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WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN
TYPE FOR RIESZ-SCHRODINGER TRANSFORMS

B. BONGIOANNI, E. HARBOURE* AND P. QUIJANO

(Communicated by J. Pecaric)

Abstract. In this work we are concerned with Fefferman-Stein type inequalities. More precisely,
given an operator 7 and some p, 1 < p < e, we look for operators .# such that the inequality

[rsme<c [igra,

holds true for any weight w. Specifically, we are interested in the case of 7 being any first or
second order Riesz transform associated to the Schrodinger operator L = —A+V, with V anon-
negative function satisfying an appropriate reverse-Holder condition. For the Riesz-Schrodinger
transforms VL™'/2 and V2L~! we make use of a result due to C. Pérez where this problem is
solved for classical Calderén-Zygmund operators.

1. Introduction

In the theory of weighted L?-inequalities a relevant question is the following:
given an operator 7 and 1 < p < oo, to find a positive operator .# such that inequalities
of the form

Jrsme < [ipram, M)

hold for some reasonable set of functions f defined on RY, d>1,anda general weight
w,le we LllOC (Rd), w > 0. However, the above inequality becomes more interesting
when .#Zw is finite a.e. and to that end it is desirable to get the operator . as small as
possible.

The first appearance of such inequality goes back to the classical result of Fefferman-
Stein ([7]) for T = .# = M, the Hardy-Littlewood maximal operator, namely

L mriew < [ isat.
R4 R4

for 1 < p < eo.

When T is a singular integral operator, Cérdoba and Fefferman showed in [4] that
inequality (1) holds taking .# = M, = (M(w"))!/", for any 1 < r < . However, it is
known that for the Hilbert transform that inequality fails for r = 1.
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Later, Wilson in [11] obtained inequalities for 1 < p <2 and .# =M oM im-
proving the result in [4] since M o M(w) < (M(w"))Y/", forall r> 1.

In 1995, C. Pérez provided a full answer to this question with different techniques
including weak type inequalities for p = 1. He deals with maximal operators associated
to averages with respect to a Young function which can be smaller than M,..

Below, we state the precise statements since they are essential to our work.

By a Young function A we mean A : [0,e0) — [0,e0) continuous, convex, increas-
ing and such that A(0) = 0. To define a maximal operator associated to a Young func-
tion A we introduce the A-average of a function f over a ball B as

||fA,B:inf{a 0 ﬁ/BA(%)dzg 1}.

Then, the maximal operator associated to a Young function A is
M f(x) = sup [ fla.5-
B>x

For 1 < p < oo, we define 7, as the class of Young functions such that

>/t \"
- Z <o 2
/c (A(t)) r S @
for some ¢ > 0.

The following theorem appears as Theorem 1.5 in [9]. There it is stated for sin-
gular integral operators. But according to the comment in Section 3 there, it also holds
for Calderén-Zygmund operators as it is stated next.

THEOREM 1. Let 1 < p <eo, and let T be a Calderon-Zygmund operator. Sup-
pose that A € 9,,. Then there exists a constant C such that for each weight w

[rrsirwsc [1rmm.

The following theorem deals with the endpoint case p = 1 and it is also due to C.
Pérez. Here we state a version that can be found in [5] as Theorem 9.31.

THEOREM 2. Let T be a Calderon-Zygmund operator and let A € U~ Zp.
Then there exists a constant C such that for each weight w and for all A > 0 we
have

Wty R |TI0)> A1) < 7 [ 1700 Maw()ay

Some examples of functions on the class 2, are A(t) = tlog? '"¢(1+1¢) or
A(t) = tlog?~ 1 (1 +1)logP " (log(1 +1)) for any € > 0. As for the class Up=1%p»
we can take A(¢) =tlog®(1+1) for any € > 0.

In this work we attempt to provide results of this type for the first and second order
Riesz transforms associated to the Schrodinger differential operator L = —A + V on
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R4, d >3 and with V satisfying a reverse Holder inequality of order ¢, ¢ > d /2, that

is, there exists C such that
1 1a 1
(—/V‘1> gC—/V7 3)
|B| /s |B| /s

holds for every ball B in R?. From now on, if a function V satisfies (3) above we will
say that V € RH,.

The study of these operators under such assumptions on V', was started by Shen
in [10], where he proves L” boundedness for most of the operators we will be concerned
with. As he observed, when g > d, the first order Riesz transforms VL '/2 are standard
Calder6n-Zygmund operators. Otherwise, they are not necessarily bounded on L? for
all p, 1 < p < oo. The case of the second order Riesz transforms given by V2L~ is
even worse since one can assure boundedness only for 1 < p < g. However, even in
the case that they are Calderén-Zygmund operators, we may expect in inequality (1)
a smaller operator .# than those given by Pérez, since Schrodinger Riesz transforms
have kernels with a better decay at infinity. Also, in this context, kernels may have no
symmetry and hence we might obtain different results for 7' and its adjoint.

Essentially, we will consider two types of first and second order Riesz transforms:
one involving only derivatives VL~1/2 and V2L, and the others involving the poten-
tial V, as VI/2L71/2 vL=! and V'/2VL~!. In the first case we will get our results
by locally comparing with the classical Riesz transforms, allowing us to apply the re-
sults of C. Pérez. Let us point out that for VL~'/2 such comparison estimate appeared
already in [10] but that is not the case for V2L™!, so it must be provided. We do that
in Lemma 7 and we believe that it might be useful for other purposes. As for those
operators involving V we shall require only estimates on the size of their kernels.

We would like to make a remark about the values of p for which inequalities like
(1) will be obtained. In all instances the operator .# on the right hand side satisfies
(1) < 1 and therefore our results would imply boundedness on L?, so the range of
p should be limited as in the original work of Shen.

The paper is organized as follows. In the next section we state some general the-
orems in a somehow abstract framework but having in mind the Schrédinger Riesz
transforms mentioned above, leaving all the proofs and technical lemmas to Section 3.

The results include strong type (p,p) inequalities like (1) as well as weak type
(1,1) estimates for a suitable class of operators and their adjoints. Let us remark that
inequalities for the adjoint operators are not obtained by duality. In fact, if we proceed
in that way, we would not arrive to an inequality with an arbitrary weight on the left
hand side as we wanted.

Section 4 is devoted to apply the general theorems of Section 2 to specific operators
associated to Schrodinger semigroup: VL™1/2, V2L~1 yep-o yo-l/2y1-o yijth
o in a range depending on the operator. In order to check that their kernels satisfy
the required assumptions, sometimes we make use of known estimates but in other
occasions we must prove them. In particular we prove a local comparison between the
kernels of V2(—A)~! and V2L~! stated in Lemma 7.

Finally in the last section we use the above results to get sufficient conditions on a
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function f to ensure local L? integrability of T f, where T is any of the operators of
Section 4. Consequently we obtain a large class of functions f such that 7f is finite
a.e.. In fact, f is allowed to increase polynomially. When these results are applied
to the Riesz-Schrodinger transforms they provide qualitative information about some
solutions of differential equations involving L.

2. General results

In this section we will consider the space R? equipped with a critical radius func-
tion p : R — (0,00), that is, a function whose variation is controlled by the existence
of Cyp and Ny > 1 such that

_NO

N
Co'p(x) (1 + 'f)(—xf ') <p(y) < Cop(v) (1 + ’;(:j | ) @

It is worth noting that if p is a critical radius function , then for any y > 0 the function
Yp is also a critical radius function. Moreover, if 0 < y < 1 then yp satisfies (4) with
the same constants as p.

Let us remark that in [10] a function p satisfying (4) was introduced related with
the potential V. But, once such a function p is defined, there is not need of any further
reference to V. So we choose to work in this frame in order to emphasize that fact.

Very often we will refer to critical balls, meaning balls of the type B(xo,p(xo)),
and we shall call subcritical balls to those B(xo,r) with r < p(xg). Observe that from
4), p(y) > p(xo) whenever y € B(xo,p(x0)).

The next lemma is a useful consequence of (4).

LEMMA 1. (see [3], Corollary 1 ) Let y € B(xo,R). Then, there exists a constant
C > 0 such that
R R No+1
1+——<C (1 + —) .
p() p(xo)

Proof. From (4) and the fact that y € B(xp,R) we have

1 G R \M
p0) S plw) <1+P(xo)> '

Multiplying by R and adding 1, we get

R R R Ny R No+1
”m“°<m (HM) +1> <c<1+m> :

where we used that Cp > 1. [
Associated to a critical radius function p we can define the following maximal
operators. First, let us denote .%,, the set of all balls B(x,r) such that r < p(x). Then,
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for f alocally integrable function, and A a Young function, we set

MY°f(x) = sup |fllas,
B>x
Be.7p
and for 6 >0,

-6
M f(x)=sup <1+r_0> Flas.
I B(xo,rp)>x p(xo0) /1148

As usual, when A(t) = ¢” we use the notation M!°° and M? respectively.
Now, we are in position to state our main theorems.

THEOREM 3. Let T be a linear operator with associated kernel K. Suppose that
for some s > 1, K satisfies the following estimates.

(as) Foreach N > 0 there exists Cy such that

s a5 R \V
K(y)Pde)  <cyrR™ 7 1+ :
</R<x0x|<2R| ()l x) N ( P(xo)>

whenever |y —xo| < R/2.

(bs) There exists a Calderdn-Zygmund operator Ty with kernel Ky such that, for some
Cand § >0,

1/s a)s R 1)
K(x,y) — Ko(x,y)|"dx <CR™M | ——) ,
([ )~ Kalrypas) ()

whenever |y —xo| < R/2 with R < p(xp).

Then, for each 0 > 0, the operator T and its adjoint T* satisfy the following inequal-
ities for any weight w,

[irrw<co [1rrmey 5)

for1<p<sandr=(s/p),

[ srw<co [ 17 0ae M0, ©)
for s’ < p < oo and any Young function A € 9.

REMARK 1. Assumption (as)can be seen as a size condition with a kind of “de-
cay at infinity”, while condition (by)tells us that K has the same singularity as a
Calder6n-Zygmund kernel. Nevertheless, both conditions on K are not symmetric since
integration is always made in the first variable. Consequently we do not get the same
kind of estimates for 7" and T*.

If the kernel K satisfies point-wise estimates we obtain a sharper result for 7', as
a corollary of the previous theorem.
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COROLLARY 1. Let T be a linear operator with associated kernel K and Ty be
a Calderon-Zygmund operator with kernel Ky. Suppose that K and Ky satisfy the
following estimates.

(aw) Foreach N > 0 there exists Cy such that

Cyn ( |X—y)_N
K(x, < 1+
Kol < 7= I 5w

(be) There exist C and & > 0 such that

_ C (=¥’
oo Kt < 5 (577)

Then, T and its adjoint T* satisfy (6) for 1 < p < e and any Young function A € 9.

Corollary 1 follows immediately from Theorem 3 since conditions (d.)and ()
imply conditions (ay)and (by)forall 1 < s < o, and they can be made symmetric in x
and y due to Lemma 1. For the limiting case p = 1 we obtain the following weak-type
inequalities.

THEOREM 4. Let T be a linear operator with associated kernel K and let Ty be
a Calderon Zygmund operator with kernel K. Suppose that for some s > 1, K satisfies
conditions (as)and (bs).Then, for 6 >0 and w € L} ., w >0, T satisfies

loc’

w{IT 1> 20 < S [ 17800, for 2> . ™

Further, if T satisfies (a=)and (b=.), then, for any Young function A € U~ 7,

w{|Tf]>2}) < /|f| M+ M?) w, for 2> 0. 8)
Moreover, inequality (8) also holds for T*.

The associated kernels of some operators related to L satisfy condition () without
subtracting Ky and hence condition (a;) and (by) can be unified. For this type of op-
erators we can get sharper inequalities stated in the following theorem.

THEOREM 5. Let T be a linear operator with associated kernel K. Suppose that
forsome s > 1 and & > 0, K satisfies the following condition.

cs) Foreach N > 0, there exists Cy such that for any xo € RY and R > 0,
(cs) y

s -5 R \N
K(xy)'dx) <C Rd/S’( ”(XO)) <1+ ) :
</R<x0—x<2R| ()l x) N R p(xo0)

whenever |y —xo| < R/2.
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Then, for any 6 > 0 and any weight w, there exists Cg such that T satisfies (5) for
1<p<sand

[irsmwe<co 1wy, ©)

for s’ < p < oo,

3. Proofs

Before giving the proofs of the theorems above we need to state some technical
lemmas that will be useful in the sequel. The first one gives a nice covering of R? with
critical balls. It is a consequence of inequality (4) and can be found in [6].

In some proofs we will use the notation < instead of < to denote that the right
hand side of the inequality is greater up to multiplicative constants that may depend on
some parameters specified when necessary.

PROPOSITION 1. There exists a sequence of points {X;} jen such that the family
of critical balls Q; = B(xj,p(x;)) satisfies:

i) |Jo,=R".

jeN

ii) There exist constants C and Ny such that for any o > 1, Z Xo0; < Cco™.
jEN
In general, maximal operators can not be controlled point-wisely by localized
ones. Nevertheless, this is possible if we are considering functions supported on sub-
critical balls and for points close enough to the support. In the next lemma we determine
how much a critical ball must be contracted in order to have that kind of control. Such
contraction of critical balls is needed to arrive to inequality (6) of Theorem 3.

LEMMA 2. Let A be a Young function and By any critical ball. There exists
Yo > 0 such that if 0 < y < Y then for any measurable function f,

Ma (o) (x) < CME*(f) (),

forall x € 2yBy. Here, the constant C only depends on the dimension d and the Young
function A.

Proof. Assume x € 2yBy with ¥ to be determined later. It is enough to consider
balls centered at x; in fact, it is not difficult to see that if Mj is the centered maximal
function, then My (f)(x) < CMS(f)(x) for any function f with C that only depends
on d and A. Let x( be the center of By and suppose first that » > 3yp(xo). Therefore
B(x,r) D B(x,3yp(x0)) D yBo and thus, for any non-negative function g,

1 / 1 1
—_— ¢ ————— | g<—F—— g
|B(x,7)| JB(xr)nyBy |B(x,37p (x0))| Jyo ™ ~ [B(x,37p(x0))| /B(x37p(x0))
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Now, if A > 0, applying the above inequality to g = A(|f|/A) we have, for r >
3yp (%)
If X0 llaBeer) < IfllaB03780)-

Therefore, if x € 2yBy,

My (fxye)(x) < sup || fllaBor)-
r<37p(xo)

To complete the proof, it is enough to take y such that 3yp(xp) < p(x) for all
X € 2YBy.
From inequality (4), we have p(xp) < p(x)Co(1+2y)"0 and thus y should be
taken such that
3yCo(1+27)M < 1. (10)

Since the left hand side goes to 0 when 7y goes to 0, there exists }p such that for
0 <y < 1 the above inequality holds. [J

Conditions (ay)and (by)are written in a suitable way to prove inequalities con-
cerning 7. To prove the inequalities for 7' it will be easier to use the following equiv-
alent conditions.

LEMMA 3. Forany s > 1, conditions (as)and (by) are equivalent, respectively,
to the following conditions.

(a,) Foreach N > 0 there exists Cy such that

1/s 4y R _N
K(x,y de) < CyR™Y* <1+ ) ,
</B<xo.,R/2> el N p(x0)

whenever R < |y —xo| < 2R.

(b)) There exist C and & > 0 such that

1/s a5 R 4
K(x,y) — Ko(x,y)| dx < CR™4*
</B(XO7R/2>| (x:3) = Koly)l ) (p(xo))

whenever R < |y —xo| < 2R and R < p(xp)-

REMARK 2. Observe that (ay) holds true replacing the ring, R < [x —xo| < 2R
with R < |x—xp| < ¢oR for any constant ¢y > 1, with the constant Cy depending on
co. Similarly in (a}) the ring R < [y—xo| < 2R may be replaced by R < |y —xo| < coR.
In fact, it is only a matter of applying (ay) or (a}) a finite number of times depending
on cop.

The same comment applies to (b;) and (b).

Proof of Lemma 3. We will show first that (ay)implies (). Let K be a kernel

s

satisfying (ay)for some s > 1, and let xo € R?, R >0 and y such that R < |xp —y| <
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2R. Tt is easy to check that B(xg,R/2) C {x: R/2 < |x—y| < 4R}. So, applying
condition (ay)and the previous remark we get that

1/s l/s
([ g KGsPar) < ( [ Kl
B(xo,R/2) R/2<|y—x|<4R

—-N —-N
< CyR™Y (1 + i) < CyR™Y (1 + R ) ,
p(y)

where in the last inequality we used Lemma 1.

To see that (a})implies (as) let xo € RY, R >0 and y € B(xo,R/2). The ring
{x:R < |x—x0| < 2R} can be covered by M balls (depending on d), of radius R/4
and centres x;, with R < |x; —xo| < 2R, for i = 1,...,M. For each of these balls we
can check that R/2 < |x; —y| < 5R/2. Applying condition (a})and Remark 2 on each
ball,

1/s 1/s
K(x,y)|'d < / K(x,y)[*d
</R<y—x|<2R )l x) ;<B<xm/4>| =) x)

R

M , -N
For (i)

p (xi

, R \ "
< CyvR™S <1+—> ,
p(xo)

where we used again Lemma [ in the last inequality.
We can omit the proof of the equivalence of (bg)and (b)) since it follows the same
lines as above. [J

Proof of Theorem 3. Let T be a linear operator with kernel K satisfying (a;)
and (b;), for some s > 1 and some Calder6n-Zygmund operator Ty with kernel Kj.
Letw>0,we Lllm_, 0 >0, 1 < p <s andlet A be a Young function satisfying (2).

We will prove first inequality (5). Let 9o be as in Lemma 2. For some y < 1, to
be chosen later, let {Q,} be the decomposition of the space given in Proposition 1 for
the critical radius function yp . Then we write

Jirsrw< s [

neN

-y /Q IT(F100,) + T (FX0me) £ To(£220,) "W

neN o
S r — T Pw + T NG
~ ngf\! ‘/Qn | (fsz") O(fszn ) | w ngN ~/Q,, ‘ (fX(ZQn) ) | w

+ Z/ To(fx20,)|Pw =T+ I1+111.
neN On
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For 111, since Ty is a Calder6n-Zygmund operator, we apply Theorem 1 and
Lemma 2 to get

=3 [0 v, < 3 [ 110 Matwre) < 3, [ 1M

neN neN neN
1
< [ Mo,

for any Young function A € Z,,.

For k € 7 we denote QF =2KQ,,. To estimate II we use Minkowski’s and Holder’s
inequalities to obtain

=3 [ 10Gra0 =3 [ [ Kwnlrolas] wis

neN neN 20,)¢
I/p 7°
S n% UQQ")‘ f)I (/Q K(X,y)l”w(x)dx> dy‘|

<3 B o) (fow) o]

where r=(s/p)’.

Next we apply condition (a})for K since by Lemma 3 is equivalent to (ay). Then
for each N we have

i 1/r
us 3 3o [ ([ w) a
~ n anc Qn

neN [keN

1/r 1/p]P
S z 2 ‘Qﬁrl/.\' +1/p 27kN /k |f(y)‘17 (/kwr> dy
neN | keN Qn Qn

- 1 v v
- »—k(N-6/p) / f(y)[P2*e ( / wr) “
ngf\! kg& ok ‘Qﬁ‘ o

1/p]?
SO DI (/Q ) f(y)lpr’W(y)dy> ] :

neN | keN

p

p

with constants that may depend on N.

Finally, using Holder’s inequality in the sum over k and choosing N=N;+6/p+
1, where N is the constant appearing in Proposition 1, we arrive to

p/r
nsy lZ 27K+ /Q 5 f”Mf’W] lZ 2"‘”‘*”]

neN | keN keN

s T | (2;@) M S [ 17 M,
R¢ neN R

keN
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with constants depending on Ny and 6 and p.

It only remains to estimate /. Let D(x,y) = K(x,y) — Ko(x,y). For x € Q,, we
have 20, C B(x,p(x)) due to our choice of y (see inequality (10)), therefore we may
write

I_ / IT(fx20,) — To(f x20,) "W

neN
<%J'U xﬂﬂnwrwwu N
<g/i&mwmwwwwrwm

— p
< [ InPweods = 1], g0,

where

wo = [ DGy

For a fixed k and for any n we can take 2% disjoint balls of the form B, , =
B(xﬁhk,Z’kyp(xn)) such that for ¢ > \/d,

odk

QnCUGB % C200,.

Moreover, there exists a constant depending only on ¢ and d such that,

ndk

EXUBI . < Cd,ox26Q,,~
l=1 n,

Therefore, from Proposition 1, the family of balls {O'BL k}l,n covers R? and
EXO'BI <Ciop-
Ln nk

Letus fix 0 =2+v/d. Itis possible to choose y small enough such that if x € GBﬁl X
and 275 1p(x) < |y —x| <27 %p(x) then

El = {y:aVdy2 " p(xa) < |y — x| < B2 Fp ()}

for some constant B > 4+/d depending only on pandd.
Now, we write 4 in the following way

=Ymm=3 [ D)0y
2l ,Zo B(x.2*p(x))\B(x.27*"1p(x))

. . 1 2 2
!For example, it works taking y = TNV and B =2C3(5V/d)No*
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So, for the covering of the space described above, we may write

14
el < / / Dix, d] d
1 7o 2 v, [ bt b ipgey PENI Oy | W

<3 o, | J PN >|dyrw<x>dx

1/p P
<n27; /Ef,k )] (/2fo1‘]( D(X7Y)|pw(x)dx> dy
/s rp) 77
<2 / 70) (/ D) dx) </Nf73£,:v (x>dx> ol

where we have used Minkowski’s and Holder’s inequalities in the last two steps. Now,
using condition (b})for D(x,y) (see Remark 2), we arrive to

1/(rp) P
il <3 )~dp/s'p—kép / / w'(x)dx d
[ o Z “p(x prLJ,f(y)‘ BB, ) ’
| 1/r
< o ko / _ w'(x)dx | dy
2 o, ('33% Pl
<27 képZ/ I ‘pMG (y)dydy <2~ k6p||fHLP (MPw)
nk
Finally,
Il < X Welleren £ X275 1 Ny € W lvupwy 13y
k>0 k=0

Using the estimates obtained for 7, 11 and /1] we arrive to inequality (5).
Now, let us prove inequality (6). Proceeding as in (11) we get

Jir e < 3 [ 11 G0 T Go)Pw + X, [T Uxeoy )

neN neN
/ T (fx20,)[Pw =I" + 1" +1IT7,

neN
and we can estimate //1* in the same way as /11, since 7" is also a Calderén-Zygmund

operator.
For IT*, we write

=3 [ 1Greoltw= 3, [ ([ KGlwla) o

neN neN
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If y € 0, we may use Holder inequality and condition (a)to obtain

vy 1/p
K(x, x)|dx < / K(x,y)| dx / p)
1/s 1/p Ry
s P o »
SJk>1 </an‘+1\Qk (el dx) (/k+1 |1 ) 10,
1
<Y o _/ P /p
Nk>1 ‘Qk+l‘ o+l
2—kN /p
—kN
l Qk+1/Hl fp] [22 ]
k>1 n >l
/p

- kN
L>1 x| /H' f”] ,

with constants independent of 7.

A

Therefore,
LD YERlres Y IR Y Yl AL
neNkeN |Qn ‘ On On neNkeN
ST 200 [ (5 g | Iremtws [ 1M,
keN Re neN 0 Re

choosing N = N; + 0+ 1, where N, is the exponent given in Proposition 1.
It only remains to estimate /*. Proceeding as in (12), we have

/IT* £120,) = T3 (F220,)1"w < 17117,

neN

where

)= [ Pl

and write

=3

= S ) = ID( )| ().
k=0

sz)/B(yQ"P I\B(271p(y))

Now, for a fixed k, using Holder’s inequality and denoting B(y,2 *p(y)) = B},
we have

hi(y) <C / ID(x,y)|*dx / \f\l’ 2 kp (y))d/ /PP,
Bi\By~!

Again for a fixed k, we consider the covering {B(x,, ;,2v/dy2~*p(x,))} ;. Using
condition (by), we obtain
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r/s
S%(/Eln?k |f|l’> (2 p(y;)) P/ =1/p) /Bh </E£,¢ IQ(x,y)de> w(y)dy
2—kp5
< p) &
- % </ﬁBL,k d ) (z_kp (yn))d /BBLJCW

< 2—kp5 1 <2 kpd pM(-)
ST e (mB i ) 3 Jy M

n, nk

o
2’ kp Hf”Lp M@

So, as it was done in (13),
17| 2p (o <C92”hk”Ll’ ) S Nl o a0

Using the estimates obtained for I*, II* and III* we arrive to inequality (6). O

REMARK 3. It is worth noting that the estimates obtained for / and /I also hold
for the case p = 1. Following the same ideas as above we arrive to

2/ IT(fX200)¢) <Ce/d\f\Mg(W)

neN

3 | 110, =Tl 0,)w < Co [ 171ME 0w

neN

Now we prove the weak-type inequalities stated in Theorem 4.

Proof of Theorem 4. Let T be a linear operator with kernel K and w € Lloc,

> 0. Suppose first that K satisfies conditions (a,)and (by)for some 1 < s < oo and

0 > 0. Consider again {Q, }.en, the partition of the space associated to yp, with y
chosen as in the proof of Theorem 3. For A > 0, we may write

w({ITf1>2}) <Y wx € Qu:[Tf(x)] > A})

neN

<X w{x € 0t T (f220,) () = To(fx20,) (x)| > 2/3})

neN

+ 2 w{x € Qu: [T(fX(20,)-) (%) > A/3}) (14)

neN
+ 2, w{x € 0u | To(f220,) (%) > 4/3})
neN
=I1+11+111.
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To estimate /1] we can use this time Theorem 2 together with Lemma 2 to get

1= w({x € 0n:|To(fx20,)(x)| > 1/3})

neN
< ¥ wita,(ix: (f120) 0] > 43D S 5 3 [ 1fMalwzo,)
neN neN
Z ‘f‘ l()L N / ‘f‘ l()L ,
nEN/ A’
for any Young function A € U~ %, In particular we can take A(f) = ¥ since we

will not get anything better for the other terms.

As for I and II we use the strong type inequalities for p = 1 stated on Remark 3.
In this way we obtain (7).

Now, suppose that the kernels K and K satisfy conditions (de.)and (be.). Let
A > 0, we use the same decomposition as in (14) to get

w{|ITf>AY) <I+I+1IL.

We deal with III in the same way, obtaining

111 < / l()c ’
<7 [ lrin

forany A € )~ Zp.
For k € Z we set Q% = B(x;,y2*p(x;)). To estimate the term /7 by the Tchebysh-
eff’s inequality we may write

Il = Zw({ern:IT(fX(zgn) )X >A/3}) < JL/ IT(f2(20,)c )| (x)w(x)dx

neN neN

(k [ g KT >|dy> w()ds.

Now, using condition (de.),

neN

I
1
< _ 7kN/ ( / )dy
AneNkeN Qk“ Qk+l| QHl
1

Sp T 20 [ M (way

neNkeN
sy [ (2ka+1>]‘( )y S [ 1F6)IMO (w)ay,
keN neN R

choosing N=N;+60+1.
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Next, to estimate I we use the Tchebysheff’s inequality and condition (b..).

I=73 w{x € 0u:[(T —To)(f220,)(¥)| > 4/3})

JeN

3
<33 ([, Ko = Koty ) wiajax

neN

1 PO (E=YN 1Y o
2k (fzg 25 dy) i
S3 2ot [ O] [ sl oy

Now, if y € 2Q,, and calling By, = B(y,3yp(x,)), then Q, C By, and hence

[ sl e < 3
On

feN /2*k+13¥,\2*k3¥,

27k5

<plx)® 7/ < p ) M w(y),
PO’ 3 i o sy S PL M)

e — y|2 4 w(x)dx

since p(y) ~ p(x,). Therefore, we obtain

1 1
< ]”100 < loc
Iwz,;/an|f| WN)L/RAJC()})‘M w.

Altogether we obtain inequality (8). The same estimate is obtained for 7* since condi-
tions (a.)and (b.)are symmetricon x and y. [J

Finally, we end this section with the proof of Theorem 5.

Proof of Theorem 5. Let T be a linear operator with associated kernel K satisfy-
ing (c;). First, observe that condition (cy)implies both conditions (a;)and (by)with
Ko = 0. Then, proceeding as in equation (11) we can write

JLZEED>

/Q T (f220,) + T (fx205) "W

neN
ST [ 1rUre) e+ Y, [ 10w =111
neN On neN On

Then, inequality (5) holds for 1 < p < s following the same lines as in the proof of
Theorem 3 and taking into account Remark 3 for p = 1.
To obtain estimate (9) we proceed as above to get

Jirsrws 3 i Gre) e 3 [T gl =1

neN neN

and we deal with I* and II* as in the proof of Theorem 3. [
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4. Application to Schrodinger operators

In this section we apply our general results to operators associated to the semi-
group generated by the Schrodinger differential operator L = —A+V on RY with
d > 3. We will always suppose that the potential V is a non-negative function, non-
identically zero, satisfying a reverse Holder condition of order ¢ > d/2. Under these
assumptions the function p defined by

p(x):sup{r>0: %/B(M)Vé 1}7x€Rd7

is a critical radius function, that is, property (4) is satisfied for some constants Cy and
Ny.
It is known that V € RH,;, ¢ > 1 implies that V is a doubling measure, i.e. there

exists C; such that
/ V<G / V.
B(x,2r) B(x,r)

In fact, if V € RH,, g > 1, then V belongs to the A.. class of Muckenhoupt.
The following is an useful inequality for V € RH, with ¢ > d /2 that follows easily
from Lemma 1.2 and Lemma 1.8 in [10].

LEMMA 4. Let V € RH, for some q > d/2. Let N =log,Ci +2 —d, where Cy
is the doubling constant of V. Then, for any xo € R¢, R >0,

1 R \" p(x@)‘”“
- V(iydy<c(1 1 .
Rd-2 /B(xo,m o)y ( JrP()Co)> ( TR

REMARK 4. Observe that when R < p(xp) the leading term is the second factor
while the latter is bounded by a constant when R > p(xp).

For the fundamental solution of L, the following estimate was shown in [10].

LEMMA 5. Let V € RH,, with ¢ > d /2 and T the fundamental solution of the
operator L in R, Then for each N > 0, there exists a constant Cy such that

1 x—y>_N
C(x,y)| <C 1+ .
Tl Nx—y“( p(x)

4.1. Riesz-Schrodinger transforms

We consider the operators % = VL~1/2 and %, = V2L~ the Riesz-Schrédinger
transforms of order 1 and 2 respectively. Let K; and K, be their associated kernels.

The size condition (as)can be found in [1], for both K} and K;. In fact, (a,)holds
for Ky with s = pgy, where % = é — 5, in the case d/2 < g < d (see page 28 in [1]),

and s = oo for ¢ > d (see inequality (6.5) in [10]). Regarding Kj, it satisfies (a;)for
s = q (see Proposition 8 in [1]).
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To prove that these kernels satisfy also condition (b5) we will compare them with
the classical Riesz transforms Ry = V(—A)~'/2 and R, = V?>(—A)~! and their associ-
ated kernels Ko 1 and Ko .

Before proving condition (by)we present the following lemmas that provide us
point-wise estimates for the difference between the kernels associated to the Riesz-
Schrodinger transforms and the classical ones. For the Riesz-Schrédinger transform
of order 1 such result was already obtained by Shen. On the other hand, the estimate
corresponding to the second order operator is new and we believe is interesting in its
own right.

LEMMA 6. [See [10], inequality (5.9)] Let V € RHy for d/2 < q < d. There
exists C such that

C 1 X 2—-d/q
Kl(x7y)_K0,l(x7y)|<W<G( 7y)+m<| (§}|> >’

where
V(u)
G(x,y) = /( ﬁdw (15)

B(xx—y|/4) | —x

LEMMA 7. Let x, yo € R? and R > 0 such that R < |y —xo| < p(x0). Let x €
B(x0,R/8). Then there exists a constant C such that

[
Kal3) ~ Koa(9)| < CRVI O o) 01+ (5 )

with 6 =min{1,2 —d/q}.

Proof. Let T" and T’y be the fundamental solution of L and —A respectively. As
it was shown in [10], page 540,

M)~ Toley) == [ o EVETE)E.
From this we get the following expression for the difference of the kernels.
Ka(ny) ~ Koa(wy) = ViT(x,3) = ViTo(ey) = =3 | To(x E)V(EIT0.8)dé.
Next, we define the domains J; = B(xo,R/4), J» = B(y,R/4) and J3 = (J; UJ2)¢. The

term corresponding to the integral over J; is, upon a sign, the classical second order
Riesz transform applied to function in L9 with compact support, that is

Vi /J1 To(x, E)V(E)T(y, 6 )dE| = [Ra(VI(y,-) Xp(xg.r/4)) (X))
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On J,, since we are away from the singularity of I'g, we can use the size estimate
for T" given in Lemma 5, together with Holder’s inequality to obtain

\AVhMLQV@WWéwé<§f/ﬂmwvgizé

1

l p
s 1% (/B(%R/@fo(g)dg) q </B<y7R/4> y—édli‘zw R

For the first integral we can use the reverse Holder condition for V together with
Lemma 4, while on the second integral ¢ > d/2 implies that (d —2)q’ < d. Then

‘/szﬁro(xj)V(é)r(y,g)dé‘5%<$)z_d/q7

since y € B(xo,p(x0)).

To estimate the integral on J3 we divide J3 = J3; UJs3y, where J3; = {& € R? :
R/4<|y—E|<2RA|xo—&| = R/4} and J3, = {E € RY: |[y—&| > 2R}. On J3; we
are away from the singularities of both I y I'y, then

V(S) 1
: /131 x— &y —& ‘d72d€ s R2d-2 /B(ng) V(E)dE

2—d/q
R\ p(xo0)

where in the last inequality we have used again Lemma 4.
Regarding Js, it is easy to check that |x— &| > 3|y — &|/8. Then, using Lemma 5
again,

ViTo(x, §)V(E)T(3,8)dE

J31

2 V(E) &N
Vilo(x, &)V ()T (16 d&’ CN ,32 =&y — é‘“(H p(y)) a

v(E) y— &N
<CWJQW—52120*'p@>> a5

J32

(16)

Assume first that 2R < p(y). We split the integral in J33; = {£ € R? : 2R < |y —
El<p(y)}yand 3 ={E€R?: [y—&| > p(y)}. For the integral on Jsp1, let kg € N
such that 2%0~1R < p(y) < 2%R. Then using again Lemma 4 and that d > 2 —d/q,

V(&) V(&)
/R<|y El<p(y) [y — &2~ pogpradt S Z/zﬁ'*'1€<|y—é|<2’fkIy—é\“‘2

ko 1

; d (2kR)d- 2/(y,2kR)V(§)d§
1

R_

(”ES)H/%%(pé@)z_m»
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since y € B(xp,p(x0)), and hence p(y) =~ p(xo).
On Jap, let u =log,Cy, where C; is the doubling constant of the potential V.
Then we bound the right hand side of (16) by a constant (that may depend on N) times

V(&) p(y) & V(&)
/\x Elzp() [y — &2“<y él) €<§ / Ip(y)ly—&l<24+p(y) [y — &[22

1
< V(Ed
Zﬁmmﬂmmwwﬂémww (S)ds
1 & 1 1 1 R \2 /4
O 2 P57 Jsprny” O S 507 < &7 \pag)

choosing N big enough and using that p(y) ~ p(x), R<p(xo) and 2—d/g<d. O
For #, different inequalities hold true depending on ¢g. For ¢ > d, Shen showed
in [10] that %, and Z] are Calderén-Zygmund operators. Moreover, their associated
kernels satisfy the stronger size condition (a.)(see inequality (6.5) there). Later on,
condition (b..) was proved for the difference between K; and K ¢ (see [2] Lemma 3).
Therefore, as an application of Theorem 3, Corollary 1 and Theorem 4 we obtain
the following result.

THEOREM 6. Let V € RH, with q>d /2, 6 >0 and po such that 1/po=(1/q—
1/d)". Then for any weight w the following inequalities hold.

[1srw<co [1rmd (a7
when d/2 < q<d, for 1 < p < poand r=(po/p).
[1i517w < Co [ 1117 Mizew -+ M), as)
when q > d /2, for p{, < p < e, and any Young function A € 7, and
Wil s> 2 < L [ Mg (19

Sforany q >dJ2.
Moreover, if g > d, we have

[1s1rw < Co [ 1117w + W), 20)
for 1 < p < e and any Young function A € 9,,. Also
w({l] > 23 < 2 [ 1img, @)
and c
w({|#i 11> 20 < L [ 1M @)

Jfor any Young function A € U, Zp.
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Proof. Let V € RH, for g > d /2. Suppose first that ¢ < d. As we said, condition
(as)was proved in [1] for s = py with 1/po = (1/g—1/d). Therefore it is enough to
check (b}, ) which is equivalent to (b, ).

Let xo € RY, 0 < R < p(xp) and R < [y —xp| < 2R. First, we make use of
Lemma 6. Due to the boundedness of the classical fractional integral operator /; and
the reverse Holder property of V' we get that, for G defined in (15),

G po \Vro o v po \ 1/po
(/ (7()67?;)_1) dx) < =T (/ (/ (1) du) dx)
Blxo.R/2)\ [x — Y| R B(xo.R/2) \JB(xo.R) |1 — x|
C 1/po
< 7T (/Rd Il(XB(xO,R)VHm)

1/q d/q—d
< S ( / Vq) <Rl / v
R~V \ JB(xo.R) R~V JB(xo.R)

R 2-d/q
P(xo)> ’

< CR™/%0 (

(23)

where, in the last inequality, we have used Lemma 4. As for the second term appearing

in Lemma 6, the same estimate holds easily. Therefore, inequalities (17), (18) and (19)
follow as an application of Theorems 3 and 4.

Next, suppose that g > d. In this case, as we mentioned it is known that K; sat-
isfy the point-wise estimates (d..)and (b.). For the size condition we refer to inequal-
ity (6.5) in [10]. Condition (b..)was stated and proved in [2], Lemma 3. Thus, apply-
ing now Corollary | and Theorem 4 we obtain inequalities (20), (21) and (22). U

As an application of Lemma 7, Theorem 3 and Theorem 4 we obtain the following
inequalities for %, .

THEOREM 7. Let V € RH, for g > d/2, and 6 > 0. Then, for any weight w the
following inequalities hold.

[V <co [1rmd 24)
for1<p<gqandr=(q/p),
[ 15517 < Con [ 11170+ M), 25)
for ¢’ < p < e and any Young function A € 9,,,

w({172f1> 21 < S [ 15Mgw. 6)

Proof. As we said before, it only remains to check condition (b)) for the kernel
K. Let xo, y € R? and R > 0 such that R < |y —xo| < 2R and R < p(xg). We are
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going to check condition (b)) with s = ¢ using Lemma 7,

1/q
/ |K> (x,y) — Kp,0(x,y)|Tdx
B(xo,R/2)

c R \\7 1/q
(/B(M/z) <|R2(Vr()’7')%B(xo7R/4))(x)|+ﬁ (m) ) dx) :

Dividing the integral in two terms it is straightforward that the second one gives
us the desired estimate. For the first one, recalling that R, is a bounded operator on L4
for 1 < g < oo, and applying Lemma 4,

N

1/q 1/q
Ro(VI(y, ) XB(x, ad < / Va(x)|T(y,x)|9d
( /B(XO.’R /2)| 2(VI(, ) XB(xg r/4) ()] x) ( s (x)|T(y,x)| x)

1 1/q
< / Vq)
~ RI2 ( B(xo.R/4)

R 2—d/q
< R-4/d ( ) . O
p(xo)

REMARK 5. Observe that except for Z) in the case g > d, the maximal operators
on the right hand side are better for the adjoints Z|, %3, even for common values of
p. Also, the maximal operators appearing in (17) and (24), get closer to those in (18)
and (25) as g goes to d or infinity, respectively.

4.2. Operators VVL™7

We consider, for V € RH,, g > d/2, the family of operators of type VVL™7 for
0 < y<d/2. For each y, we can write K,, the kernel of VYL, as

Ky(x,y) = VI(x)Jy(x,y),
where J, is the corresponding kernel of the fractional integral operator L~7. For J, we

have the following estimate that can be found in [8], page 587. For each N > O there
exists Cy such that

1 | y| —N
I (x <—( 1+ . 7
Ty (x, )] x—y[-2r N( p(x) ) 27

We will show next that the size estimate for J, gives us condition (c¢,)for K, with
s=q/y. In fact, let xo, y € R and R such that |y — xo| < R/2. Applying Lemma 1
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and Lemma 4 we get

v/a
( / Ky<x7y>|‘f/7dx)
R<|x—xp|<2R

_ Cy <1+ R >N/(No+1) </ Vq)y/q 28)
SR P (xo) B(x).2R)

—N/(No+1)+yN2 —v(2—d/q)
<g-dfta/1 (HL) ’ (HM) v
~ p(xo) R

The above estimate together with Theorem 5 give us the following result.

THEOREM 8. Let V € RH, for ¢ >d/2, 0<y<d/2 and 6 > 0. Then, for any
weight w,

Jwrrppw<co [ irirmtv,
for 1<p<a/v, r=I(a/(yp)) and

Jimvrsinw<co [1rrmey,
Jor (a/y) <p<ee

4.3. Operators V712V~

We consider the family of operators V¥~'/2VL~7 for 1/2 < y < 1 that includes
the operator L~'VV1/2 which appeared first in [10]. As a consequence of the results in
Section 4.2 in [1], the associated kernel #7 can be written as the product £ 7(x,y) =
VY=12(x)Kay—1 (x,y), with Koy a fractional kernel of order 2y — 1, satisfying for
each N,

Cn |X—y| N
|Koy—1(x,y)] < |x — y|d=2r+1 <l+ p(y) , -

as long as V € RH, with g > d, and

e d/py+2y—1 R \7Y
Ko (x. mdx) < CR-4/P <1+—) NE )
</R<|xy<2R| ()l p()

when d/2 < g < d, with pg such that 1/pg =1/g—1/d. In fact, estimates of this
type were shown in [1] (see estimates (66) and (67) there) for the kernel of the adjoint
operator L~YVV7~1/2,

We will show now that these inequalities imply condition (c,)for s = py such that

1 1 1\" 2y-1
—=(-=—=) +=—. (31)
py (q d) 2q
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Let xo, y € R? and R >0 such that |[y—xo| < R/2. If ¢ > d, and hence plyz 2;—;1,

we may use estimate (29), Lemma 4 and the reverse Holder inequality to get, as in (28),

2
( / Ky<x,y>v“/2<x>2v"1dx>
R<|x—x0|<2R

2y—1

= —N/(No+1)
<7£§V 1(/ Vq) ! <1+ R )
R0\ JB(xp 2R) p(xo)

~(-1/2)2—d/q) N (No+1)+No(1-1/2)
<RIy <1+M> ! <1+ R ) o .
R P (x0)

2y-1
2q

11 2yl
If d/2 < g <d, now we have =nt 5

together with (30) and Lemma 4 as above we obtain

1/py
/ Ky )V () Prdx
R<|x—x0|<2R
2y—1

1/po i
<(f o trear) ([ ve)
R<|x—x0|<2R B(xp,2R)

, —(r=1/2)(2—d/q) —N+Ni (y=1/2)
w12 (1 50m) |
0

Applying the above estimates and Theorem 5 we obtain the following result.

. Then, by Holder’s inequality

THEOREM 9. Let V € RH, for q>d/2, 1/2<y <1, and 6 > 0. Then if py is
given by (31), for any weight w we have

[ AL < Co [ 171 mEw,
for 1 < p < py with r = (py/p)’, and

[V i< co [ 177 mtw,
Jor ply < p < oo.

5. On local integrability of 7/ and 7™ f

In this section we are going to apply the general results of Section 2 to weights of
the form w = yp. Studying maximal operators like M? acting on such weights we are
going to get sufficient conditions on f to assume some local integrability of 7 f. We
do that in the next lemma.



WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE... 799

LEMMA 8. Let 0 >0, ¢ a Young function and Q = B(xy,p(xo)) a critical ball.
Then there exist positive constants cy, ¢y, such that

|x—x0>‘9 0 ( Jx — xo
ci| 1+ <M x)<c | 1+
1( P (x0) oXo() Sz 14+ 770

where Ny is the exponent appearing in (4).

—0/(No+1)
) (32)

Proof. Let Q = B(xp,p(xp)) be acritical ball, 6 >0 and ¢ a Young function. We
may suppose without loss of generality that ¢ (1) = 1. Recalling that

-6
0 _ s
o=, o (14500 eles

B(xp,rs

it is enough to consider B such that QN B # 0, otherwise ||xp||s,5 =0, since

it L [ (%e Cinpda L 1
||xQ||¢,B—mf{/l. \B\/B(P<7L ) <l}—1nf{7t. B BmQ¢<A> <1}.

Let us consider first a ball B = B(xp,rp) with rg < p(xp), and take x € B. Then
choosing ye BN Q,

x —xo| < [x—y[+ |y —xo| < 2rp+p(x0) <2p(xp) +p(x0)-

Also, since B is sub-critical, Q is critical and BN Q # 0 we have that p(xp) >~ p(y) =~
p(x0). Then, )
[x =0 < Cp(xo),

for some C > 0. Then if x ¢ O = B(xy,Cp(x0)) we have

Mg*(x0)(x) = suplxello.s =0-

rp<p(xp)

Now if x€ Q and BNQ #0,

1 1
Ixollos =inf{x : B|2|Q'¢ (z) < 1} < inf{x 0 (z) < 1} —1/e7 1) =1,

So, taking the supremum over all balls we have for x € Q,

Mo < (1457

forany o > 0.
Next, we consider the operator

-0
6,glob B
M X)= su 1+ .
1000w = s (1457) Lol
ra=>p (xp)
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We take a ball B with rp > p(xp) and such that QNB # 0. For y € QNB, we
have p(y) ~ p(xp). Using also Lemma 1,

_0 —0/(No+1) —6/(No+1)
<1+r—3) <c<1+r—3) <c<1+—r3 ) .
p(xs) p(y) p (xo0)

Let x € B and suppose first that x ¢ 20, then
x = xo| < |x— ¥+ |y —xo < 2rp+p(x0) < 2rp + [x —x0|/2,

and hence |x — xg| < 4rp. Therefore,

-0 _ —0/(No+1)
<1+ 5 ) <C<1+x xo') .
p(xp) p(xo)

As before, we have || xol|¢,5 < 1. Then, if x ¢ 20

—0
Me,glob X <C<1—|— |X—X()|) ’

where 6 =0/(Np+1).
On the other hand, if x € 20,

My E® (1) (x) < Mo (x0) (x) < 1.

Then, since |x — xo|/p (x0) < 2

My ) < (1450

Using that M{ < My* +M®£°0 and collecting the obtained estimates we arrive
to the right hand side of (32). For the boundedness by below, given x we consider
B, = B(x, |x —xo| + p(x0)). Then x € By and | xol|¢,5, = 1. Therefore,

MO (x) > <I+M>_GXQII¢B > 20 (H_x__x(ﬂ)_e, 0
¢ P (xo) . P (xo)

REMARK 6. We observe that in particular Lemma 8 holds for all maximal oper-
ators appearing in Theorem 3 and Theorem 4. Hence they satisfy inequality (32) for
some constants c¢;, c», 01 and 0> when applied to the function yp, with B a critical
ball.

PROPOSITION 2. Let p > 1 and ¢ a Young function. There exists 6 > 0 such
that for any ball Q = B(xo,p (x0))

J117M o) < 3
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if and only if there exists ¢ > 0 such that

/17
/(1+|x|)<’ < . (34)

Proof. Let p > 1 and ¢ a Young function. Let Q = B(xo,p(xo)) a critical ball. It
is a straightforward verification that there are constants ¢ and ¢ depending on xy and
p such that

c 1 ¢

ol ST S [l
x—xo x x—xo
I+ 5t0) I+ 50)

Then, the equivalence between conditions (33) and (34) follows from equation (35)
above and Lemma 8. [

(35)

THEOREM 10. Let 1 < p < oo and T an operator such that for some Young func-
tion ¢ and for all O there exists a constant C such that

[1rse<c [ i, (36)

for any weight w. Then, if a function f satisfies (34), Tf € Lﬁm_. In particular Tf is
finite almost everywhere.

Proof. Let 1 < p<e and T as stated. Let f be a function satisfying (34) for
some o > 0. Then, applying Proposition 2, there exists some 6 > 0 such that (33)
holds for any critical ball Q.

Let B be a ball in R?. According to Proposition 1 we can cover B by a finite
number of critical balls By,...By. Using the hypothesis on the operator for such 6,

N N
L <X [irsrm <c, [1rrmin < O
i=1 i=1

For operators that satisfy a weak type inequality for p = 1 we obtain an analogous
result following the same lines as in the proof of Theorem 10.

THEOREM 11. Let T be an operator such that for some Young function ¢ and
forall 0 there exists a constant C such that

w{|Tf]>2}) < c/|f|Mgw, forall 2 >0,

forall weight w. Then, if a function f satisfy 34)with p=1, Tf € LZIO:’ In particular
T f is finite almost everywhere.

The above results can be applied to all operators considered in Section 4 since, as
it was shown there, theorems of Section 2 hold in those cases. In particular we point
out that for %) and Z| we can apply Theorem 10, for 1 < p < oo, and Theorem 11, if
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V € RH, with ¢ > d. As for the case d/2 < g < d, the conclusion holds for 1 < p < pg
and p > p|, respectively. On the other hand, Theorem 10 and Theorem 11 can be
applied to %, for 1 < p < g, when g >d/2.

Similarly VL~!, V!/2VL=1 and V!/2L~'/2 fall under the scope of Theorem 10 for
1<p<q,1<p<prand 1< p<2q,respectively (see Theorem 8 and Theorem 9).

In [10], Shen obtained L” -estimates for derivatives of solutions of differential
equations related to Schrodinger operator as a consequence of L? -continuity of Riesz-
Schrodinger Transforms (see Corollary 0.9 and Corollary 0.10). Here, with our results,
we can give qualitative information on their local integrability.

COROLLARY 2. Suppose V € RH, for some q > d /2. Assume that —Au+Vu= f
in RY, with f satisfying (34) for some ¢ > 0 and some p > 1. Then,
1 ifl<p<q, Vuell

loc’

2. if1<p<gq,Vuecll

loc ’

3if1<p<p, VV*Vuel)

loc’

with py such that 1/py = (1/q—1/d)" +1/2q.

Proof. If we set u= L' f wehave V2u= V2L 'f, Vu=VL ' f and V/?Vu =
V1/2VL=1f. Therefore we only have to apply Theorem 10 to the operators V2L~ !,
VL' and VV/2VL~! to get the result. [

COROLLARY 3. Suppose V € RH, for some q > d/2 and let pyy < p < pg, with
po such that 1/py=(1/q—1/d)" . Assume that —Au+Vu=V-F in R?, for a vector
field F with |F| satisfying (34) for some ¢ > 0.

1. If py < p < po, then u € L

loc*

2. If py < p<2q, then V'/?ueLl

loc*

Proof. We will show only item 1. The proof of 2 is similar. Let u = L~'VF . Then
Vu = 2%,(Z%7 - F). Then in order to get that Vu € Lf;c, due to Theorem 10, it will be

enough to check that the operators 7j = %) o (%), satisfy inequality (36). In fact, if
Py <p <po,then

[imisrws [1@ninrmtns [inrmimy,

for any v > 1. Choosing v > r, it follows easily MY (M%w) < M8w, and then (36)
holds. [
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