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EMBEDDINGS BETWEEN WEIGHTED CESARO FUNCTION SPACES

TuGCE UNVER

(Communicated by P. Tradacete Perez)

Abstract. In this paper, we give the characterization of the embeddings between weighted Cesaro
function spaces. The proof is based on the duality technique, which reduces this problem to the
characterizations of some direct and reverse Hardy-type inequalities and iterated Hardy-type
inequalities.

1. Introduction

Our principle goal in this paper is to obtain two-sided estimates of the best constant
¢ in the inequality

/ B ( / ()P (s)mds> " (1) 2t
0 0

<c /w< /?(s)”lw(s)”lds) g (oymde | (1)
0 0

L
a2

where 0 < py,p2,q1,92 < e and uy,up,v,vy are non-negative measurable functions.

Let X and Y be quasi normed vector spaces. If X C Y and the identity operator is
continuous from X to Y, that is, there exists a positive constant ¢ such that || 1(z)|y <
c||z|]|x forall z € X, we say that X is embedded into ¥ and write X — Y. We denote
by . , the set of all measurable functions on (0,c0). We also define .#/ " ={f € .4 :
f > 0}. The family of all weights, that is, measurable, positive and finite a.e. on (0, ),
is given by 7.

We denote by Ces), 4(u,v), the weighted Cesaro function spaces and Cop,, , (u,v),
the weighted Copson function spaces, the collection of all functions on .# such that

1
4 1
» K

1 Fllces, o um) = /0( / If(S)I”v(s)”ds> AN
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and .
7

1 llcop, ) = ( [ worvora) zu(r)%) <o,

respectively, where p,q € (0,o0), u € .4 and v € # . Then with this denotation,
we can formulate the main aim of this paper as the characterization of the embeddings
between weighted Cesaro function spaces, that is,

Cesp, g, (ur,v1) — Cesp, g (u2,v2). ()

The classical Cesaro function spaces Cesy, p(x‘l, 1) have been defined by Shiue
in [28] and it was shown in [21] that these spaces are Banach spaces when p > 1.

In [11], it was shown that Ces; ,(x~!,1) and Cop, ,(1,x~") coincide when 1 <
p < o and the dual of the Ces, p(x’1 , 1) function spaces is given with a simpler de-
scription than in [29] as a remark.

During the past decade, these spaces have not been studied to a high degree but
recently Astashkin and Maligranda began to examine the properties of classical Cesaro
and Copson spaces in various aspects ([1, 2, 3,4, 5, 6, 7, 8]), for the detailed information
see the survey paper [9]. In [3], they gave the proof of the characterization of dual
spaces of classical Cesaro function spaces. Later, in [22] authors computed the dual
norm of the spaces Ces ,(w,1) generated by an arbitrary positive weight w, where
1 < p <eo. In [10], factorizations of spaces Ces; ,(1,x~!,v) and Cop; ,(x~!,v) are
presented.

Let X and Y be (quasi-) Banach spaces of measurable functions on (0,e). Denote
by M(X,Y), the space of all multipliers, that is,

M(X,Y):={f: f-geY forall geX}.

The Kothe dual X’ of X is defined as the space M(X,L;) of multipliers into L .
The space of all multipliers from X into Y is a quasi normed space with the
quantity

S8lly
Hf||M(X7Y) 3=SUPH ” .
40 llgllx

Now, define a weighted space Yy ={g: f-g€Y, fe#}.Then

1/ lImexyy = sup 71— = || T[|x—y;.
¢#0 llgllx

Therefore, characterization of (2) will be enough to characterize the pointwise multi-
pliers between weighted Cesaro function spaces. We should mention that the charac-
terization of the multipliers between Cesaro and Copson spaces is stated to be difficult
in [20] and note that the weighted Cesaro and Copson spaces are related to the spaces
C and D defined in [20] as follows:

Cespq(u,v) =C(p,q,u)y and Cop, ,(u,v) = D(p,q,u)y.
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This motivation started the study of the embeddings between weighted Cesdro and
Copson function spaces. The approach to these problems begins with the well-known
duality principle in weighted Lebesgue spaces. Recall that p € (1,), f € .#" and v
is a weight on (0,0), then

( / ; f(t)pv(t)dt>p: sup — o SR 3)
0 et ([ h(e)? v(e) =P dt) 7

Combination of duality principle with estimates of the best constants in the weighted
Hardy and reverse Hardy inequalities reduces the characterization of (2) to the charac-
terizations of iterated Hardy-type inequalities.

With this technique, in [16], the embeddings between weighted Copson and Cesaro
function spaces have been characterized under the restriction p, < g, arises from the
duality. Also, using these results pointwise multipliers between weighted Cesaro and
Copson function spaces are given in [17]. We should mention that recently in [25],
multipliers between Ces; ,(x~!,1) and Cop; ,(1,x™ ") are given when 1 < ¢ < p <ee.
At the time when [16] is written iterated Hardy-type inequalities of forms from [13]
and [19] made it possible to characterize the embeddings between weighted Cesaro and
Copson spaces.

However, duality argument reduces inequality (1) to the inequalities which con-
tains iterated Copson operators. The solution of these problems were not known until
recently, but lately different characterizations have been given for these inequalities,
see [23, 14, 15, 26, 24]. Therefore, now we are able to continue this study. We will use
characterizations from [23] and [24].

Note that, when py = g» or g¢1 = p1, (1) has been characterized in [16]. Unfortu-
nately in this paper we will solve (1) under the restriction p, < g» arising from duality,
we will deal with the case when g < p» in the future paper with a different approach.
On the other hand we always assume that p, < py, since otherwise inequality (1) holds
only for trivial functions (see Lemma 1).

The paper is organized as follows. In the next section we formulate main results of
this paper. In the third section we present the necessary back-ground material. Finally,
in the last section we prove the the main results of this paper.

2. Main results
Now, we will present the main results of the paper.

THEOREM 1. Letr 0 < q; < pa < min{p,q2}. Assume that vi,v, € # and
uy,uy € M such that [ ul’ < oo, i=1,2 forall t € (0,0).

(i) If p1 < g2 < o, then inequality (1) holds for all f € .4 if and only if A < oo,
where

1 P1—r 1

=\ poon NGt e NG

Ay = sup / uf! sup /v1 Py P / ul ) .
<e(0.0) \Jx re(umm) \x t
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Moreover, the best constant in (1) satisfies ¢ =~ Aj.
(ii) If g2 < p1 < o, then inequality (1) holds for all f € A ifand only if Ay < o,
where

1 a2 (P1—-r2)
. 91 PI=P2  PI-P2
Ay = sup / u; / /v1 v,
xe(o’.x,) X X X
PL=0)
? P192

) (/ “3’) " (e
t

Moreover, the best constant in (1) satisfies ¢ = Aj.

THEOREM 2. Let 0 < g1 < p1 = p2 < q2 < o. Assume that vi,v, € ¥ and
uy,up € MY suchthat [ ul' <o i=1,2 forall t € (0,%). Then inequality (1) holds
forall f € .#7" if and only if Az < oo, where

1 1

oo - °° Ta

Az = sup </ u§2> Zesssupvl(s)lvz(5)</ ui“) .
re(0e) \ V1 s€(01) '

Moreover, the best constant in (12) satisfies ¢ ~ As.

THEOREM 3. Let 0 < py < min{py,qi,q2}. Assume that uy,uz,vi,vo € # such
that [~ ul’ < oo i=1,2 forall t € (0,). Suppose that

a1(P1=p2) a1
1 1 P12 PIP2N g = py) o Tam
O</ /Vl PITPL PR / ullh uy (s)1ds < oo
0 K K
holds for all t € (0,).

() If max{p1,q1} < g2 < o, then inequality (1) holds for all f € .# if and only
if Ay < oo and As < oo, where

1 P1—
> Tar e AN o0 7
Ay = (/ u’f‘) sup (/ y, Ty / ul? 4)
0 1€(0,00) 0 t

and

L a1(p1=pr2)
°° @\ 2 4 4 —% % rilai—pr2)
As := sup Uy v, V)
1€(0,00) t 0 s
a-r
a1 q1p2

x(/swu‘1“>_mu1(s)qlds . 3)

Moreover, the best constant in (1) satisfies ¢ =~ Aq + As.
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(ii) If p1 < q2 < q1 < o, then inequality (1) holds for all f € .#* if and only if
Ay < oo, Ag < oo and A7 < oo, where Ay is defined in (4),

q1(@—p2)
q q
oo 1 oo . *ﬁ P2(q1—42) oo . 7‘11*11’2
Ag = / / / uj up(s)ds / uj uy ()9
0 0 K t
qa1-92
a192(p1—r2) a1 1492
X sup </ZVpﬁwﬁzv,ﬁwﬁz)mn(ﬂqz) </°°qu> qrqzdt
1 2 2
2€(t,00) t b4
and
( ) q1(@—p2)
—p —
w (g N\ TR o e GRS\ )
L q1 q1 P1—P2 ,P1-P2
A; = / / / uj uy () /v1 vy ds
0 0 K s
q1(p1—p2) q1
2 —% % P1a1—p2) <\ 70
X sup v, V) Uy
z€(t,00) t b4
91—
)

q1

‘ (/tmu‘fl)_mul(t)qldt . (©)

Moreover, the best constant in (1) satisfies ¢ =~ Aq+ Ag+ A7.
(iii) If g1 < g2 < p1 < oo, then inequality (1) holds for all f € .4 if and only if
As < oo, Ag < o0 and Ag < oo, where As is defined in (5),

( ) P1—92
.
Asi= / “ / /"1 PRyt /u2 uy ()2 dt
0 0 0 p
(7)
and
( ) P1—9
2(P1—py) @ s
- ’ _plill”%z ’)1111732 P2(P1=42) C o\ R ;
Ag := sup vy V) uj uy(s)2ds
1€(0,00) t t s
a-r2
q1r2

a1
t o T a1
X /()(/ u‘fl) ui(s)ds
A

Moreover, the best constant in (1) satisfies ¢ ~ A5+ Ag+ Ag.
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(iv) If p1 < oo, q1 < o0 and g <min{py,q,}, then inequality (1) holds for all f €

M if and only if A7 < oo, Ag < oo and Ay < oo, where A7 and Ag are defined in (6)
and (7), respectively, and

. o qn ql((qZﬂ)Z; o qn

°° °° q1-r2 r2lay—az °° q1-r2

A= /0 (/0 (/ u‘1“> ul(s)‘“ds> (/ u‘1“> up ()"
s t

41792
q1(p1—ap) 9190

2 (P1—r2) %) r1(a1—az)
e s 7% ,fllfl,zz p2(P1—42) < g\ PR q
X v, V) u5 uy(s)ds dt
t t s

Moreover, the best constant in (1) satisfies ¢ ~ A7 +Ag+Ajp.

THEOREM 4. Let 0 < p; = py < min{qy,q2}. Assume that vi,vo € # such that
vl_lvz is continuous and uy,uy € W such that [~ ul’ < oo i=1,2 forall t € (0,).
Suppose that

_pa gy
! q1—r1 ,,491—P1
o 0< [ov, vyl T <eo,

N
e 0< fo([ul) a=ruy (x)91dx < oo,

_ P12
e 0< féuz 27 oo

hold for all t € (0,).
(i) If g1 < g2 < oo, then inequality (1) holds for all f € .#4™ if and only if Aj1 < oo
and Ay < oo, where

_1 L
A= (/ u‘fl) " sup (/ u?) " esssupvy(s) vy (s) (8)
0 t€(0,00) \ 71 s€(0,¢)

1 a1 1-P1
N2 [ g\ B _ g a1} an
App:= sup us uj u(x)? sup vi(z) Prvy(z)arrdx )
1€(0,00) \/1 0 X z€(xt)

Moreover, the best constant in (1) satisfies ¢ ~ A1 +Aqz.
(ii) If g2 < q1 < oo, then inequality (1) holds forall f € .# ™" ifand onlyif A1y < oo,
A1z < oo and Ay < oo, where Ay is defined in (8),

and

q1(a2—p1) a

q1 —
oo t oo e rila1—a2) oo T
Az = / (/ (/ ulfl> ul(x)’“dx> /sz1 up ()"
0 0 X t
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91—

91 q192

q192 192 e o q1—92
X sup vi(z) -2 vy(z) 92 / Uy dt
z

z€(t,00)

and

q1(a2—p1)

q1 -
oo t ° 0 e J _aipy _a1p rilar—a2)
A= / / / uj up(x)? sup vi(z) 1 Prvy(z) aPrdx
0 0 X ZE(XJ)

a9
_41 41
_ary _ar o AR 0 a q17P1
x sup vi(z) 1 Prvy(z) N7 / U / uj uy ()"t
z€(t,00) z t

q1492
Moreover, the best constant in (1) satisfies c ~ A1 +A13+A14.

It should be noted that, using (2) one can obtain the characterization of the em-
beddings between weighted Copson function spaces. Indeed, using change of variables
x=1/1, itis easy to see that the embedding

Copy, g, (1,v1) = Cop,y, 4, (u2,v2)
is equivalent to the embedding
Cesmm (111,\71) - Cesmﬂz (’Z27 ‘72)7

where (1) = t=2/%u;(1/t) and ¥;(t) = 1= 2/Pivi(1/t), i=1,2, t > 0. We will not
formulate the results here.

3. Notations and background material

We adopt the following usual conventions. Throughout the paper we put 0/0 =0,
0- (o) =0 and 1/(&e0) = 0. For p € (1,e0), we define p’ = L5 . We always denote
by ¢ and C a positive constant, which is independent of main parameters but it may
vary from line to line. However a constant with subscript or superscript such as c¢; does
not change in different occurrences. By a < b, (b 2 a) we mean that a < Ab, where
A > 0 depends on inessential parameters. If a < b and b < a, we write a = b and say
that a and b are equivalent. Since the expressions on our main results are too long, to
make the formulas plain we sometimes omit the differential element dx.

Now, we will present some background information we need to prove our main
results. Let us begin with the characterization of the modified versions of the well-
known Hardy-type inequalities (see, for instance, [27], Section 1.)
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THEOREM 5. Assume that 1 < p <o, 0 < q < oo and v,w € M. Let

H= sup (/om (/,mf(s)ds> qW(tl)dt) !,.
fet ([)Nf(t)pv(t)dl) b

(1) If p< q, then H =~ Hy, where

t Y
Hy = sup (/ w(s)ds) (/ v(s)7P ds) .
1€(0,00) 0 t

(i) If g < p, then H ~ H,, where

Hy = /O ; ( /0 tw(s)ds) & ( [ Nv(s)l_p/ds) " V()P di

THEOREM 6. Assume that 1 < p < oo and v,w € .4 . Let
esssup (/ f(s)ds) w(r)
1€(0,00) t
H = sup .

fert (/wa(t)l’v(t)dz)%

Then H ~ Hs, where

1
H; = sup [ esssupw(s) (/ v(s)ll’/ds> "
1€(0,00) \ s€(0,r) 4

Let us now recall the characterizations of the following reverse Hardy-type in-
equalities.

THEOREM 7. [12, Theorem 5.1] Assume that 0 < g < p < 1. Suppose that v,w €
M such that w satisfies [~w < oo forall t € (0,0). Let

R= sup </0mf(t)p‘)(t)dt> %

(] tf(s)ds)qwmdt) :

(1) If p< 1, then R~ Ry, where
1 1p
q il 1 P
(/ v(s) 'l’ds) .
13

Ry = sup (/ w(s)ds)
1€(0,00) t

€))
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(1) If p=1, then R~ R,, where

1
Ry = sup (/ w(s)ds) ! (esssupv(s)) .
1€(0,00) \ V1 sE(t,e0)

THEOREM 8. [12, Theorem 5.4] Assume that 0 < p < 1 and p < g < eo. Suppose
that vyw € A" such that w satisfies [~w < oo for all t € (0,00) and w# 0 a.e. on
(0,00). Let R be defined by (9).

(1) If p< 1, then R~ R3, where

q—

q(1-p) _q qpp I-p _1
- o — o = o - - 7
R3= / (/ vll’) (/ w) w(t)dt + (/ vlp) (/ w) .
0 t t 0 0

@ii) If p=1, then R~ R4, where

—1
- . \ 7k T -
Ry= / esssupv(s)‘ri1 (/ w) ! w(t)dt +esssupv(s)</ w)
0\ se(r,00) t 5€(0,00) 0

THEOREM 9. [24, Theorem 1.1] Let 1 < p < oo and 0 < g,m < oo and define
ri= L9 Assume that u,v,w € .# " such that

rP—q
0< (/()t<[u)zw(s)ds> < oo

1
q

N,

forall t € (0,00). Let

</0oc (/tw (/Smf)mu(s)ds) ' w(t)dt) %
I= : .
e ( ) f(t)pv(t)dt> ’
0

() If p < min{m,q}, then I =~ I, where

q 1 1

t t o\ m q = o

= 1_[7/ r
I : tes(l(l)i) (/0 w(s)(/s u) ds) (/t v ) . (10)

(i) If g < p < m, then I = I, + I3, where

L= (/ON (/Otw) Tr)w(t)zesggc) (/tzu>"_r1 (/;ﬂ—ﬁ)ﬁdt) )
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and

1
.

e L) () (L) )

(11)
(i) If m < p < q, then I = I} 4+ 14, where I is defined in (10) and
1 s pln—1) T
t q o N p—m Gl 1—p p—m 1=y
Iy := sup /w / /u / viP v(s) Pds
1€(0,00) \ /0 t t s
(iv) If max{m,q} < p then I = I3+ Is, where I3 is defined in (11) and
1
q(p—m) r

p(m—1)

L o (£ (o) )

THEOREM 10. [23, Theorem 6] Let 1 < p < oo and 0 < g < oo and set r:
Assume that u,v,w € .4 such that u is continuous and

1 12 t
O</u<oo, O</v<oo, 0</w<oo
0 0 0

hold for all t € (0,). Let

I
3
[}

1

( I (QZ?EZ o | mf)qwmdt) q
= su : - .
-

) If p < q then I = Is, where

t 1 oo ,
Ig := sup (/ w(s) sup u(z)qu> ! (/ vl_p)
1€(0,00) 0 z€(s,1) t

(i) If g < p, then I = I7 + Iy, where

1
oo ! > oo A\ r

L = / (/ w)pw(t) sup u(s)’(/ vll’>’ dr |
0 0 SE(t,00) s

~|

and

r

oo t > o , L T
Iy = (/ (/ w(s) sup u(z)qu> I w(t) sup u(z)‘I(/ yl=r ds) ! dt) .
0 0 7€(s,t) 7€(t,00) z
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4. Proofs of the main results

REMARK 1. Note that for 0 < p,g <eo, ve # and u € 4", if [["u? = oo for
all + > 0, then Cespg(u,v) consists of only functions equivalent to 0. Therefore, we
will always assume that [“u? <o, t>0.

Following lemma explains the assumption p> < pj, when characterizing our main
inequality.

LEMMA 1. Let 0 < p1,p2,q1,q> < . Assume that vi,vy € W and uy,uy € M+
such that 0 < [~ ul’ < oo i=1,2 forall t € (0,00). If pi < pa, then inequality (1)
holds only for trivial functions.

Proof. Suppose that there exists ¢ > 0 such that (1) holds for all f € .Z™.
Let 0 < T; < T < oo and assume that & € .# " such that supph C [71, T»]. Testing
inequality (1) with &, one can see that

(o) ()
([we)* ()"

l\Jl'_‘

and

1

(o)l (o)
(L) (f)”

hold. Since 0 < [["ul’ < oo, i = 1,2, the validity of inequality (1) implies that when
p1 < p2, Ly, (vi) = Ly, (v2) holds, which is a contradiction.

In order to shorten the formulas and simplify the notation, in the proofs we will
use the following inequality:

(/: (/Otf(s)l’v(s)ds) Zu(t)dz> "<c (/ON (/Otf(s)ds) GW(t)df> Low

1
It is clear that we can obtain the characterization of inequality (1) with ¢ ~ C”1 , where
¢ and C are the best constants of inequalities (1) and (12), respectively, by taking
parameters and weights as follows:

-y q—q—2 9—ﬂ v=v 2 u=ul? w=ul". (13)

Pl’ _Pl’ P1
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Proof of Theorem 1. 1t is clear that since in our case g/p > 1, using (3), the best
constant of inequality (12) satisfies

1 (/Omh(t)/otf(S)pv(s)dsd1> '

C= sup sup

= (/Om (/(:f)evv(t)dt> e ( Omh(t)ﬁu(t)ﬁdz) -

Interchanging suprema and applying Fubini, we get that

. | o ( /wa(t)l’v(t) /ih(s)dsdt)ﬁ.

e (/Owh(t)ﬁu(t)_ﬁd;yq”p fed+ (/: (/Otf>ew(t)dt>%

Since 6 < p < 1, we have by applying [Theorem 7, (i)] that

I-p

(e (7e) ()

Cx su pn
he#+ et qp
( h(z)q"pu(t)q”pdt> v

0

Interchanging suprema yields that

e e 5

L) e s
0 e 0 K

/A sup (/ w) sup — )

x€(0,00) \ /X he s+

(/Omh(t)qqpu(t)qpﬂdt>w

Then, it remains to apply Theorem 5. To this end, we need to split into two cases.
(i) If 1 < g, in this case ﬁ > ﬁ, then applying [Theorem 5, (i)], we obtain
that

il _?5“ 4 1 % il %
C~ sup (/ w) sup (/ v(s)ll’x(xim)(s)ds) (/ u)
x€(0,00) \/x 1€(0,00) \ /0 ’ !
- \-b _— TN
= sup (/ w) max ¢ sup (/ v(s)lpx(x_m)(s)ds) (/ u) ,
x€(0,00) \Jx 1e(0,x) \/0 : t

1-p 1

- ([0 as) " ([ o)
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_1 I-p 1

il [2 r P il q

= sup (/ w) sup (/ vll’) (/ u) .
x€(0,00) \ /¥ 1€(xe0) \ /X !

(ii) If g < 1, in this case fp < ﬁ, then applying [Theorem 5, (ii)], we arrive at

l1-q
q(1—p

* % i A p(1-q) o\ T K
C~ sup (/ w) / (/ v'f’x(x’,x,)(s)ds> (/ u) u(t)de
XG(O,N) X 0 0 t
l—q
_1
° o = o1
= sup (/ w) / (/ vlpds>
x€(0,00) \ /X X X

1-p) 9 q
. . . . L .
Since the best constant of inequality (1) satisfies ¢ ~ C?1, applying (13) the result

—q) 0o -
! (/ u) qu(t)dt
t
follows.

1N

Proof of Theorem 2. Since, in this case 6 < p =1, as in the previous proof duality
approach combined with [Theorem 7, (ii)] yields that,

1
oo -9 oo
sup (/ w) esssupv(s)/ h
x€(0,00) X s

C=~ sup € (o)

hE//+ ( L )%
/ )T u(r)" T di

Recall that if F is a non-negative, non-decreasing measurable function on (0,e0),
then

esssupF(1)G(t) = esssup F'(t) esssup G(71), (14)
1€(0,00) 1€(0,00) TE(t,00)

holds (see, for instance, page 85 in [18]). On using (14), we obtain that
o \ b
sup < / ) / h
x€(0,00)
hE //+ ( L T
/ Bt T ()" ldt)

Finally, applying Theorem 6, we arrive at

1 1

00 a 0o _g

C= sup (/ u)qesssupv(s)</ w) .
1€(0,00) t s€(0,1) s

Hence, applying (13) the proof is complete.

Cx
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Proof of Theorem 3. Since in this case p < 1 and p < 6, similar to the previous
proofs, duality argument combined with [Theorem 8, (i)] gives that

l-p

1 »

(/Ow (/wh> ”’v(s)ﬁds>

0(1-p) o
—P P
A N T = S
/ / (/ h) v(t)T=rdt (/ w) w(x)dx
0 X t X
+ sup e
he#+ o0 q_ _ qp
( h(t)a=Pu(r) ql’dt>
0
=C+GC.

Let us first consider C; . We need to consider the cases ¢ < 1 and 1 < g seperately.
Hence, we begin with the condition p < 1 < ¢. Using [Theorem 5, (i)], we obtain that

1 l-p 1
et 0 1 i it q
C)~ (/ w) sup (/ v1_l’) (/ u) =: Aj.
0 1€(0,00) 0 t

On the other hand, if p < g < 1, using [Theorem 5, (ii)], we get that
q(1-p) q

C1z</0mw> /:(/()tvllP)M(/[mu)lqu(t)dt =: Ag.

Let us now eveluate C,. We will apply Theorem 9 with parameters

=

1 0 q

m= , q= , p=——.
1-p 0—p q-r

Thus, we need to consider the conditions on parameters in four cases.
(i) If p <min{1,q,0} and max{1,0} < g, then applying [Theorem 9, (i)], we get
1

that C; =~ Il’_’ , where
0—p
1—p) op

1 [ e \TT5 RS = “ N\Ni
I = sup / (/ w) w(s)(/ v'P) ds (/ u) =A5. (15)
1€(0,00) 0 K s t

Then, since 1 < g in this case, we have that C; ~ A} . Therefore C = C; +C, = A} +A5.
Finally, applying (13) we arrive at ¢ = A4+ As.
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(ii) If p < min{l,q,0} and 1 < g < 6, then applying [Theorem 9, (ii)], we get
11
that C, = I + I , where

9(9—p)

% o ¢ . 7% p(0—q) 0o 79%
I = / /(/ w) w(s)ds (/ w) w(r)
0 0 K t
6-q
64(1-p) o\

(1-p) 0

Z 1\ 0 oo 6—q
X sup (/ v1P> (/ u) dt =:AJ. (16)
ZE(I,‘X’) t Z

Since, 1 < g in this case, we have that C; ~ A};. Therefore C = C| +C, =~ A} +A; +A7.
Applying (13), we obtain that ¢ ~ Ay +Ag+A7.
(iii) If p < min{l,q,0} and 6 < g < 1, then applying [Theorem 9, (iii)], we get
1 1

that Cp =~ If —|—IZ’ , where I; is given in (15) and

s (L) o)
()

Since g < 1, we have that C; = Ag. Thus, C = C; +C; = Ag + A5+ Ag. Using (13),
the result follows.
(iv) If p < min{1,q,60} and g < min{1,60}, then applying [Theorem 9, (iv)], we
1 1

6—p
op

=:Aj.

get that Gy =~ 135 +17 , where I3 is given in (16) and

—p)

d=| [ ( [(f °°w>99"w(s>ds> o (/ ww)ee”wm
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f—q
0(1-q) g
q 0—q

a(l=p) q_
> S 1\ pl=q) <\ T
X / (/ vll’) (/ u) u(s)ds dt =:Ajp.
t t N

Since, g < 1, again we have that C; = A§, which yields that C = C; +C, = A+ A7 +
A],- Applying (13), the proof is complete.

Proof of Theorem 4. In this case p =1 and p < 6, therefore, we have, by using
duality and applying [Theorem 8, (ii)], that

ess sup v(x h

1
oo _g X
Cm(/ w) sup S T
0 he#+ hed _q 1 g
( / ()T u(r) qldt)
0

0
0

/ esssupv(s)/ h
0 SE(x,00) s
+ sup —
he#+ q 1 g
( / h(t)#Tu __ldt)

=:C3+Cy.

Smce 1 > 1, applying Theorem 6, we have that

1
00 ) 00
G~ (/ w) sup | esssupv(s) (/ u) =:Aj|.
0 1€(0,00) \ s€(0,1) 1

On the other hand, in order to calculate Cy, we will apply Theorem 10 with parameters

<=

6 q
= — d = —
=91 M P=
We need to apply this theorem to the cases 6 < g and g < 0 seperately.
(i) If 6 < ¢, then applying [Theorem 10, (i)], we have that C4 ~ I, where

e o DN
Is = sup / (/ w) w(x) sup v(z)o-Tdx (/ u) =:A],
1€(0.00) \ 70 \Jx z€(xt) '

Therefore, C = C3 +C4 = A}, +A],. Applying (13), we arrive at c = Ay +Aj>.
(ii) If ¢ < 6, then applying [Theorem 10, (ii)], we have that C4 ~ I; + I3, where

8(q—1)

n=| [ (/O’(/:w)_%wwdx) (/tww)_%wo)




and
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06—,

q
0g

0q hed Si*q
x sup v(z) q(/ u) dt =:Al3,
Z

z€(t,00)

0 °° 994
X sup v(z)ﬁ</ u) dt =:Aj,.
Z

z€(t,00)

Then, we arrive at C = C3 + C4 =~ A}, +Aj; +Aj,. Using (13), we have that ¢ ~
A +Ai+Aw.
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