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BOUNDEDNESS AND COMPACTNESS OF THE HARDY TYPE OPERATOR

WITH VARIABLE UPPER LIMIT IN WEIGHTED LEBESGUE SPACES

AKBOTA MUHAMEDIYAROVNA ABYLAYEVA

Abstract. Let 0 < α < 1 . The operator of the form

Kα,ϕ f (x) =

ϕ(x)∫

a

f (t)w(t)dt

(W(x)−W (t))(1−α) , x > 0,

is considered, where the real weight functions v(x) and w(x) are locally integrable on I :=
(a,b) , 0 � a < b � ∞ and dW(x)

dx ≡ w(x) . In this paper we derive criteria for the operator Kα,ϕ ,
0 < α < 1 , 0 < p;q < ∞ , p > 1

α to be bounded and compact from the spaces Lp,w to the spaces
Lq,v .
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