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Abstract. Let Ω be a bounded open domain in Rn . We establish characterizations of the
weighted Hardy-Rellich inequalities that connect the integrals over Ω of the first and second
derivatives of the considered functions, via some weighted vector-valued Hardy inequalities and
weighted dual Hardy inequalities. These characterizations are then applied to derive some new
weighted Rellich inequalities with homogenous weights that admit singularities on unit sphere
Sn−1 .

1. Introduction

The classical Hardy inequality, which connects integrals of functions and their
derivatives, was first proved by G. H. Hardy [20] motivated by finding an elementary
proof of Hilbert inequality. The classical one-dimensional Hardy inequality states that
for any p ∈ (1, ∞) and f ∈C∞

c (0, ∞) , it holds∫ ∞

0

| f (x)|p
xp dx �

(
p

p−1

)p ∫ ∞

0

∣∣ f ′(x)∣∣p dx, (1.1)

where the constant ( p
p−1)p is sharp but not attained. Since then, the Hardy inequality

has been extended to various settings, which are of fundamental importance in many
branches of mathematical analysis and mathematical physics; see [21, 34, 23, 4] and
their references.

The one-dimensionalHardy inequality (1.1) can be extended directly to the weight-
ed case (see [34, Lemma 1.3]). To be precise, let p ∈ (1, ∞) and ε ∈ R with ε �=
p− 1. The classical one-dimensional weighted Hardy inequality says that for any
f ∈C∞

c (0, ∞) , ∫ ∞

0
| f (x)|p xε−p dx �

(
p

|p−1− ε|
)p ∫ ∞

0

∣∣ f ′(x)∣∣p xε dx, (1.2)
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where the constant ( p
|p−1−ε|)

p is also best possible.
On the other side, the one-dimensional Rellich inequality was first established by

F. Rellich [36], which shows that for any p ∈ (1, ∞) and f ∈C∞
c (0, ∞) , it holds that∫ ∞

0

| f (x)|p
x2p dx �

[
p2

(p−1)(2p−1)

]p ∫ ∞

0

∣∣ f ′′(x)∣∣p dx, (1.3)

where the constant [ p2

(p−1)(2p−1)]
p is sharp (see also [10]). It is easy to see that (1.3) can

also be deduced from a combination of (1.1) and (1.2) with ε = −p .
Things become much more complicated when dimension of the underlying space

gets higher. In many cases, there are two parallel choices on the distance function δ (x)
in the considered inequalities: i) δ (x)≡ |x| := dist(x, 0) is the distance to the origin; ii)
δ (x) ≡ d(x) := dist (x, ∂Ω) is the distance to the boundary of the considered domain
Ω . In the following, we may review some known results on the higher dimensional
Hardy and Rellich inequalities with distance functions belong to the aforementioned
two choices.

If δ (x)≡ |x| := dist(x, 0) , then the n-dimensional Hardy inequality (see [4, Corol-
lary 1.2.6]) says that, for any p ∈ (1, ∞) , p �= n and f ∈C∞

c (Rn \ {0}) with n > 1,∫
Rn

| f (x)|p
|x|p dx �

(
p

|p−n|
)p∫

Rn
|∇ f (x)|p dx. (1.4)

Moreover if n > p , then (1.4) holds even for all f ∈ C∞
c (Rn) . The above Hardy in-

equality can be extended to a weighted version (see [4, Corollary 1.2.9]) that for any
p ∈ (1, ∞) , ε ∈ R satisfying p− ε �= n and f ∈C∞

c (Rn \ {0}) with n > 1,∫
Rn

| f (x)|p|x|ε−p dx �
(

p
|p−n− ε|

)p∫
Rn

|∇ f (x)|p |x|ε dx. (1.5)

In the case of Rellich inequality, Davies and Hinz [10, Theorem 12] proved the
following weighted n-dimensional Rellich inequality that for any p ∈ (1, ∞) , ε ∈
(−∞, 2(p−1)) , n > 2p− ε and f ∈C∞

c (Rn \ {0}) ,∫
Rn

| f (x)|p|x|ε−2p dx (1.6)

�
(

p2

(n+ ε −2p)[(p−1)(n−2)+2(p−1)− ε]

)p∫
Rn

|Δ f (x)|p |x|ε dx;

see also [8, 30] and their references for an extension of (1.6) to a larger range of ε and
n .

If Ω is a convex domain in Rn with C1 -boundary and δ (x)≡ d(x) := dist(x, ∂Ω) ,
then the n-dimensional Hardy inequality (see [26, 29]) says that for any p∈ (1, ∞) and
f ∈C∞

c (Ω) , ∫
Ω

| f (x)|p
d(x)p dx �

(
p

p−1

)p∫
Ω
|∇ f (x)|p dx. (1.7)
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Recall that if Ω is a Lipschitz domain, then the associated n -dimensional Hardy in-
equality still holds true. Unfortunately, the sharp constant in this case is not clear (see
[34, 28]).

The inequality (1.7) has a weighted version which says that for any p ∈ (1, ∞) ,
ε ∈ (−∞, p−1) and f ∈C∞

c (Ω) ,∫
Ω
| f (x)|pd(x)ε−p dx �

(
p

p−1− ε

)p∫
Ω
|∇ f (x)|p d(x)ε dx; (1.8)

see [1, Theorem 9] for more details. Recall that if Ω is in general a bounded Lip-
schitz domain, some variants of weighted Hardy inequalities without sharp constant
were proved in [32]. We also point out that if ε > p−1, there are many problems re-
lated to the weighted Hardy inequality which are still open in this case (see [25, 14, 3]).

On the other hand, let Ω be a convex domain, Owen [35, Corollary 2.4] proved
the following n-dimensional Rellich inequality, that for any f ∈C∞

c (Ω) ,∫
Ω

| f (x)|2
d(x)4 dx � 16

9

∫
Ω
|Δ f (x)|2 dx. (1.9)

Recall that inequality (1.9) may still holds if Ω is not convex (see [2]). For general
p ∈ (1, ∞) , it is not clear if a variant of inequality (1.9) with sharp constant still holds
even when Ω is convex; see [5, p. 879] for further discussions. However, if we replace
Δ by the p -Laplacian operator Δp , a version of (1.9) may holds for general p ∈ (1, ∞)
(see [13, (4.19)]). Another direction of extension is to consider the distance function
d(x) := dist(x,K) to a closed piecewise surface K in Rn . To be precise, let K be a
closed piecewise smooth surface in R

n with codimension k ∈ {1, . . . , n} and Ω ⊂ R
n

be a bounded open domain in Rn with n � 2 satisfying the condition

dΔd− k+1 � 0 in Ω\K (1.10)

in the sense of distribution. Assume ε ∈ (−∞, 0] , p ∈ (1, ∞) satisfies k + ε − 2p > 0
and ⎧⎪⎨⎪⎩

−ε �= 3pk−8p2−2k+6p
4p−2 or

p > 13+
√

105
4 .

Then Barbatis [5, Theorem 1] proved that for any f ∈C∞
c (Ω\K) ,

∫
Ω
| f (x)|pd(x)ε−2p dx �

[
p2

(k+ ε −2p)(pk− ε− k)

]p ∫
Ω
|Δ f (x)|p d(x)ε dx. (1.11)

As a special case of (1.11), if K ≡ {x0} for some x0 ∈ Rn , then k = n and (1.11) holds
for any domain. In particular if x0 ≡ 0, (1.11) reduces to (1.6). If K ≡ ∂Ω , then k = 1.
In this case, the condition (1.10) is satisfied if Ω is the complement of a convex domain.
However, this violates the conditions ε ∈ (−∞, 0] and k + ε − 2p > 0, which shows
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that (1.11) cannot be applied to the case K ≡ ∂Ω (see also [5, p. 879] for a detailed
discussion).

As we have mentioned before, in the one-dimensional case, the sharp Rellich in-
equality (1.3) can be deduced directly from the Hardy inequality (1.1) with the help
of its weighted version (1.2). Unfortunately, similar phenomenon fails in the higher
dimensional case. To derive the sharp higher dimensional Rellich inequalities from the
corresponding Hardy inequalities, one usually need a new kind of integral inequalities
that connect the integrals of the first and second derivatives of the considered functions.
These inequalities are called Hardy-Rellich inequalities throughout this article, as they
build bridges between the Hardy and Rellich inequalities (in some literatures, they are
also called the strong versions of Rellich inequality). The first L2 Hardy-Rellich in-
equality, as far as we know, was proved by Tertikas and Zographopoulos [37, Theorem
1.7]. They proved that for any n � 5 and f ∈C∞

c (Rn) ,

∫
Rn

|∇ f (x)|2
|x|2 dx � 4

n2

∫
Rn

|Δ f (x)|2 dx, (1.12)

where the constant 4
n2 is sharp. With the help of (1.12), one can deduce the sharp

Rellich inequalities (1.6) with ε = 0 and p = 2 from the weighted Hardy inequalities
(1.5) with ε = −2 and p = 2. Note that the L2 Hardy-Rellich inequality was also used
in [37] to derive some new improved Rellich inequalities.

The L2 Hardy-Rellich inequality has a weighted version with δ (x) ≡ |x| (see [37,
9, 33]) that for any ε ∈ R satisfying ε � 4−n , ε �= n and f ∈C∞

c (Rn) ,∫
Rn

|∇ f (x)|2|x|ε−2 dx � 4
(n− ε)2

∫
Rn

|Δ f (x)|2 |x|ε dx. (1.13)

For general p ∈ (1, n) , Di et al. [11, Corollary 2(i)] proved a similar inequality
that for any f ∈C∞

c (Rn \ {0}) , it holds

∫
Rn

|∇ f (x)|p dx �
(

p
n− p

)p ∫
Rn

∣∣Δp f (x)
∣∣p |x|p dx,

where Δp f := div
(
|∇ f |p−2 ∇ f

)
denotes the p -Laplacian of f .

On the other hand, when the weight function δ (x) ≡ d(x) := d(x,∂Ω) , Barbatis
and Tertikas [6, Theorem 3] first proved that if Ω is a convex domain, d is bounded in
Ω , then for any f ∈C∞

c (Ω) ,

∫
Ω

|∇ f (x)|2
d(x)2 dx � 4

∫
Ω
|Δ f (x)|2 dx, (1.14)

where the constant 4 is sharp. This combined (1.8) with ε = −2 and p = 2 immedi-
ately implies the sharp Rellich inequality (1.9). Note that (1.14) was also used in [6] to
derive some new improved Rellich inequalities of the form similar to those in [37] but
involving the distance from a hypersurface.
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Motivated by the aforementioned results, the purpose of this article is to provide
some characterizations of the weighted Lp (1 < p < ∞) versions of the Hardy-Rellich
inequalities that include the inequalities (1.12), (1.13) and (1.14) as special cases. These
characterizations are then applied to derive some new weighted Rellich inequalities
with homogeneous weights, which admit singularities on the unit sphere Sn−1 and
relate to the potentials of some Schrödinger operators on S

n−1 .
To be precise, let α ∈ R , p ∈ (1, ∞) and c ∈ (0, ∞) . Assume that Ω is a bounded

open domain and δ a nonnegative measurable function on Ω . We first introduce the
following three kinds of Hardy-type inequalities.

(i) (α, p,c)-HR (weighted Hardy-Rellich inequality): we say the domain Ω satis-
fies (α, p,c)-HR if for any f ∈C∞

c (Ω) ,∫
Ω

|∇ f (x)|p
δ (x)(α+1)p dx � cp

∫
Ω

|Δ f (x)|p
δ (x)α p dx. (1.15)

(ii) (α, p,c)-HV (weighted vector-valued Hardy inequality): we say the domain Ω
satisfies (α, p,c)-HV if for any �u ∈ G(Ω;Rn) ,∫

Ω

|�u(x)|p
δ (x)(α+1)p dx � cp

∫
Ω

|div�u(x)|p
δ (x)α p dx, (1.16)

where G(Ω;Rn) := ∇(C∞
c (Ω)) with

∇(C∞
c (Ω)) := {�u ∈C∞

c (Ω;Rn) : there exists f ∈C∞
c (Ω), s.t. �u = ∇ f} . (1.17)

(iii) (α, p′,c)-HD (weighted dual Hardy inequality): we say the domain Ω satisfies
(α, p′,c)-HD if for any f ∈C∞

c (Ω) ,∫
Ω
| f (x)|p′δ (x)α p′ dx � cp′

∫
Ω
|∇ f (x)|p′δ (x)(α+1)p′ dx, (1.18)

where p′ := p/(p−1) denotes the conjugate exponent of p .

To state the main result of this article, let Ω be a bounded open domain in Rn . We
need the following two assumptions.

Assumption (A1). Let δ be a positive continuous function in Ω .

Assumption (A2). Let δ (x) be as in Assumption (A1) and w(x) := δ (x)−(α+1)p

a weight function on Ω with α ∈ R and p ∈ (1, ∞) . The weighted vector-valued
Lebesgue space Lp(w,Ω;Rn) admits the Helmholtz decomposition

Lp(w,Ω;Rn) = Vp(w,Ω;Rn)
⊕

Gp(w,Ω;Rn), (1.19)

where Vp(w,Ω;Rn) and Gp(w,Ω;Rn) denotes the solenoidal (divergence-free) and
irrotational (curl-free) vector-valued spaces defined respectively by

Vp(w,Ω;Rn) :=
{
�v ∈ Lp(w,Ω;Rn) : for any φ ∈ Ẇ 1,p(w,Ω), 〈�v, ∇φ〉 = 0

}
,
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Gp(w,Ω;Rn) := ∇
(
Ẇ 1,p(w,Ω)

)
=
{

∇ f : f ∈ Ẇ 1,p(w,Ω)
}

and Ẇ 1,p(w,Ω) is the weighted homogeneous Sobolev space

Ẇ 1,p(w,Ω) :=
{

f ∈ L1
loc (Ω) : for any j ∈ {1, . . . , n}, ∂ f

∂x j
∈ Lp(w,Ω)

}
.

Note that the decomposition (1.19) means that for any �u ∈ Lp(w,Ω;Rn) , there exists
a unique decomposition �u =�v+�h satisfying �v ∈ Vp(w,Ω;Rn) and �h ∈ Gp(w,Ω;Rn)
such that

‖�v‖Lp(w,Ω;Rn) +‖�h‖Lp(w,Ω;Rn) � cp‖�u‖Lp(w,Ω;Rn), (1.20)

where the constant cp ∈ (0, ∞) depends only on n , p , α and Ω .

REMARK 1. (i) Assumption (A1) is applied to show that the class C∞
c (Ω;Rm) of

all smooth compactly supported vector-valued functions on Ω is dense in the weighted
vector-valued Lebesgue space Lp(δ a,Ω;Rm) for any a ∈ R and m ∈ N (see Lemma
1 below). Note that similar but stronger conditions are used to show the density of
smooth functions in the weighted Sobolev space (see [19] and their references). It is
easy to see that if Ω is a bounded open domain with 0 /∈ Ω , then δ (x) ≡ |x| satisfies
(A1). Also, if Ω is a bounded open domain, then δ (x) ≡ d(x, ∂Ω) satisfies (A1).

(ii) Let p ∈ (1, ∞) and w ∈ Ap(Rn) be a Muckenhoupt weight (see [31] for it’s
definition). If Ω is bounded with C1 -boundary, then by [17, Theorem 5], we know that
Lp(w,Ω;Rn) admits the Helmholtz decomposition, namely, Assumption (A2) holds
true. Recall that if Ω is only Lipschitz, the Helmholtz decomposition holds only
for partial p ∈ (1, ∞) (see [15, Theorem 11.1]). Moreover, if p = 2, then the space
L2(w,Ω;Rn) always admit the Helmholtz decomposition for any domain Ω and weight
w , as L2(w,Ω;Rn) is a Hilbert space. In this case, the constant c2 in (1.20) equals to 1
and (1.19) is an orthogonal decomposition.

The following theorem is the main result of this article.

THEOREM 1. Let α ∈R , p∈ (1, ∞) and c∈ (0, ∞) . Assume that Ω is a bounded
open domain in Rn with n ∈ N and δ a nonnegative measurable function in Ω . Then

(i) (α, p,c)-HR is equivalent to (α, p,c)-HV;

(ii) under Assumption (A1), (α, p,c)-HV implies (α, p′,c)-HD;

(iii) under Assumption (A2), (α, p′,c)-HD implies (α, p,ccp)-HV, where the con-
stant cp is the same as in the Helmholtz decomposition (1.20).

Theorem 1 gives characterizations of the weighted Lp Hardy-Rellich inequalities
by some weighted vector-valued Hardy inequalities and weighted dual Hardy inequal-
ities. Based on these characterizations, one may derive some new weighted Hardy-
Rellich inequalities from the latter two classes of inequalities. This further implies some
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new weighted Rellich inequalities. Moreover, as the weighted vector-valued Hardy in-
equalities (1.16) belong to more general div-curl inequalities for vector fields (see
[7, 24]), these characterizations indicate a possible connection between Hardy-Rellich
inequalities and some problems in fluid mechanics. Indeed, the Helmholtz decompo-
sition (A2), that used throughout in this article, is a fundamental tool in the study of
Navier-Stokes equations (see [18]).

The main part of the proof for Theorem 1 is to show the equivalence between the
vector-valued inequality (1.16) and the scalar-valued dual inequality (1.18). To show
this equivalence, we find a correspondence between the scalar-valued and vector-valued
functions. The correspondence from scalar-valued function to the vector-valued one is
easy, we use only the gradient operator. However, for the converse direction, we first
need to find a subclass of Gp(Ω;Rn) whose element corresponds a bounded linear
functional on the weighted vector-valued Lebesgue space Lp′(δ (α+1)p′ ,Ω; Rn) . The
vector-valued inequality (1.16) restricted to this subclass is proved via the boundedness
of the functional. Then, we extend the subclass to the whole space Gp(Ω;Rn) by using
the Helmholtz decomposition. It is in this last step that the constant cp comes out. Note
that if p = 2, then cp = 1.

As a simple application of Theorem 1, we derive some new weighted Hardy-
Rellich inequalities. The following corollary gives some weighted Lp Hardy-Rellich
inequalities associated with the distance δ (x) ≡ |x| for any p ∈ (1, ∞) and all dimen-
sion n > 1, which are variants of the weighted L2 Hardy-Rellich inequalities for n > 4
in [37, Theorem 1.7], where the domain Ω is bounded and contains the origin.

COROLLARY 1. Let α ∈ R , p ∈ (1, ∞) and Ω be a bounded open domain in Rn

with 0 /∈ Ω and n > 1 . Assume that δ (x) ≡ |x| . Then

(i) for any α �= −n/2 , (α,2,c)-HR holds with c ≡ 2/(n+2α) , namely, for any
f ∈C∞

c (Ω) ,

∫
Ω

|∇ f (x)|2
|x|2(α+1) dx �

(
2

|n+2α|
)2 ∫

Ω

|Δ f (x)|2
|x|2α dx; (1.21)

(ii) for any α ∈ (− n
p′ −1, n

p −1)\{− n
p′ } , (α, p,c)-HR holds with c≡ cpp′/(|α p′+

n|) , namely, for any f ∈C∞
c (Ω) ,

∫
Ω

|∇ f (x)|p
|x|(α+1)p dx �

(
cpp′

|n+ α p′|
)p ∫

Ω

|Δ f (x)|p
|x|α p dx. (1.22)

Note that the constant in (1.21) is sharp, as the corresponding equivalent weighted
Hardy inequality (1.5) that we used in the proof is sharp (see Section 2 for a detailed
proof).

If δ (x) ≡ d(x) := dist(x, K) is the distance to ∂Ω or some closed piecewise
smooth surface K in Rn , we obtain the following weighted Lp Hardy-Rellich inequal-
ities which are variants of [6, Theorem 3(i)] by neglecting the remainder terms.
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COROLLARY 2. Let α ∈ R , p ∈ (1, ∞) and Ω be a bounded open domain in
Rn . Assume that K is a compact piecewise smooth surface in Rn with codimension
k ∈ {1, . . . , n} and δ (x) ≡ d(x) := dist(x, K) . Then,

(i) if K satisfies: a) (k+α p′)(dΔd−k+1)� 0 in Ω\K in the sense of distribution;
b) α �= −k/p′ . Then for any α ∈ (− k

p′ − 1, k
p − 1) \ {− k

p′ } , the (α, p,c)-HR
holds with c ≡ cpp′/(|k+ α p′|) , namely, for any f ∈C∞

c (Ω\K) ,∫
Ω

|∇ f (x)|p
d(x)(α+1)p dx �

(
cpp′

|k+ α p′|
)p ∫

Ω

|Δ f (x)|p
d(x)α p dx, (1.23)

where cp is as in (1.20);

(ii) if K = ∂Ω and Ω is convex, then for any α ∈ ( 1
p −2, 1

p −1) , the (α, p,c)-HR
holds with c ≡ cpp′/(|1+ α p′|) , namely, for any f ∈C∞

c (Ω) ,∫
Ω

|∇ f (x)|p
d(x)(α+1)p dx �

(
cpp′

|1+ α p′|
)p ∫

Ω

|Δ f (x)|p
d(x)α p dx, (1.24)

where cp is as in (1.20).

REMARK 2. We point out that if p = 2, then Corollary 2(i) and (ii) hold respec-
tively for all α �= − k

2 and α ∈ (−∞, − 1
2) . Indeed, note that the proof of Corollary 2

depends on the weighted dual Hardy inequality (1.18) and the Helmholtz decomposi-
tion of the space Lp(d(x)−(α+1)p,Ω;Rn) , where the latter requires the condition that
−k < −(α +1)p < k(p−1) and hence

− k
p′

−1 < α <
k
p
−1. (1.25)

However, if p = 2 then by Remark 1(ii), we know that the Helmholtz decomposition
holds for any weight function with cp ≡ 1. This shows that we can remove the restric-
tion (1.25) in this case. By checking the conditions on the validity of (1.18) in [6, 1]
(see the proof of Corollary 2 for more details), we deduce that Corollary 2(i) holds for
all α �= − k

2 and Corollary 2(ii) holds for all α ∈ (−∞, − 1
2) . Note that the constant in

(1.24) in this case is sharp as the equivalent inequality (1.18) in [1] is sharp.

Based on the weighted Hardy-Rellich inequalities in Corollary 2, we are able to
obtain the following weighted Rellich inequalities associated with the distance δ (x) ≡
d(x) := dist(x, ∂Ω) , which are variants of the L2 Rellich inequalities [35, Corollary
2.4] with m = 2.

COROLLARY 3. Let α ∈ R , p ∈ (1, ∞) and Ω be a bounded convex domain in
Rn . Assume that δ (x) ≡ d(x) := dist(x, ∂Ω) . Then,

(i) for any α ∈ (max{ 1
p −2, 1

p′ −2}, 1
p −1) and f ∈C∞

c (Ω) ,

∫
Ω

| f (x)|p
d(x)(α+2)p dx �

[
cpp2

|(p−1)+ α p||1− (α +2)p|
]p ∫

Ω

|Δ f (x)|p
d(x)α p dx; (1.26)
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(ii) if p = 2 , then (1.26) holds for all α ∈ (− 3
2 , − 1

2 ) with cp = 1 .

Theorem 1 and Corollaries 1 through 3 are proved in Section 2.
The second part of this paper is to apply the aforementioned characterizations to

derive some new Rellich inequalities with homogeneous weights, which is actually our
initial motivation to study the Hardy-Rellich inequalities. Unlike the usual weights, the
homogeneous weights considered here may admit singularities on the unit sphere Sn−1

and are related to the potentials of some Schrödinger operators defined on Sn−1 (see
[12]). In this setting, Hoffmann-Ostenhof and Laptev [22, Theorem 1.1] first establish
the L2 Hardy inequality with the homogeneous weight. The following theorem gives a
corresponding L2 Rellich inequality.

THEOREM 2. Let n � 5 , q ∈ [ n−1
2 , ∞) and 0 � Φ ∈ Lq(Sn−1) . Then, for any

f ∈C∞
c (Rn) , it holds that∫

Rn
|Δ f (x)|2 dx � σ

∫
Rn

Φ(x/|x|)| f (x)|2
|x|4 dx, (1.27)

where the constant

σ :=
[
n(n−4)

4

]2 |Sn−1| 1
q

‖Φ‖Lq(Sn−1)

is sharp in the sense that if Φ ≡ 1 , then (1.27) takes the sharp form of the classical
Rellich inequality.

For general p ∈ (1, ∞) , we also have the following Lp version of Rellich inequal-
ity with homogeneous weight.

THEOREM 3. Let n � 5 , p ∈ (1, ∞) and 0 � Φ ∈ Ln/(2p)(Sn−1) . Then, for any
f ∈C∞

c (Rn) , it holds that∫
Rn

|Δ f (x)|p dx � σ
∫

Rn

Φ(x/|x|)| f (x)|p
|x|2p dx, (1.28)

where the constant

σ :=
[
n(p−1)|n−2p|

cpp2

]p |Sn−1| 2p
n

‖Φ‖Ln/(2p)(Sn−1)

with cp as in (1.20).

Theorems 2 and 3 are proved in Section 3. To prove these two theorems, we
establish two weighted Hardy inequalities with homogeneous weights which may also
of independent interests (see Lemmas 3 and 4).

Finally, we make some conventions on notation. Let N := {1,2, . . .} , Z+ :=
N∪ {0} and Z := −N∪ {0}∪N . For any set E ⊂ Rn , χE denotes its characteris-
tic function. We use C to denote a positive constant that is independent of the main
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parameters involved, whose value may differ from line to line. Constants with sub-
scripts, such as C1 , do not change in different occurrences. If f � Cg , we also write
f � g and, if f � g � f , we then write f ∼ g . For any s ∈ R , let �s� (resp. �s�) be
the largest integer not greater than s (resp. the smallest integer not smaller than s).

2. Proofs of Theorem 1 and Corollaries 1 through 3

This section is devoted to the proofs of Theorem 1 and Corollaries 1 through 3.
We first prove Theorem 1. To this end, we need some basic properties of the weighted
vector-valued Lebesgue space. Recall that for any a ∈ R , m ∈ N , Ω being a bounded
open domain in Rn and δ a nonnegative measurable function on Ω , the weighted
vector-valued Lebesgue space Lp(δ a,Ω;Rm) is defined to be

Lp(δ a,Ω;Rm) :=
{
�u : Ω → R

m is measurable : ‖�u‖Lp(δ a,Ω;Rm) < ∞
}

,

where

‖�u‖Lp(δ a,Ω;Rm) :=
{∫

Ω
|�u(x)|p δ (x)a dx

}1/p

.

The following lemma gives some classical results on the density and duality of the
weighted vector-valued Lebesgue space. Here we provide a sketch of the proof, since
we can’t find an exact reference.

LEMMA 1. Let a ∈ R , m ∈ N and Ω be a bounded open domain in Rn . Assume
that Assumption (A1) holds. Then for any p ∈ (1, ∞) ,

(i) C∞
c (Ω;Rm) is dense in Lp(δ a,Ω;Rm);

(ii) [Lp(δ ap,Ω;Rm)]∗ = Lp′(δ−ap′ ,Ω;Rm) with p′ = p/(p− 1) . In particular, for
any �u ∈ Lp′(δ−ap′ ,Ω;Rm) , its action 〈�u,�v〉 on every �v ∈ Lp(δ ap,Ω;Rm) is as
follows

〈�u,�v〉 =
∫

Ω
�u(x) ·�v(x)dx.

Proof. To prove (i), by Assumption (A1) and a straightforward calculation, we
see C∞

c (Ω;Rm) is in Lp(δ a,Ω;Rm) for any a ∈ R . To show the density of C∞
c (Ω;Rm)

in Lp(δ a,Ω;Rm) , for any �u ∈ Lp(δ a,Ω;Rm) and any k ∈ N , let Ωk := {x ∈ Ω :
dist(x, ∂Ω) � 1/k} be a sequence of bounded closed subsets that exhaust Ω as k→ ∞ .
It is easy to see χΩk�u has a compact support and limk→∞ χΩk�u =�u in Lp(δ a,Ω;Rm) .

Now for each k ∈ N and any ε ∈ (0, ∞) , take �ϕ ∈ C∞
c (Ω;Rm) such that ‖�ϕ −

χΩk�u‖Lp(Ω;Rm) < ε
M , where M := max{Ma/p

δ , ma/p
δ } with Mδ and mδ being respec-

tively the maximal and minimal values of δ in Ωk . As Ωk is compact and Assumption
(A1), we know that M ∈ (0,∞) . This combined with an elementary calculation shows
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that ‖�ϕ − χΩk�u‖Lp(δ a,Ω;Rm) � M‖�ϕ − χΩk�u‖Lp(Ω;Rm) < ε , which shows that χΩk�u can
be approximated arbitrarily by functions in C∞

c (Ω;Rm) and hence verifies (i).
We now prove (ii). The inclusion Lp′(δ−ap′ ,Ω;Rm) ⊂ [Lp(δ ap,Ω;Rm)]∗ fol-

lows from an easy application of Hölder’s inequality. To prove the converse inclu-
sion, let Ib(�u)(x) := [δ (x)]b�u(x) be a multiplication operator on the vector-valued func-
tion �u on Ω with b ∈ R . From its definition, it follows that Ib is an isometry from
Lp(δ bp+c,Ω;Rm) to Lp(δ c,Ω;Rm) for any c∈R . Now for any L∈ [Lp(δ ap,Ω;Rm)]∗ ,
we induce a new linear functional La on Lp(Ω;Rm) by setting for any �u ∈ Lp(Ω;Rm) ,
La(�u) := L(I−a(�u)) . Using Riesz’s representation theorem for Lp(Ω;Rm) and the iso-
metricity of Ib , we know that there exists �v ∈ Lp′(δ−ap′ ,Ω;Rm) corresponding to L .
This proves the converse inclusion and hence finishes the proof of (ii).

With the help of Lemma 1, we now turn to the proof of Theorem 1.

Proof of Theorem 1. We first show (i), namely, the equivalence between (α, p,c)-
HR and (α, p,c)-HV. Indeed, if (α, p,c)-HR holds true, then for any �u ∈ G(Ω; Rn) ,
by the definition of G(Ω; Rn) in (1.17), we know that there exists f ∈C∞

c (Ω) such that
�u = ∇ f . This, combined with (α, p,c)-HR (1.15), shows that∫

Ω

|div�u(x)|p
δ (x)α p dx =

∫
Ω

|Δ f (x)|p
δ (x)α p dx � c−p

∫
Ω

|∇ f (x)|p
δ (x)(α+1)p dx = c−p

∫
Ω

|�u(x)|p
δ (x)(α+1)p dx,

which implies that (α, p,c)-HV holds true.
On the other hand, if (α, p,c)-HV holds true, then for any f ∈ C∞

c (Ω) , since
∇ f ∈ G(Ω; Rn) and Δ f = div(∇ f ) , it follows immediately (α, p,c)-HR holds true
and hence (i) holds true.

We now prove (ii), that is, under Assumption (A1), (α, p,c)-HV implies (α, p′,c)-
HD. Indeed, assume that (α, p,c)-HV holds true. Then for any g ∈ C∞

c (Ω) , let ϕ be
the unique function in C∞

c (Ω) satisfying Δϕ ≡ g and set �v := ∇ϕ . By (1.17), it is
easy to see �v ∈ G(Ω;Rn) and div�v = g , which combined with Hölder’s inequality and
(α, p,c)-HV (1.16) implies that for any f ∈C∞

c (Ω) ,∣∣∣∣∫Ω
f (x)g(x)dx

∣∣∣∣ =
∣∣∣∣∫Ω

f (x)div�v(x)dx

∣∣∣∣= ∣∣∣∣∫Ω
∇ f (x) ·�v(x)dx

∣∣∣∣
�
∥∥∥δ−(α+1)�v

∥∥∥
Lp(Ω;Rn)

∥∥δ α+1 ∇ f
∥∥

Lp′ (Ω;Rn)

� c
∥∥δ−αdiv�v

∥∥
Lp(Ω;Rn)

∥∥δ α+1∇ f
∥∥

Lp′ (Ω;Rn)

= c‖g‖Lp(δ−α p,Ω)

∥∥δ α+1∇ f
∥∥

Lp′ (Ω;Rn) ,

which together with the arbitrariness of g in C∞
c (Ω) and Lemma 1(i) implies that for

any f ∈C∞
c (Ω) ,

‖ f‖Lp′ (δ α p,Ω) = sup
g∈C∞

c (Ω),
‖g‖Lp(δ−α p ,Ω)�1

∣∣∣∣∫Ω
f (x)g(x)dx

∣∣∣∣� c
∥∥δ α+1∇ f

∥∥
Lp′ (Ω;Rn) .

This shows the validity of (α, p′,c)-HD and hence (ii) holds true.
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Finally, we prove (iii), namely, (α, p′,c)-HD implies (α, p,ccp)-HV under As-
sumptions (A2). Assume that (α, p′,c)-HD holds true. Then for any f ∈ C∞

c (Ω) ,
we define a linear functional Lf on G(Ω;Rn) , induced by f , such that for any �v ∈
G(Ω; Rn) ,

Lf (�v) :=
∫

Ω
f (x)g�v(x)dx,

where g�v ∈ C∞
c (Ω) satisfying ∇g�v =�v . Observe that in (1.17), if there exists another

g̃�v ∈ C∞
c (Ω) satisfying ∇g̃�v = �v , then ∇(g�v − g̃�v) ≡ 0 in Rn . This combined with

the condition g�v − g̃�v ∈ C∞
c (Ω) shows that g̃�v ≡ g�v and hence Lf (�v) is well-defined.

Moreover, by Hölder’s inequality and (α, p′,c)-HD (1.18), we find∣∣Lf (�v)
∣∣ � ‖δ−α f‖Lp(Ω)‖δ αg�v‖Lp′ (Ω) � c‖δ−α f‖Lp(Ω)‖δ α+1∇g�v‖Lp′ (Ω;Rn) (2.1)

= c‖δ−α f‖Lp(Ω)‖�v‖Lp′ (δ (α+1)p′ ,Ω;Rn),

which implies that Lf is a linear functional on G(Ω; Rn) ⊂ Lp′(δ (α+1)p′ ,Ω; Rn) and
can be extended to a bounded linear functional on Lp′(δ (α+1)p′,Ω; Rn) . Thus, by
Lemma 1(ii), we see that there exists a unique �u ∈ Lp(δ−(α+1)p,Ω;Rn) such that for
any �v ∈ G(Ω; Rn) ⊂C∞

c (Ω; Rn) ⊂ Lp′(δ (α+1)p′ ,Ω;Rn) ,∫
Ω

f (x)g�v(x)dx = Lf (�v) =
∫

Ω
�u(x) ·�v(x)dx =

∫
Ω
�u(x) ·∇g�v(x)dx (2.2)

with

‖�u‖Lp(δ−(α+1)p,Ω;Rn) = ‖Lf ‖ � c‖δ−α f‖Lp(Ω). (2.3)

Using the fact G(Ω;Rn)= ∇(C∞
c (Ω)) and the arbitrariness of �v∈G(Ω;Rn) in (2.1) and

(2.2), we know that (2.2) holds true for all g�v ∈C∞
c (Ω) . This together with the fact f ∈

C∞
c (Ω) shows that −div�u = f . By this and (2.3), we conclude that for any f ∈C∞

c (Ω) ,
there exists a unique �u ∈C∞(Ω;Rn)∩Lp(δ−(α+1)p,Ω;Rn) satisfying −div�u = f such
that

‖δ−(α+1)�u‖Lp(Ω;Rn) � c‖δ−αdiv�u‖Lp(Ω). (2.4)

We now want to extend (2.4) from �u ∈ C∞(Ω;Rn)∩ Lp(δ−(α+1)p,Ω;Rn) to all
�w ∈ G(Ω;Rn) via Helmholtz decomposition. Indeed, for any �w ∈ G(Ω;Rn) , let ϕ�w ∈
C∞

c (Ω) satisfy �w = ∇ϕ�w and set f := −Δϕ�w . It is easy to see that f ∈ C∞
c (Ω) and

−div�w = f . Then by applying the same argument in the proof of (2.4), we know that
there exists a unique �u ∈C∞(Ω;Rn)∩Lp(δ−(α+1)p,Ω;Rn) satisfying −div�u = f such
that (2.4) holds true. On the other hand, for any �v ∈ G(Ω;Rn) , let ϕ�v ∈C∞

c (Ω) satisfy
�v = ∇ϕ�v . We write∫

Ω
−div�u(x)ϕ�v(x)dx = Lf (�v) =

∫
Ω

f (x)ϕ�v(x)dx =
∫

Ω
−div�w(x)ϕ�v(x)dx,
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which combined with the arbitrariness of ϕ�v ∈C∞
c (Ω) implies that

div(�u−�w) ≡ 0. (2.5)

Thus,
�u = (�u−�w)+�w

is a Helmholtz decomposition of �u∈C∞(Ω;Rn)∩Lp(δ−(α+1)p,Ω;Rn) as in (1.19). By
Assumption (A2) and (1.20), we know that

‖�w‖Lp(δ−(α+1)p,Ω;Rn) � cp‖�u‖Lp(δ−(α+1)p,Ω;Rn) .

By this, (2.4) and (2.5), we know that (α, p,ccp)-HV holds true for all �w ∈ G(Ω;Rn) .
This shows that (α, p′,c)-HD implies (α, p,ccp)-HV and hence finish the proof of
Theorem 1.

Next we turn to the proof of Corollary 1.

Proof of Corollary 1. Without loss of generality, we only prove (ii), as (i) is a
special case of (ii) with p = 2. Note also that in the latter case, the Helmholtz decom-
position holds for any weighted vector-valued Lebesgue space L2(|x|β ,Ω;Rn) with
β ∈ R .

To prove (ii), let p ∈ (1, ∞) , α ∈ (−n/p′ − 1, n/p− 1) and w(x) := |x|−(α+1)p .
We first claim that in this case Assumptions (A1) and (A2) hold true. Indeed, since
0 /∈ Ω it is easy to see that |x| is continuous and positive in Ω . Thus, to show the
claim, it remains to show that the space Lp(|x|−(α+1)p,Ω;Rn) admits the Helmholtz
decomposition. Indeed, by [16, Lemma 2.3], we know that for any p ∈ (1, ∞) and
β ∈ R , |x|β ∈ Ap(Rn) if and only β ∈ (−n, n(p− 1)) . This combined with Remark
1(ii) shows that Lp(|x|β ,Ω;Rn) admits the Helmholtz decomposition (1.19). Thus, by
letting β = −(α +1)p , we know that the claim holds true.

On the other hand, using the weighted n -dimensional Hardy inequality (1.5), we
know that for any α ∈ R , α �= −n/p′ , p ∈ (1, ∞) and f ∈C∞

c (Ω) ,

∫
Ω
| f (x)|p′ |x|α p′ dx �

(
p′

|n+ α p′|
)p′ ∫

Ω
|∇ f (x)|p′ |x|(α+1)p′ dx,

namely, the weighted dual Hardy inequality (α, p′,c)-HD holds true with c = p′
|n+α p′| .

This combined with Theorem 1(iii) shows that (α, p,ccp)-HV holds true. By Theo-
rem 1(i), we conclude that the weighted Hardy-Rellich inequality (α, p,ccp)-HR holds
true. This implies (1.22) and hence finishes the proof of Corollary 1.

Using the same idea for the proof of Corollary 1, we now prove Corollary 2.

Proof of Corollary 2. Following the proof of Corollary 1, we only need to establish
two facts: 1) d(x)−(α+1)p := [dist(x,K)]−(α+1)p ∈ Ap(Rn) for any α ∈ (− k

p′ −1, k
p −

1) ; 2) under the assumptions of a) and b) in Corollary 2, the weighted dual Hardy
inequality holds.
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The first fact follows from that [dist(x,K)]β ∈Ap(Rn) if and only if β ∈ (−k, k(p−
1)) (see [16, Lemma 2.2]).

For the later fact, in the case (i), by [6, Theorem 1], we have that under the as-
sumptions of a) and b), it holds that for any f ∈C∞

c (Ω\K) ,

∫
Ω
| f (x)|p′ d(x)α p′ dx �

(
p′

|k+ α p′|
)p′ ∫

Ω
|∇ f (x)|p′ d(x)(α+1)p′ dx.

In the case (ii) when K = ∂Ω , by (1.8) with ε = (1+α)p′ , we obtain that for any
p′ ∈ (1, ∞) , α ∈ (−∞, − 1

p′ ) and f ∈C∞
c (Ω) ,

∫
Ω
| f (x)|p′ d(x)α p′ dx �

(
p′

|1+ α p′|
)p′ ∫

Ω
|∇ f (x)|p′ d(x)(α+1)p′ dx. (2.6)

Combining the above two inequalities, we conclude that (1.23) and (1.24) hold
true, which completes the proof of Corollary 2.

Proof of Corollary 3. By Corollary 2, we know that the weighted Hardy-Rellich
inequality (1.24) holds true. This combined with the weighted Hardy inequality (2.6)
(with p′ and α therein respectively replaced by p and −α − 2) finishes the proof of
Corollary 3.

3. Proofs of Theorems 2 and 3

In this section, we prove Theorems 2 and 3, which establish the Lp Rellich
inequalities with homogeneous weights for any p ∈ (1, ∞) . To this end, we need some
technical lemmas. The following Lemma 2 was established by Dolbeault et al. [12],
which gives the sharp estimates for the first negative eigenvalue of a Schrödinger oper-
ator with negative integrable potential on the sphere Sn−1 .

LEMMA 2. ([12]) Let n � 2 and q ∈ (max{1, n−1
2 }, ∞) . There exists an increas-

ing function α : R+ := [0, ∞) → R+ satisfying the following two conditions:

(i) for any μ ∈ [0, 1
2(n−1)(q−1)] , α(μ) = μ ;

(ii) α is convex in ( 1
2 (n−1)(q−1), ∞)

such that for any 0 � V ∈ Lq(Sn−1) ,

|λ1 (−Δθ −V)| � α

(‖V‖Lq(Sn−1)

|Sn−1| 1
q

)
, (3.1)

where λ1 (−Δθ −V) denotes the first eigenvalue of the Schrödinger operator −Δθ −V
on the unit sphere Sn−1 .

Moreover, if n � 4 and q = n−1
2 , then (3.1) is also satisfied with α(μ) = μ for

μ ∈ [0,(n−1)(n−3)/2] .
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The following lemma gives the weighted Hardy inequalities with homogeneous
weights, which generalizes the corresponding Hardy inequalities with homogeneous
weights in [22, Theorem 1.1].

LEMMA 3. Let n � 3 and q∈ ( n−1
2 , ∞) . Assume that β ∈ [0, ∞) satisfies β +2 �=

n and 0 � Φ ∈ Lq(Sn−1) .

(i) If n � 2+ β
2 + 1

2β , then for any f ∈C∞
c (Rn) ,

∫
Rn

|∇ f (x)|2
|x|β dx � τ

∫
Rn

Φ(x/|x|)| f (x)|2
|x|β+2

dx, (3.2)

where

τ :=
(

n−β −2
2

)2 |Sn−1| 1
q

‖Φ‖Lq(Sn−1)
. (3.3)

(ii) If n < 2+ β
2 + 1

2β and p ∈ [ (n−β−2)2
2(n−1) +1, ∞) , then for any f ∈C∞

c (Rn) ,

∫
Rn

|∇ f (x)|2
|x|β dx � τ

∫
Rn

Φ(x/|x|)| f (x)|2
|x|β+2

dx, (3.4)

where τ is as in (3.3).

(iii) If n < 2+ β
2 + 1

2β and q ∈ ( n−1
2 , (n−β−2)2

2(n−1) +1) , then for any f ∈C∞
c (Rn) ,

∫
Rn

|∇ f (x)|2
|x|β dx � (1−ν0)

(
n−β −2

2

)2 ∫
Rn

| f (x)|2
|x|β+2

dx (3.5)

+τ̃
∫

Rn

Φ(x/|x|)| f (x)|2
|x|β+2

dx,

where ν0 := 2(n−1)(q−1)
(n−β−2)2 and

τ̃ := ν0

(
n−β −2

2

)2 |Sn−1| 1
q

‖Φ‖Lq(Sn−1)
=

(n−1)(q−1)
2

|Sn−1| 1
q

‖Φ‖Lq(Sn−1)
. (3.6)

Proof. We first prove (i). Observe that using the polar coordinates in R
n , we have

|∇ f |2 = |∂r f |2 + 1
r2
|∇θ f |2 , where r := |x| and ∇θ denotes the first-order Beltrami

operator on the sphere Sn−1 . From this, we deduce

∫
Rn

|∇ f |2
|x|β dx =

∫ ∞

0

[∫
Sn−1

( |∂r f |2
rβ +

|∇θ f |2
rβ+2

)
rn−1 dθ

]
dr =: A+B. (3.7)
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For A, using the one-dimensional weighted Hardy inequality (1.2) with p = 2,
we know that for any γ ∈ R with γ �= 1 and g ∈C∞

c (0, ∞) ,∫ ∞

0

∣∣g′(t)∣∣2 tγ dt �
[

γ −1
2

]2 ∫ ∞

0
|g(t)|2 tγ−2 dt. (3.8)

By letting g ≡ f and γ = n−β −1 in (3.8), we immediately conclude that

A �
(

n−β −2
2

)2 ∫
Sn−1

[∫ ∞

0
| f |2rn−β−3 dr

]
dθ (3.9)

=
(

n−β −2
2

)2 ∫
Rn

| f (x)|2
|x|β+2

dx.

To estimate B, from the fact that −Δθ = ∇θ ·∇θ , it follows that

B =
∫ ∞

0

1

rβ−n+3

[∫
Sn−1

−Δθ ( f ) f dθ
]

dr (3.10)

=
∫ ∞

0

1

rβ−n+3

[∫
Sn−1

(−Δθ − τΦ)( f ) f dθ
]

dr

+
∫ ∞

0

1

rβ−n+3

[∫
Sn−1

τΦ f 2 dθ
]

dr =: B1 +B2,

where τ is as in (3.3). By an elementary calculation, we see that

B2 = τ
∫

Rn

Φ(x/|x|)| f (x)|2
|x|β+2

dx. (3.11)

To estimate B1 , using Lemma 2 and the fact that λ1(−Δθ −τΦ) � 0 (this follows
from the assumption that Φ � 0), we know that

B1 �
∫ ∞

0

1

rβ−n+3
λ1(−Δθ − τΦ)

[∫
Sn−1

| f |2 dθ
]

dr (3.12)

= λ1(−Δθ − τΦ)
∫

Rn

| f (x)|2
|x|β+2

dx

� −α

(‖τΦ‖Lq(Sn−1)

|Sn−1| 1
q

)∫
Rn

| f (x)|2
|x|β+2

dx.

Moreover, by the assumption that n � 2+ β
2 + 1

2β and an elementary calculation, we
see that

(n−β −2)2

2(n−1)
+1 � n−1

2
= max

{
1,

n−1
2

}
and hence when q ∈ (max{1, n−1

2 }, ∞) , we have(
n−β −2

2

)2

� 1
2
(n−1)(q−1), (3.13)
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which together with the assumption that τ = ( n−β−2
2 )2|Sn−1| 1

q /‖Φ‖Lq(Sn−1) , (3.12) and
Lemma 2(i) implies that

B1 �−α

([
n−β−2

2

]2
)∫

Rn

| f (x)|2
|x|β+2

dx=−
(

n−β−2
2

)2∫
Rn

| f (x)|2
|x|β+2

dx. (3.14)

Thus, combined (3.7), (3.9) through (3.12) and (3.14), we conclude that (3.2) holds
true, which proves (i).

To prove (ii), we follow the same argument used to prove (i). It is easy to see that
the estimates (3.7), (3.9) and (3.10) through (3.12) are still valid in this case, as the
proofs of these estimates don’t need the assumption n � 2+ β/2+ 1/(2β ) and holds
for any n � 3. Thus, to finish the proof of (3.4), it suffices to reprove (3.14) in this

case. However, from the assumption q ∈ [ (n−β−2)2
2(n−1) +1, ∞) , it follows immediately that

(3.13) still holds true in this case, which shows that (3.14) is valid. Thus, (ii) holds true.

We now prove (iii). In this case, by the assumption that q ∈ ( n−1
2 , (n−β−2)2

2(n−1) +1) ,
we know (

n−β −2
2

)2

>
1
2
(n−1)(q−1).

Moreover let ν0 := 2(n−1)(p−1)
(n−β−2)2 ∈ (0, 1) . We then have

ν0

(
n−β −2

2

)2

=
1
2
(n−1)(q−1),

which together with Lemma 2(i) implies

α

(
ν0

[
n−β −2

2

]2
)

= ν0

[
n−β −2

2

]2

. (3.15)

Now, by following the same arguments used in the proof of (i) with τ therein
replaced by τ̃ in (3.6) (namely, using (3.7) and (3.9) through (3.12)), and (3.15), we
conclude that∫

Rn

|∇ f (x)|2
|x|β dx �

(
n−β −2

2

)2 ∫
Rn

| f (x)|2
|x|β+2

dx+ τ̃
∫

Rn

Φ(x/|x|)| f (x)|2
|x|β+2

dx

−α

(‖τ̃Φ‖Lq(Sn−1)

|Sn−1| 1
q

)∫
Rn

| f (x)|2
|x|β+2

dx

� (1−ν0)
(

n−β −2
2

)2 ∫
Rn

| f (x)|2
|x|β+2

dx+ τ̃
∫

Rn

Φ(x/|x|)| f (x)|2
|x|β+2

dx,

which shows that (iii) holds true and hence completes the proof of Lemma 3.
The following Lemma 4 is useful in the proof of Theorem 3. It also gives an

extension of the weighted L2 Hardy inequalities in Lemma 3 to any p ∈ (1, ∞) .
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LEMMA 4. Let p ∈ (1, ∞) , β ∈ R with β �= n/p and Φ = Φ(·/| · |) � 0 is a
measurable function defined on Sn−1 such that Φ ∈ Ln/(β p)(Sn−1) . Then for any u ∈
C∞

0 (Rn) , it holds that

∫
Rn

|∇ f (x)|p
|x|(β−1)p dx � |Sn−1| β p

n

‖Φ‖
L

n
β p (Sn−1)

( |n−β p|
p

)p ∫
Rn

Φ(x/|x|)| f (x)|p
|x|β p

dx. (3.16)

Proof. For any f ∈C∞
0 (Rn) , recall in [27] the definition of the symmetric decreas-

ing rearrangement f ∗ := Rn → [0, ∞) of f that for any x ∈ Rn ,

f ∗(x) :=
∫ ∞

0
χ{y∈Rn: | f (y)|>t}∗(x)dt, (3.17)

where for any measurable set E ⊂ Rn , E∗ := {x ∈ Rn : |x| < r} is its symmetric
rearrangement with

|Sn−1|
n

rn = |E∗| (3.18)

and |Sn−1| the surface area of the unite sphere Sn−1 .
By the Hardy-Littlewood rearrangement inequality and the fact that (|u|p)∗ =

(u∗)p (see [27, pages 81-82]), we know that∫
Rn

Φ(x/|x|)|u(x)|p
|x|β p

dx �
∫

Rn

[
Φ(x/|x|)
|x|β p

]∗
|u∗(x)|p dx. (3.19)

We first estimate [Φ(x/|x|)
|x|β p ]∗ . By Chebyshev’s inequality, we have that for any

t ∈ (0, ∞)∣∣∣∣{y ∈ R
n :

Φ(y/|y|)
|y|β p

> t

}∣∣∣∣ =

∣∣∣∣∣
{

y ∈ R
n : |y| <

[
Φ(y/|y|)

t

] 1
β p

}∣∣∣∣∣
=
∫

Sn−1

⎡⎣∫ [Φ(θ)/t]
1

β p

0
rn−1 dr

⎤⎦ dθ

=
1

nt
n

β p

∫
Sn−1

[Φ(θ )]
n

β p dθ ,

which combined with (3.18) implies that the symmetric rearrangement of the above
level set can be written as follows{

y ∈ R
n :

Φ(y/|y|)
|y|β p

> t

}∗
=
{

y ∈ R
n :

|Sn−1|
n

|y|n <
1

nt
n

β p

∫
Sn−1

[Φ(θ )]
n

β p dθ
}

=

⎧⎨⎩y ∈ R
n : |y| <

{
1

|Sn−1|t n
β p

∫
Sn−1

[Φ(θ )]
n

β p dθ

} 1
n

⎫⎬⎭ .
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Thus, we conclude that[
Φ(x/|x|)
|x|β p

]∗
=
∫ ∞

0
χ{

y∈Rn: Φ(y/|y|)
|y|β p >t

}∗(x)dt

=
∫ ∞

0
χ⎧⎪⎨⎪⎩y∈Rn: |y|<

{
1

|Sn−1| t
n

β p

∫
Sn−1

[Φ(θ )]
n

β p dθ
} 1

n

⎫⎪⎬⎪⎭
(x)dt

=
‖Φ‖

L
n

β p (Sn−1)

|x|β p|Sn−1| β p
n

,

which together with (3.19) shows that

∫
Rn

Φ(x/|x|)| f (x)|p
|x|β p

dx �
‖Φ‖

L
n

β p (Sn−1)

|Sn−1| β p
n

∫
Rn

| f ∗(x)|p
|x|β p

dx.

This combined with the weighted n -dimensional Hardy inequality (1.5) with ε = p−
β p and the Pólya-Szegö inequality (namely ‖∇(g∗)‖Lp(Rn) � ‖∇g‖Lp(Rn) for any g ∈
C∞

c (Rn)), we further see

∫
Rn

Φ(x/|x|)| f (x)|p
|x|β p

dx �
‖Φ‖

L
n

β p (Sn−1)

|Sn−1| β p
n

(
p

|n−β p|
)p ∫

Rn

|∇( f ∗)(x)|p
|x|(β−1)p dx

�
‖Φ‖

L
n

β p (Sn−1)

|Sn−1| β p
n

(
p

|n−β p|
)p ∫

Rn

|∇ f (x)|p
|x|(β−1)p dx.

This finishes the proof of Lemma 4.
With the help of Lemmas 2 and 3, we now give a proof of Theorem 2.

Proof of Theorem 2. Take β = 2. From the assumption that n � 5, we know
n � 2+ β

2 + 1
2β . Thus, by Lemma 3(i), we conclude that for any f ∈C∞

c (Rn) ,

∫
Rn

|∇ f (x)|2
|x|2 dx � τ

∫
Rn

Φ(x/|x|)| f (x)|2
|x|4 dx, (3.20)

with τ =
(

n−4
2

)2 |Sn−1| 1
q /‖Φ‖Lq(Sn−1) . By this and the L2 Hardy-Rellich inequality

(1.12), we further conclude that (1.27) holds true and hence finish the proof of Theorem
2.

Finally we turn to the proof of Theorem 3 by using Lemma 4.

Proof of Theorem 3. By Corollary 1(ii) with α = 0, we know that for any f ∈
C∞

c (Rn) , ∫
Rn

|Δ f (x)|p dx �
(

n(p−1)
cpp

)p ∫
Rn

|∇ f (x)|p
|x|p dx. (3.21)
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On the other hand, from Lemma 4 with β = 2, we deduce that

∫
Rn

|∇ f (x)|p
|x|p dx � |Sn−1| 2p

n

‖Φ‖
L

n
2p (Sn−1)

( |n−2p|
p

)p ∫
Rn

Φ(x/|x|)| f (x)|p
|x|2p dx,

which together with (3.21) completes the proof of Theorem 3.
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