
{

1+

[
3x− (4−√

7)x0 +
√

7−1
]2 [

3x+4
√

7−13− (16−4
√

7)x0
]

2(4−√
7)3(1+ x0)3

}
,

for x0 ∈
[√

7−2
6 , 2

√
7−1
9

]
.

3.

P(x) = ±
{

1− 2
(
2x0x+1−3x2

0

)2 [
(12x2

0−4)x0x+9x4
0−2x2

0 +1
]

(9x4
0−10x2

0 +1)2

}
,

for x0 ∈
[

2
√

7−1
9 , 2

√
7+1
9

]
.

4. P(x) = ±
{

1+
27[x−(4+

√
7)x0+

√
7+3]2(x−1)

2(4+
√

7)3(1−x0)3

}
, for x0 ∈

[
2
√

7+1
9 ,

√
7+2
6

]
.

Observe that if x0 � 0 and P is extremal for |x0| , then ±P(−x) are extremal for x0 .
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Proof. Since B3 is clearly an even function, it suffices to calculate B3(x0) for
x0 � 0. By direct inspection, it follows that the maximum of the absolute value of the
derivatives with respect to x at x0 of the extreme polynomials of type (i), (ii) and (iii)
in Theorem 6 is

max

{
3
4
(1+ x0)2,4x0

}
=

{
3
4 (1+ x0)2 if x0 ∈ [0,1/3],
4x0 if x0 � 1/3.

(11)

Now we study the polynomials of type (iv) in Theorem 6, whose derivatives (up to a
sign) are given by the functions

f +
x0

(q) =
4(3q2x0−3qx2

0 +q− x0)
(1−q2)2 ,

f−x0
(q) =

4(3q2x0 +3qx2
0 +q− x0)

(1−q2)2 .

We now want to optimize | f±x0
(q)| as q ∈ (−1/3,0) or, equivalently (by continuity), as

q ∈ [−1/3,0] . The critical points of f±x0
(q) are obtained from the equation

d f±x0
(q)

dq
=

4(3q2 +1)(−3x2
0±2qx0 +1)

(1−q2)3 = 0,

which yields q1 = 3x2
0−1
2x0

and q2 = − 3x2
0−1
2x0

as the unique critical points of f +
x0

and f−x0
,

respectively. Notice that q1 ∈ [−1/3,0] if, and only if, x0 ∈
[
−1+2

√
7

9 ,
√

3
3

]
, whereas

q2 ∈ [−1/3,0] if, and only if, x0 ∈
[√

3
3 , 1+2

√
7

9

]
. Hence, if x0∈

[
0,−1+2

√
7

9

]
∪
[

1+2
√

7
9 ,1

]
,

we have

sup
q∈[−1/3,0]

| f±x0
(q)| = max{| f±x0

(0), | f±x0
(−1/3)|}

= max

{
4x0,

∣∣∣∣−81
16

x2
0 ±

27
8

x0 +
27
16

∣∣∣∣
}

=

⎧⎨
⎩
− 81

16x2
0 + 27

8 x0 + 27
16 if x0 ∈

[
0, −1+2

√
7

9

]
,

81
16x2

0 − 27
8 x0− 27

16 if x0 ∈
[

1+2
√

7
9 ,1

]
.

On the other hand, it is easily checked that∣∣∣∣ f±x0

(
±3x2

0−1
2x0

)∣∣∣∣ =
−16x3

0

9x4
0−10x2

0 +1
� max

{
4x0,

∣∣∣∣−81
16

x2
0±

27
8

x0 +
27
16

∣∣∣∣
}

whenever x0 ∈
[
−1+2

√
7

9 , 1+2
√

7
9

]
, from which it follows that

sup
q∈[−1/3,0]

| f±x0
(q)| =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−81
16

x2
0 +

27
8

x0 +
27
16

if x0 ∈
[
0, −1+2

√
7

9

]
,

−16x3
0

9x4
0−10x2

0 +1
if x0 ∈

[
−1+2

√
7

9 , 1+2
√

7
9

]
,

81
16

x2
0 +

27
8

x0− 27
16

if x0 ∈
[

1+2
√

7
9 ,1

]
.

(12)
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Now we are going to optimize the first derivatives at x0 of the polynomials of type (v)
in Theorem 6, which are given by the functions:

g+
x0

(t) =
(t− x0)(t −3x0 +2)

(1+ t)2 ,

g−x0
(t) =

(t + x0)(t +3x0 +2)
(1+ t)2 ,

for t ∈ (−1/2,1) . Observe that, in order to maximize |g±x0
(t)| as t ∈ (−1/2,1) , we

might as well consider the interval [−1/2,1] instead of (−1/2,1) . The critical points
of g±x0

(t) can be obtained from the equations

dg+
x0

(t)
dt

=
2(−3x2

0 +2tx0 +1)
(1+ t)3 = 0,

dg−x0
(t)

dt
=

2(−3x2
0−2tx0 +1)
(1+ t)3 = 0.

Hence, t1 = 3x2
0−1
2x0

and t2 = − 3x2
0−1
2x0

are the unique critical points of g+
x0

(t) and g−x0
(t) ,

respectively. Also, t1 ∈ [−1/2,1] if, and only if, x0 ∈
[
−1+

√
13

6 ,1
]
, whereas t2 ∈

[−1/2,1] is equivalent to x0 ∈
[

1
3 , 1+

√
13

6

]
. Treating |g+

x0
(t)| and |g−x0

(t)| separately,

we find

sup
t∈[−1/2,1]

|g+
x0

(t)| =
⎧⎨
⎩

max{|g+(−1/2)|, |g+(1)|} if x0 ∈
[
0−1+

√
13

6

]
,

max{|g+(−1/2)|, |g+(1)|, |g+(t1)|} if x0 ∈
[
−1+

√
13

6 ,1
]
,

sup
t∈[−1/2,1]

|g−x0
(t)| =

⎧⎨
⎩

max{|g−(−1/2)|, |g−(1)|} if x0 ∈
[
0, 1

3

]∪[
1+

√
13

6 ,1
]
,

max{|g−(−1/2)|, |g+(1)|, |g−(t2)|} if x0 ∈
[

1
3 , 1+

√
13

6

]
.

From Figure 6 we immediately deduce that

sup
t∈[−1/2,1]

|g±x0
(t)| =

⎧⎨
⎩
|g±x0

(−1/2)| if x0 ∈ [0,λ0]∪
[

1+
√

13
6 ,1

]
,

|g−x0
(t2)| if x0 ∈

[
λ0

1+
√

13
6 ,1

]
,

=

⎧⎪⎪⎨
⎪⎪⎩
−12x2

0 +3 if x0 ∈ [0,λ0],
(x0+1)2

−3x2
0+2x0+1

if x0 ∈
[
λ0,

1+
√

13
6

]
,

12x2
0−3 if x0 ∈ [ 1+

√
13

6 ,1],

(13)

where λ0 ≈ 0.3651 is the smallest root of the equation |g±x0
(−1/2)|= |g−x0

(t2)| in [0,1]
(see Figure 6). It is worth mentioning that λ0 does not play a crucial role in the final
result.

We finally arrive at the analysis of the polynomials of type (vi), parametrized in
the set

R =
{

(r,s) : −1 � r < s � 1, s � min

{
3r+2,

r+2
3

}}
.
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Figure 6: Visual calculation of supt∈[−1/2,1] |g±x0
(t)| .

See Figure 7 for a representation of R . The first derivative of the polynomials of type

Figure 7: Representation of the parameter set R in the (r,s) plane corresponding to
the polynomials of type (vi) in Theorem 6.

(vi), up to a sign, are provided by the functions:

h+
x0

(r,s) =
−12(r− x0)(s− x0)

(s− r)3 ,
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h−x0
(r,s) =

12(r+ x0)(s+ x0)
(s− r)3 ,

for (r,s) ∈ R .
We want to optimize |h±x0

(r,s)| in R . In search for the critical points of h+
x0

(r,s)
and h−x0

(r,s) , we calculate the gradients:

∇h+
x0

(r,s) =
(

12(s− x0)(2r+ s−3x0)
(r− s)4 ,− (r− x0)(r+2s−3x0)

(r− s)4

)
,

∇h−x0
(r,s) =

(
−12(s+ x0)(2r+ s+3x0)

(r− s)4 ,
(r+ x0)(r+2s+3x0)

(r− s)4

)
.

It is straighforward to see that ∇h±x0
(r,s) �= (0,0) in R . Hence, the maximum of

|h±x0
(r,s)| in R is attained in ∂R . Due to the symmetry of R , h+

x0
(r,s) and h−x0

(r,s)
with respect to the line r = −s , it is enough to maximize |h+

x0
(r,s)| in ∂R . Notice that

the restriction of |h+
x0

(r,s)| to the segments L3 and L4 is a monotone function. How-
ever, the restrictions of h+

x0
(r,s) to L1 and L2 , respectively, h1 and h2 , may have local

extrema. We have

h1(r) = −27(r− x0)(r−3x0 +2)
2(r−1)3 with r ∈

[
−1,−1

2

]
,

h2(r) =
3(r− x0)(3r+2− x0)

2(r+1)3 with r ∈
[
−1

2
,−1

3

]
,

and

h′1(r) =
27

[
r2 +(−8x0 +6)r+9x2

0−10x0 +2
]

2(r−1)4 ,

h′2(r) =
3
[−3r2 +(8x0 +2)r−3x2

0 +2x0 +2
]

2(r+1)4 .

One checks easily that h1(r) has two critical points, r−1 and r+
1 , whereas h2(r) has two

critical points too, r−2 and r+
2 , all given by

r±1 = (4±
√

7)x0∓
√

7−3,

r±2 =
4±√

7
3

x0 +
±√

7+1
3

.

Clearly, r−1 is never in
[−1,− 1

2

]
and r+

2 never lies in
[− 1

2 ,− 1
3

]
. Also, r+

1 ∈ [−1,− 1
2

]
if, and only if, x0 ∈ I1 :=

[
1+2

√
7

9 , 2+
√

7
6

]
, and r−2 ∈ [− 1

2 ,− 1
3

]
if, and only if, x0 ∈ I2 :=[

−2+
√

7
6 , −1+2

√
7

9

]
. As a consequence of the latter, sup(r,s)∈R |h±x0

(r,s)| is given by

⎧⎪⎨
⎪⎩

max{|h+
x0

(−1, 1
3 )|, |h+

x0
(−1,1)|, |h+

x0
(− 1

3 ,1)|, |h+
x0

(− 1
2 , 1

2 )|} if x0 /∈ I1∪ I2,

max{|h+
x0

(−1, 1
3 )|, |h+

x0
(−1,1)|, |h+

x0
(− 1

3 ,1)|, |h+
x0

(− 1
2 , 1

2 )|, |h2(r−2 )|} if x0 ∈ I2,

max{|h+
x0

(−1, 1
3 )|, |h+

x0
(−1,1)|, |h+

x0
(− 1

3 ,1)|, |h+
x0

(− 1
2 , 1

2 )|, |h1(r+
1 )|} if x0 ∈ I1.
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On the other hand ∣∣∣∣h+
x0

(
−1,

1
3

)∣∣∣∣ =
∣∣∣∣27(x0 +1)(3x0−1)

16

∣∣∣∣ ,
|h+

x0
(−1,1)| =

∣∣∣∣3(x0−1)(x0 +1)
2

∣∣∣∣ ,∣∣∣∣h+
x0

(
−1

3
,1

)∣∣∣∣ =
∣∣∣∣27(x0−1)(3x0 +1)

16

∣∣∣∣ ,∣∣∣∣h+
x0

(
−1

2
,
1
2

)∣∣∣∣ = |12x2
0−3|,

|h2(r−2 )| = 7
√

7+10
9(1+ x0)

,

|h1(r+
1 )| = 7

√
7−10

9(1− x0)
.

Comparing these functions we arrive at the following conclusion (see Figure 8):

sup
(r,s)∈R

|h±x0
(r,s)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3−12x2
0 if 0 � x0 �

√
7−2
6 ,

7
√

7+10
9(1+x0)

if
√

7−2
6 � x0 � −1+2

√
7

9 ,
27(1−x0)(3x0+1)

16 if −1+2
√

7
9 � x0 �

√
3

3 ,
27(1+x0)(3x0−1)

16 if
√

3
3 � x0 � 1+2

√
7

9 ,
7
√

7−10
9(1−x0)

if 1+2
√

7
9 � x0 �

√
7+2
6 ,

12x2
0−3 if

√
7+2
6 � x0 � 1.

(14)
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Figure 8: Visual calculation of sup(r,s)∈R |h±x0
(r,s)| .

Finally, (10) follows by comparing the functions appearing in (11), (12), (13) and
(14) (see Figure 9).



744 ARAÚJO, MUÑOZ-FERNÁNDEZ, RODRÍGUEZ-VIDANES AND SEOANE-SEPÚLVEDA
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Figure 9: Comparison of the functions appearing in (11), (12), (13) and (14).

As for the extremal polynomials, we may assume that x0 � 0. It is obvious that

P(x) = ±(4x3 − 3x) are extremal for all x0 ∈
[
0,

√
7−2
6

]
∪ [√7+2

6 ,∞
)
, which accounts

for case (1). Now, if x0 ∈
[√

7−2
6 , −1+2

√
7

9

]
, we have seen in this proof that B3(x0) is

attained for the polynomials of type (vi) of the form P(x) =

±
[
1+

4
(s− r)3 (x− r)2

(
x− 3s− r

2

)]
, with r = r−2 = 4−√

7
3 x0+ −√

7+1
3 and s = 3r−2 +

2 = (4−√
7)x0 −

√
7 + 3. By substitution, we arrive at the polynomials in (2). If

x0 ∈
[

2
√

7−1
9 , 2

√
7+1
9

]
, then we know already that B3(x0) is attained for the polynomials

of type (iv) given by P(x) = ±
[
1− 1

(1−q2)2 (x−q)2 (
4qx+2+2q2)] with q = q2 =

− 3x2
0−1
2x0

which are exactly the polynomials in case (3) of the statement. To finish, if x0 ∈[
2
√

7+1
9 ,

√
7+2
6

]
, we have proved already that B3(x0) is attained for the polynomials of

type (vi) of the form P(x) = ±
[
1+

4
(s− r)3 (x− r)2

(
x− 3s− r

2

)]
with r = r+

1 =

(4+
√

7)x0 −
√

7−3 and s = r+1 +2
3 = 4+

√
7

3 x0 −
√

7+1
3 . Direct substitution leads us to

the polynomials appearing in case (4) of the statement.

We refer to Figures 10 and 11 for the graphs of B2(x) and B3(x) , respectively,
compared to the Bernstein’s estimate given in Theorem 3.

Using once more the Krein-Milman approach, we can also obtain B3,2(x) :

THEOREM 8. The Benstein’s function corresponding to the second derivative of
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Figure 10: Sketch of B2(x) (solid line) compared to Bernstein’s estimate 2/
√

1− x2

(dashed line).
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Figure 11: Sketch of B3(x) (solid line) compared to Bernstein’s estimate 9/
√

1− x2

(dashed line).

the polynomials in P3(R) is given by

B3,2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
1−9x2 if |x| � 1

9 ,

32
9(|x|−1)2 if 1

9 � |x| � 1
3 ,

24|x| if |x| � 1
3 .

(15)

Moreover, for every x0 ∈ R , the following polynomials are extremal for B3,2 :
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1.

P(x) = ±
[
1− 2

(1−9x2
0)2

(x−3x0)2 (
6x0x+9x2

0 +1
)]

, for x0 ∈ [0,1/9],

P(x) = ±
[
1+

2

(1−9x2
0)2

(x+3x0)2 (
6x0x−9x2

0−1
)]

, for x0 ∈ [−1/9,0].

2.

P(x) = ±
[
1+

2(4x−9x0 +5)2(x−1)
27(1− x0)3

]
, for x0 ∈ [1/9,1/3],

P(x) = ±
[
1− 2(4x+9x0−5)2(x+1)

27(1− x0)3

]
, for x0 ∈ [−1/3,−1/9].

3. P(x) = ±(4x3−3x) for |x0| � 1/3 .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

5
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15

20

Figure 12: Sketch of B3,2(x) (solid line) compared to the Duffin and Schaeffer’s esti-

mate M3,2(x) = 3
√

−8x2+9√
(1−x2)3

(dashed line).

Proof. Since B3,2 is an even function, it suffices to calculate B3,2(x0) for x0 � 0.
By direct inspection, it follows that the maximum of the absolute value of the derivatives
with respect to x at x0 of the extreme polynomials of type (i), (ii) and (iii) in Theorem
6 is max{4, 3

2 (x0 +1)} = 4. Now we turn our attention to the polynomials of type (iv)
in Theorem 6. We find two kinds of polynomials. In order to maximize the absolute
value of their second derivatives with respect to x at x0 we just need to optimize the
functions

f +
x0

(q) =
4

(1−q2)2 (3q2−6qx0 +1),
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f−x0
(q) =

4
(1−q2)2 (3q2 +6qx0 +1),

with q ∈ (− 1
3 ,0

)
. Since

d f±x0
dq (q) = − 8(3q2+1)(q±3x0)

(q2−1)3 , we have that 3x0 and −3x0 are

critical points of f +
x0

(q) and f−x0
(q) respectively. Obviously, 3x0 /∈ (− 1

3 ,0
)

since x0 >

0, whereas −3x0 ∈
(− 1

3 ,0
)

is equivalent to x0 ∈
(
0, 1

9

)
. Hence

sup
q∈(−1/3,0)

| f±x0
(q)| =

{
max{| f±(0)|, | f±(−1/3)|, | f−(−3x0)|} if x0 ∈ [0, 1

9 ],
max{| f±(0)|, | f±(−1/3)|} if x0 � 1

9 .

=

{
4

1−9x2
0

if x0 ∈ [0, 1
9 ],

81
8 x0 + 27

8 if x0 � 1
9 .

(16)

Observe that the function (16) is greater than 4, and hence the contribution of the poly-
nomials of type (i), (ii) and (iii) to the calculation of B(x0) can be neglected.

Now we consider the polynomials of type (v) in Theorem 6. By taking their second
derivative with respect to x , we need to optimize the functions

g+
x0

(t) =
2(−2t +3x0−1)

(t +1)2 ,

g−x0
(t) =

2(−2t−3x0−1)
(t +1)2 ,

for t ∈ (−1/2,1) . Since
dg±x0
dt (t) = 4(t∓3x0)

(t+1)3 , it is obvious that g+
x0

(t) and g−x0
have

critical points at t = 3x0 and t =−3x0 respectively. Taking into consideration that x0 �
0, we have that 3x0 ∈ (−1/2,1) and −3x0 ∈ (−1/2,1) are equivalent, respectively, to
x0 ∈ (0,1/3) and x0 ∈ (0,1/6) . Therefore

sup
t∈(−1/2,1)

|g±x0
(t)| =

⎧⎪⎨
⎪⎩

max{|g±x0
(−1/2)|, |g±x0

(1)|, |g±x0
(±3x0)|} if x0 ∈

[
0, 1

6

]
,

max{|g±x0
(−1/2)|, |g±x0

(1)|, |g+
x0

(3x0)|} if x0 ∈
[

1
6 , 1

3

]
,

max{|g±x0
(−1/2)|, |g±x0

(1)|} if x0 � 1
3 .

=

⎧⎪⎪⎨
⎪⎪⎩

max
{

24x0,
3
2 (1± x0), 1

1±3x0

}
if x0 ∈

[
0, 1

6

]
,

max
{

24x0,
3
2 (1± x0), 1

1+3x0

}
if x0 ∈

[ 1
6 , 1

3

]
,

max
{
24x0,

3
2 (1± x0)

}
if x0 � 1

3 .

=

{
2

1−3x0
if x0 ∈

[
0, 1

6

]
,

24x0 if x0 � 1
6 .

(17)

There remains to optimize the second derivative of the polynomials of type (vi) in The-
orem 6. The second derivative of those polynomials, up to the sign, are given by

h+
x0

(r,s) =
12(r+ s−2x0)

(r− s)3 ,
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h−x0
(r,s) =

12(r+ s+2x0)
(r− s)3 .

It is straightforward that

∇h+
x0

(r,s) =
(
−24(r+2s−3x0)

(r− s)4 ,
24(2r+ s−3x0)

(r− s)4

)
,

∇h−x0
(r,s) =

(
24(2r+ s+3x0)

(r− s)4 ,−24(r+2s+3x0)
(r− s)4

)
,

from which the unique critical points of h+
x0

(r,s) and h−x0
(r,s) are ±(x0,x0) , none of

which lies in the region R of the (r,s) plane (see Figure 7). The latter shows that
both |h+

x0
(r,s)| and |h−x0

(r,s)| are maximized in ∂R . We just need to study |h+
x0

(r,s)|
since the calculations for |h−x0

(r,s)| are almost identical. Also, due to the symmetry of
|h+

x0
(r,s)| and R with respect to the line s = −r , we only need to optimize |h+

x0
(r,s)|

on the segments L1 and L4 in Figure 7. Let

h1(r) = h+
x0

(r,(r+2)/3) =
27(4r−6x0 +2)

2(r−1)3 ,

h2(r) = h+
x0

(−1,s) =
12(2x0− s+1)

(s+1)3 ,

with r ∈ [−1,−1/2] and s ∈ [1/3,1] , be the restrictions of h+
x0

to L1 and L4 , respec-
tively. It is elementary to check that

h′1(r) = −27(4r−9x0 +5)
(r−1)4 ,

h′2(r) = −24(3x0− s+2)
(s+1)4 ,

from which h1 and h2 have a unique critical point at r0 = 9x0−5
4 and s0 = 3x0 + 2,

respectively. Actually r0 happens to be in [−1,1/2] if, and only if, x0 ∈ [1/9,1/3] ,
whereas s0 never lies in [1/3,1] . Also, h1(−1) = h2(1/3) . Then

sup
(r,s)∈∂R

|h+
x0

(r,s)| =
{

max
{|h1(−1)|, |h1(−1

2 )|, |h2(1)|, |h1(r0)|
}

if x0 ∈ [ 1
9 , 1

3 ],
max{|h1(−1)|, |h1(−1

2 )|, |h2(1)|} otherwise.

Observe that |h1(−1)| = 81
8 x0 + 27

8 , h1(−1/2) = 24x0 , h2(1) = 3x0 and |h1(r0)| =
32

9(1−x0)2
, and that 32

9(1−x0)2
� max{ 81

8 x0 + 27
8 ,24x0,3x0} whenever x0 ∈ [1/9,1/3] . To

sum it up,

sup
(r,s)∈∂R

|h+
x0

(r,s)| =

⎧⎪⎨
⎪⎩

81
8 x0 + 27

8 if x0 ∈ [0, 1
9 ],

32
9(1−x0)2

if x0 ∈ [ 1
9 , 1

3 ],

24x0 otherwise.

(18)

Finally, the result is obtained straightforwardly by comparing the functions (16), (17)
and (18).
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To obtain the extremal polynomials for every x0 ∈R , we may assume here too that
x0 � 0. Then, if x0 ∈ [0,1/9] , according to the above proof, B(x0) is attained for the

polynomials P(x) =±
[
1+

2
(1−q2)2 (x+q)2 (

2qx−1−q2)] with q =−3x0 . Also, if

x0 ∈ [1/9,1/3] , we have seen in this proof that B3,2(x0) is attained for the polynomials

P(x) = ±
[
1+

4
(s− r)3 (x− r)2

(
x− 3s− r

2

)]
with r = r0 = 9x0−5

4 and s = r0+2
3 =

9x0+3
4 . To complete the study of the extremal polynomials, it is straightforward that if

x0 � 1/3, then B3,2(x0) is achieved for P(x) = ±(4x3−3x) .
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[29] G. A. MUÑOZ AND Y. SARANTOPOULOS, Bernstein and Markov-type inequalities for polynomials

on real Banach spaces, Math. Proc. Cambridge Philos. Soc., 133, 3 (2002), 515–530.
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