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WEIGHTED ITERATED DISCRETE HARDY-TYPE INEQUALITIES

B. K. OMARBAYEVA, L.-E. PERSSON* AND A. M. TEMIRKHANOVA

(Communicated by J. Pecari¢)

Abstract. Necessary and sufficient conditions on functions # and @ are established ensur-
ing boundedness of a discrete Hardy-type operator from a weighted sequence space [, to a
weighted sequence space for a wide range of the numerical parameters p,u and 6.

1. Introduction

The original form of Hardy’s integral inequality (see [7]) from 1925 reads: If p > 1
and f is a non-negative p-integrable function over (0,), then

» oo

/w %/xf(l)d; pdx < p /(f(x))pdx 7 (1.1)
0

p—1
0 0
where the constant 1% = p’ is sharp. This means that the Hardy operator H , defined

by H(f)(x) :=1 [ f(¢)dt maps LP(0,0) to LP(0,ec) with the norm = p’. The dramatic
0

prehistory until G.H. Hardy discovered (1.1) is described in detail in [9]. After that it
has been an almost unbelievable amount of research to develop (1.1) to what today
is called Hardy-type inequalities. The history of this development up to 2007 was
described in detail in the book [8]. But this development has continued also after that
and the most important steps in this development can be found in the new book [10].
Most of the developments of (1.1) so far has been concentrated on the problem to
characterize weighted versions of (1.1) and where p on one side is replaced by ¢ which
can be different from g and with 1% replaced by a finite positive constant C. This
means that Hardy-type inequalities so far have been mostly concentrated on the problem
to characterize the weights so that the Hardy operator maps different weighted L? -
spaces to other weighted L? spaces. However, there are also some results of this type
also for other function spaces than weighted L” spaces. A number of new such results
are described in Chapter 7.6 of the book [ 10], for example when the weighted L? spaces
are replaced by Orlicz spaces, Lorentz spaces, r.i. invariant spaces, general Banach
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function spaces, Morrey-type spaces, Holder-type spaces, variable LP() - spaces, etc.
For this paper the most interesting part is about weighted Morrey-type spaces (see [10],
7.6.2).

Itis easy to see that (1.1) implies the following discrete form of Hardy’s inequality:

S (LS NS _ P (S N\

(X(Xa)) <2 (Za) p>1, (1.2)
n=1 1= p—1\5

still with p’ = 1% as the sharp constant, and where {g;};*, is a sequence of non-

negative numbers.

It has been a parallel development of (1.2) as what has been described above con-
cerning the development of (1.1) to the theory of Hardy-type inequalities. Also in this
case the development has been concentrated around mapping properties of the discrete
Hardy operator between weighted [,- spaces. This development up to 2007 is de-
scribed in detail in Chapter 6 of the book [8]. See also the references therein. Here we
just mention some important papers in this connection: [2],[3],[4],[6], [1 1] and [13].

In recent years, after the publication of [5], it begun some new interesting research
concerning discrete Hardy-type inequalities with weighted discrete Hardy operators
involved (see e.g. [14]). In this paper we consider the following case:

Let @ = {¢«};_, be a non-negative sequence of real numbers and consider the
following Hardy-type operator H, defined as follows for Vf € [;:

k
(Hof)k == o 3 fi, (1.3)
i=1
where k € N.
Let | <p<oeo, 14 L =1 and u= {u;}7, and ® = {@}, be positive se-

quences of real numbers, which will be referred to as weight sequences. We denote by
Iy« the space of sequences f = { fj};": | of real numbers such that

1
P

£l pu = (2|ujfjp> " < oo,
j=

Let 1 < p <o and 0 < q,0 < co. The aim of this paper is to characterize the
following discrete Hardy-type inequalities:

1

wkiilﬁlq)2>s <C<§ujf/|P>}’, Vf €l (14)

(Zot(3
n=1 k=1
where C is a positive constant independent of f for the following cases:
a) 1 < p<min{q,0} < e (see Theorem 1 in Section 2);

b) 0 <g<p<6O<eo, p>1 (see Theorem 2 in Section 3);

c)0<g< 6 <p<oo, p>1 (see Theorem 3 in Section 4).
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Convention: The symbol M < K means that M < cK, where ¢ > 0 is a constant
depending only on unessential parameters. If M < K < M, then we write M ~ K.

In the proofs of our main results we will need the following well-known results
on the discrete weighted Hardy inequality (see [2], [3]) and boundedness of matrix
operators (see [11]-[12] or [15]). More exactly, see [2], Theorem 1 (viii) and also [8],
Theorem 7 (iii).

THEOREM A. Let 0 < g < p < oo, 1 < p <oo. Then the inequality

o q 1 00 l)
( ‘ v?)" <C<Z|uiﬁ\1’>’ (1.5)
=1 j=1 i=1
holds for some C < o if and only if
oo oo r .k N\ LD N\ =4
H:<2<2v?>1)*q(zu;p> p—q uk—p>1)q < oo,
k=1 “i=k j=1

Moreover, H =~ C, where C is the best constant in (1.5).

DEFINITION. The matrix {a;, j}‘;f’zl, i > j satisfies the (discrete) Oinarov condi-
tion, if there exist d > 1, a non-negative matrix (a;, j), whose entries a; ; are almost
non-decreasing in i and almost non-increasing in j such that the inequalities

L
d
or a;j~a;r+a;; holdforall i > k> j> 1.

aip+ag;) < aij <d(ag+ag;),

THEOREM B. (see [12] or [15]). Let 1 < p < g < o and the entries of the matrix
(ai ;) satisfies the discrete Oinarov condition. Then the inequality

<§1)§;"Jf q”?ﬁ < C(g |Vifi|p>$ (1.6)

holds for some C < e if and only if M = max{M,,Mp} < o, where

Ml—sup(i >l<ialkv ) ,

k>1 —

M= sup (X, )’ (")

M»

Moreover, M =~ C, where C is the best constant in (1.6).
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THEOREM C. (see [11]). Let 1 < g < p < oo and the entries of the matrix (a; ;)
satisfies the discrete Oinarov condition. Then the inequality (1.6) holds for some C < oo
if and only if M* = max{M; ,M;} < oo, where

oo , , q(p—1) g %
x -p'\ pa g\ P4 q
My = 2 <Zaz,kvi ) <2”;> Uy )
k=1 "i= j=1
—q
oo k p oo pla—1) S\ Pa
* q 4\P9 -p'\ r1  —p
My = Z (Z“k,j”j) <Z i )
k=1 " j= —k

Moreover, M* =~ C, where C is the best constant in (1.6).

For the proofs we need the following Lemma:

LEMMA 1. Let ¥ > 0 and {By} be a nonnegative sequence. Then

(;Bk) ZBk@B)y EL (17)

If ZBk<<x> 1 < j, k<N < oo, then

<§'Bk>y% ZBk(ZBl)y*l. (1.8)

REMARK 1. The estimates (1.7) and (1.8), due to K.F. Andersen and H.P. Heinig
[[1], p. 844], have been used by many authors including K. G. Grosse-Erdmann [[6], p.
12] and G. Bennett [[3], Lemmas 2 and 3].

We also need the following well-known version of the discrete Minkowski inequal-
ity:

LEMMA 2. Let {a;;}, i=1,2,..,n < +oo, j=1,2,....,m, be a positive matrix.
Then the inequalities

gt

and

(1.10)

1~
N
=
~——
al—
R
M=
E}
<_
v
al—

holds, where o > 1.
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We also need the following elementary inequalities: If @; >0, i =1,2,...,k, then

N
(251,-) <Ya¥ 0<a<l, (1.11)
= m=1
and
N
<Zai> >Y %, o>l (1.12)
m=1 m=1

2. Thecase 1 <p<q,0 <oo
The main result in this section reads:

THEOREM 1. Ler 1 < p < min{q, 0} < co. Then the inequality (1.4) holds for
some C < oo [f and only if By < o , where

B, —sup<2a) (Z(pk> >1<2u1’) : @1

r=l \ n=r

Moreover, C =~ By , where C is the best constant in (1.4).

Proof. Necessity: Suppose that the inequality (1.4) holds with the best constant
C > 0. Let us show that B1 < oo, We choose r > 1 arbltrary and take a test sequence

f,_{frX > | defined by frs—uS forl < rand fr\ =0 for s > r.
Then

17y = (i|ﬁ-u.y|P); = (Xl )

s=1

==

(214 1’) o, (22)

Substituting f, in the left hand side of inequality (1.4), we can deduce that

1

o2i]))

=(Zot(E

(2

WV

Mz

E’f”

r

i.e. that (Zw <kz (pk>%>é (ﬁiup> (2.3)

From (2.2), (2.3) and (1.4) it follows that

L

(Zw (Zqok) )e (gu,-”')ﬁ VL.
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Since r > 1 is arbitrary we have that

1

Bl—sup<2(0 <Z(pk>%> (Zu )7 <c<e 2.4)

r=l \ n=r

Sufficiency: Let B < e=. Now, we prove that (1.4) holds for a finite constant C.
Let 0< felp,.

Let fi£0. If =0, 1 <i<k, fy %0, then zf, sz,m-:ff,- and
=1 i=1

therefore fl #0.
Let

sup{k e Z: 2K < fi} = ki,

then
2k1 gfl < 2k1+l.

Hence,

koo = sup{k> 1 2kitk=1 < Zf,}
i-1

It 2f,<<>o then koo < oo . If Zﬁ—oo then ko, = oo.

We consider the sequence { ]k} where jj are defined by

jk::min{ 12f, 2"1+"1} 1 <k < ke

We note that
J1= mm{ 1: Zf>2kl} 1,

and then obviously j; = oo and if k. < o, then
2k1+koo—1 < ifl < 2k1+koo.
i=1
For all k£ > 1 it yields that

Ji—1

2 fi < 2kl Zf, (2.5)

Therefore the set of natural numbers N can be written

k.

N= U [jr1,jk—1
k:2[Jk 15 Jk }7
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Moreover,
Jm Jm— Jm
2k1+m_1<2ﬁ— Z fl Z f<2k1+m 2+ Z ﬁ’ >
i=1 i= /m 1 i= .]m 1
Jjm
2k1+m72 < 2 ﬁ’ m 2 3
i:jmfl
By substitution m by m — 1 we find that
jmfl
2k1+m73 g 2 fi; m>4

i=jm—2
Then we obtain that '

Jm—1

il N i, m>4 (2.6)
i=jm—2
Let us consider special cases: if m = 2, then we have that
J1
kit2=l —phitl — ok .2 C2f =2 2 fis fi, =0,
i=jo
J1
2Ly i (2.7)
i=Jjo
if m =3, we apply (2.5) and get that
2fi3=1 — o pki+2- l<22f, 4 2 fi (2.8)
i=1 i=j3-2
By combining (2.6)-(2.8) we obtain that
jmfl
il N fi, m>2. (2.9)
i=jm—2

Therefore, by force of (2.5)

g k. 1
oo n Ky q oo Jk n
Sa(Sasl) 55
Sot(Elo 3] 5
0
q

%Zﬁ )6

55 (875 0(50))

k=2n=jr_; $=Jm—1 i=1

k2"/k1 =
ko Jr—1 k min(n,jm—1) s
55 (37 ()
k=2n=j,_1 S=Jm—1
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koo Jk—1 k min(n,jm—1) q %
2 z (2 z (psq<2k1+ml>> '

k=2n=jx_1 =2 s=jm-1

Hence, by applying (2.9) we have that
g
koo Jjr—1 k  min(n, jm—1) Jm—1
<42y Y o (2 Y ¢l ( S f)) . (2.10)
k=2n= ./k 1 =2 5= Jm 1 = Jm 2

We must now consider the cases 0 < g and 6 > ¢ separately.

2.1. The case 6 < g

We consider the inequality /(f) and note that g < 1. By applying the elementary
inequality (1.11) and using (2.10), we find that

koo Jr—1 k min(n, jm—1) % Jm—1
<4y Y wa( > <p;f> (2 ﬁ)

k=2n=jx_| m=2 S=jm-1 I=Jm—2

koo k Jm—1 Ji—1 min(”v./’mfl) g
=4922(2ﬁ) wa( ¥ %q).
—

=2 \i=jm-2 n=jk—1 S=Jm—1

Thus, by changing the orders of sums, we get that

2]
0 0 keo koo Jm—1 kal 0 min(n,j,—1) q
N=4 > 2 ] X ol X ¢
m=2k=m \i=jn—2 n=jr_1 S=jm_1
2]
q

oo Jm—1 sl n q
w5 (55) s e($a)
m=2 \i=ju—2 n=jm—1 S=Jm—1

Therefore, by using Holder’s inequality and (1.12), we obtain that

0 0 Koo Jm—1 % Jm—1 o % [ 0 n %
<4y X fiwl 2wt X e X ef
m=2 \i=jm—2 I=jm—2 n=jm—1 S=Jjm—1

0 N i
0 keo  Jm—1 r ©o 0 n a Jm—1 ) »
<4 X X fiwl”) qsup| X oof( X of 2 "
m=21=jy—2 m>2 n=jm—1 S=jm-1 i=1

. N\ N\
<4? <2Z|ﬁ-~ui”> sup(Zw (Z<P5> ) (Zu?”>
i=1 r=1 s=r i=1

RST1-)
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241 0 0
= (2 Bl fllpu) < (Billfllpu)
Hence,

P < (Bill )

so that
1(f) < B fllpu if 6<gq. (2.11)

2.2. The case 6 > g
We start with the inequality (2.10):

keo Jr—1 k min(n,j,—1) Jm—1 %
s ¥ o5 (1))
k=2n=jx_1 =2 s=jm-1 =Jm-2

First we raise both sides in (2.10) to power % <1

oS5 (2™ (5 ) )g

=2n=jx_1 \m=2 S=jm—1 =Jm-2

Tl

N

Next we apply (1.9) in the inner sum with ¢ = % and obtain that

koo k Jr—1 min(n, j,—1) % Jm—1 6
wncel£[2 (5 ("5 ) (51

k=2 | m=2 \ n=jx_1 S=jm-1 I=Jm—2

SR
B3
SR

Using (1.10), we get

q
koo _ koo Jr—1 min(n,j,—1) g Jm—1 ?
rH<ey 1Y Yo ( > w‘?) (Z ﬁ)
m=2 _k Mmn=ji_1 5= jm—1 1=Jm-2
014
koo jmfl koo ./k 1 min(nvjmfl) q
5 (5] (28 (7Y )
m=2 \i=ju_n k=mn=j_1 5=Jm-1

q

[

m=2 \i=jm-2 n=jm—1 S=Jm—1 k=m+1n=ji_| $=Jm—1

oo Jm—1 q Jm—1 n 7 koo Jr—1 Jm—1 Q
<4q2( § f> 3 w,f< s @ S Y (z ¢s>
Thus, we get that

0 o §

e s (5[5 (5 ) 5 (5 )

m=2 \i=jm—2 n=jm—1 S=Jjm—1 n=Jm S=Jm—1
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01 %
Jm—1 oo 0 n q
Z > fi > o) Y of
m=2 \i=jnm—2 n=jm—1 S=jm—1

Hence, by using Holder’s inequality,

SIS

q

19(f) < 4 % ( jmz:{l fl-“i|p> P ( jmz:{l ui_p/> o i a)f( i (P?>

m=2 \i=jm-2 I=jm-2 n=jm—1 S=Jm—1

ES

Therefore, by applying (1.12) with o = % , we obtain that

1 q
o\ § . 1
w  Jm—1 oo q Jm—1 o 4
new(8s flulv’) w( 5 a3 )] (Eur)
m=2i=jp_2 mz2 n=jm—1 S=Jjm—1 i=1
4 1
< @m (B ) < B0 < (Bl
so that
1(f) < Bi|fl p.us (2.12)
also for the case 6 > ¢. From the inequalities (2.11) and (2.12), we have that
1
oo n k q % [Z]
<Zw,?(2|<pk2ﬁ ) ) < Bl lpa 2.13)
n=1 k=1' =1

and C < By, where C is the best constant in (1.4).
From the inequalities (2.4) and (2.13), we get C = B . The proof is complete.

REMARK 2. Theorem 1 means that the inequality (1.4) holds for both cases 1 <
p<O<g<eand 1 <p<g<O <eo whenever (2.1) is satisfied.

3. Thecase 0 <g<p< O <eo,p>1
For this case the main result is the following:

THEOREM 2. Let 0 < g < p < 0 <oo, p> 1. Then the inequality (1.4) holds for
some C < oo if and only if max{Bj,B,} < e, where Bj is defined by (2.1) and

P—q
q(p—1) Iz

7ed , = w &
B = sup 2 (Z %) ¢! (Zw”’) (Z wﬁ)
k1 \ =1 n=1 i=k

Moreover, C = max{B},B,} with the equivalency constants depending only on k,p,q
and 0, where C is the best constant in (1.4).
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Proof Let 0<g<p<0O<eo,p>land g={gi}7,, 820 g>0,Vi>1.
From (1.4) we have that
1

(E(er Elofel))

C =sup < oo, 3.1

>0

==

(él |ujg;lP )

where C is the best constant in (1.4).
We raise both sides of (3.1) to power g and get that

; (3.2)

We define r:=

Ql%
=
=S
Il
—
&
~—

Let h={h;}7,, h >0, Vi > 1. Then, by the Holder inequality,

3 < (S ) (S o 1) L=

k=1

The sharpness of this inequality implies that

where 7 :r 1= OT

C? = supsup
g>20h>0 (
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0—q

0

kg ((Pk j§1 gJ») g é‘k hy,

RS 1ENY

= supsup

g20h=0 ( E ‘ujgj‘p> (kil(wlzqhk)e%ﬁ

oo k q o
S (9c28i) X h
=1\ = =k (3.4)

> h,. We calculate the second supremum connected to g separately. By

Let H :=
. n:k .
using Theorem A we obtain that
p=a
pla=1) /) Pa
—p

(E (Z&) (Pka>l 0o o L n
sup k=1 % j= (g(Z(PZHk)p (Z )pq

>0 >
(x |u,gj|p)

By inserting (3.5) into (3.4) we find that
plg—1)

(£ (Zom) ™ (5

(3.6)

Z%Zh —Zh Z(Pk»

Next we note that
Z Ol H, =

k=n
—-q

n
2y’

J=1

and define
, p(q:l) , pT
( : ) T and Wy := e

Accordingly, we get that
i pL I’ % oo
( > (2w 3 el) ) ( >

C? 2 sup ~=1

=0 ( § (Wichy) 04

(3.7)

(3.9)
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Here
i j i
ain= 2 Q<Y O+ ol =aij+ajn
k=n k=n k=j
and ‘
: q i q 1
Adjn = z Ors Ain = 2 ¢, SO that Ain = E(aiJ +aj~,n)'

k=n k=j

‘We conclude that
s(aijtajn) <ain<aij+tajn < ain~aijtajn, 12j2n, (3.10)

2
which means that (a;,) satisfies the discrete Oinarov condition and, moreover, 1 < p <

G < o, and for the operator A defined by (Ah), = Z ajnhi, n > 1, we have that

(i( Un(Ah) )) <C‘1<§ (W) ) , h>0. (3.11)

n=1

Accordingly, if C? is the best constant in (3.9), by Theorem B it yields that C? ~
max{B},B,}, where

and

L hnd o
Bz-sup<zak,,m>q<zw>~,

k>1 i—k

k o - N k L 2—q o _0\4
sup (X, 01)" (Sl ") =swp( 2 U77) " (Zaiwi )
k=1 Mp=1 i=k n=1 i=

k>1

so that
B, ~ B’f. (3.12)

Moreover,
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—q
k k

2o el \NT e g
— sup (z (2(1);1) 74 <2uj—p> = “np> <2wi6> )
j=1 i=k

k=1 \n=1 “r=n

Hence, by applying Lemma 1, we obtain that
P—4q

kK k k q n N\ LD P oo 0 g
5 P—q — r—q —p
s XY ol(Xof) " (2u”) ") (Rof)".
> s=r i=k

n=1r=n j=1

so that, by changing the orders of sums and by using Lemma 1 again, we have that

Therefore B ~ B so that, by also using (3.12), we find that C? ~ max{B;,B,} ~
{B1,B1}. We conclude that C ~ {B,B;} and the equivalence constants depend only
on p,q and 6. The proof is complete.

4. The cases 0 <g< 0 <p <o, p>1
The main result in this section reads:

THEOREM 3. Let 0 < g < 0 < p <oo, p> 1. Then the inequality (1.4) holds for
some C < oo if and only if max{D;,D;} < oo, where

p=6
oo 0o i 0 p—Le j L\ PO-1) , »o
N q 0 4 =0 —p
Di:=| Y 2(2%{1) o; (2”: ) u; ,
J=L\i=j “s=j i=1
and
—0
o 0(p—q) T
oo J J _q_ s , ‘1(;*{]1) q(p—8) , o 0 pie 0
. q pP—q q —p — -
D= |32 (Xet) ot X" (Tof) " of| .
j=1 \s=1 “r=s k=1 i=j

Moreover, C =~ max{D,D,} with the equivalency constants depending only on k,p,q
and 0, where C is the best constant in (1.4).
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Proof. The proof of Theorem 3 is the same as the proof of Theorem 2 up to (3.9).
But in Theorem 2, we proved that the inequality (3.9) holds for the case 1 < e%q =p<

qg= pi < oo, from which it follows that 0 < g < p < 0 < oo,

Notethat,e—iq>ﬁ:>p6 0g— p9+pq>0$pq>q9=>p>6 P>q,

0 > ¢g. Then the case 1 < ppq =g<p= e 7 < follows from the case 0 < g < 0 <
p < oo, p > 1. Therefore we will consider for the inequality (3.9) for the following
case: 1 < p =g<p= < oo,

Let 1 < p_q =g<p= 9—q < oo. We can estimate the value of best constant CY

in the inequality (3.9), where (g, ;) satisfies the discrete Oinarov condition. In fact, by
using Theorem C, we have that C? ~ max{Dy,D,}, where

Next we rewrite the values of Dy and D, by using (3.6) and (3.7). In fact,

(S (5 (e bty e e e
q AV P—q - P—q
D= | X (Z(Ze) W) ()"

j=1 "i=j “s=j i=1
oo oo i ] - J i , p(qjl) , p(efg)
“(Z(2(Ze) o) (Z(Zmr) 7)™
j=1 ti=j “s=j i=1 "n=1
. 4(p—06)
J , pgjrql) , po
- 4 —p
X(Z n17> j )
n=1
so that, by applying Lemma 1, we obtain that
0 j (=1)_pl(0=a) , pla=1) 15
= =3 i 1A _pP_ J g\p—1) plv—q +I’q’ P
“ p—0 -p'\ r=q qp=0)" p=a —p
b= (£ (2 (Zor) o)™ (L) gy
j=1 "i=j “s=j i=1
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4(p—6)
0(p—q) PO
o [ j 2,k - B W 0 S 0
— pP—q - P—q —p P—
“(Z(Z(Ze)7(2u”) 7w (Zof)"Ta? |
j=1 \k=1 "s=k n=1 i=j
so that, by applying Lemma 1, we get that
a(p—06)
0(p—q) PO
oo i j q_ k \ Pla=l) )\ @) |, = o 99 o
I, A~ rP—q — pP—q —p =
IZEA DY ZZ(Z(,D;I) (pf(zunp> u (sz> o
j=1 \k=ls=k "r=s n=1 i=j

Therefore, by changing the orders of sums and by using Lemma 1 again, we have that

q(p—0)
. . 0(p—q) o
oo J J 4 s k /psq—ql) )\ ap—8) , oo 0 ie 0
s P—q _ p— —p p—
p= |3 (5 (o) e (50 ) (S ) o
j=1\s=1 "r=s k=1 “n=1 i=j
q(p—0)
9(p—q) PO
oo J J a4 s /q(’p—ql) 9p—0) o o pie 0
~ P—q —p D— — g
APAPAOXI IO (Xof)"o? | =i
j=1 \s=1 "r=s k=1 i=j

Hence CY¢ ~ max{D1,D,} ~ {D?,D3} so that C ~ {D;,D,} and the equivalency con-
stants depend only on p,q and 0, where C is the best constant in (1.4).
The proof is complete.

Acknowledgement. We thank Professor Ryskul Oinarov for some generous ad-
vices, which have improved the final version of this paper. Moreover, we thank the
referee for some good suggestions, which have improved the final version of this paper.
This research was supported by the grant no: AP05130975 of Ministry of Education
and Science of the Republic of Kazakhstan.

REFERENCES

[1] K.F. ANDERSEN AND H. HEINIG, Weighted norm inequalities for certain integral operators, SIAM
J. Math. 14 (1983), 834-844.

[2] G. BENNETT, Some elementary inequalities, Quart. J. Math. Oxford Ser. 38, 2 (1987), 401-425.

[3] G.BENNETT, Some elementary inequalities, 111, Quart. J. Math. Oxford Ser. 42, 2 (1991), 149-174.

[4] M.SH. BRAVERMAN AND V.D. STEPANOV, On the discrete Hardy inequality, Bull. London Math.
Soc. 26 (1994), 283-287.

[5] V.I. BURENKOV AND R. OINAROV, Necessary and Sufficient conditions for boundedness of the
Hardy-type operator from a weighted Lebesque space to a Morrey-type space, Math. Inequal. Appl.
16, 1 (2013), 1-19.

[6] K.G.GROSSE-ERDMANN, The blocking technique, weighted mean operators and Hardy'’s inequality,
Lecture Notes Math. 1679, Springer Verlag 1998.



[7]
[8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]

WEIGHTED ITERATED DISCRETE HARDY-TYPE INEQUALITIES 959

G.H. HARDY, Notes on some points in the integral calculus, LX. An inequality between integrals, LX.
An inequality between integrals, Messenger of Math. 54 (1925), 150-156.

A.KUFNER, L. MALIGRANDA AND L.-E. PERSSON, The Hardy Inequality About its History and
Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.

A.KUFNER, L. MALIGRANDA AND L.-E. PERSSON, The prehistory of the Hardy inequality, Amer.
Math. Monthly 113 (2006), 715-732.

A. KUFNER, L-E. PERSSON AND N. SAMKO, Weighted inequalities of Hardy type, Second Edition,
World Scientific Publishing Co. Pte.Ltd., New Jersey, 2017.

R. OINAROV, C.A. OKPOTI AND L.-E. PERSSON, Weighted inequalities of Hardy type for matrix
operators: the case q < p, Math. Inequal. Appl. 10, 4 (2007), 843-861.

R. OINAROV AND S.KH. SHALGYNBAEVA, Weighted additive estimate of a class of matrix operators,
Izvestiya NAN RK, serial Phys.-Mat. 7, 1 (2004), 39-49. (in Russian).

C.A. OKPOTI, L.-E. PERSSON AND A. WEDESTIG, Scales of weight characterizations for the dis-
crete Hardy and Carleman type inequalities, In: Proc.Conf. “Function Spaces, Differential Operators
and Nonlinear Analysis”, FSDONA 2004 (Milovy, May 28-June 2, 2004), Math. Inst. Acad. Sci. Czech
Republic, Prague 2005, 236-258.

D.V. PROKHOROV AND V.D. STEPANOV, On weighted Hardy inequalities in mixed norms, Proceed-
ings of the Mathematical Institute. V.A. Steklova, 283 (2013), 155-170. (in Russian).

A. TEMIRKHANOVA, Estimates for Discrete Hardy-type Operators in Weighted Sequence Spaces,
PhD thesis, Department of Mathematics, Luled University of Technology, 2015.

(Received August 13, 2019) B. K. Omarbayeva

Department of Fundamental Mathematics
L.N. Gumilyov Eurasian National University
Satpayev str. 2, Astana, 010000 Kazakhstan
e-mail: gaziza.omarbaeva@mail.ru

L.-E. Persson

Department of Computer Science and Computational Engineering
UIT The Arctic University of Norway

Norway

Department of Mathematics and Computer Science

Karlstad University

Sweden

e-mail: lars.e.persson@uit.no, larseriképers@gmail.com

A. M. Temirkhanova

Department of Fundamental Mathematics
L.N. Gumilyov Eurasian National University
Satpayev str. 2, Astana, 010000 Kazakhstan
e-mail: ainura-t@yandex.kz

Mathematical Inequalities & Applications

mia@e

.ele-math.com

le-math.com



