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ON STEVIC-SHARMA OPERATORS FROM WEIGHTED
BERGMAN SPACES TO WEIGHTED-TYPE SPACES

MOHAMMED S. AL GHAFRI AND JASBIR S. MANHAS *

(Communicated by I. Peric)

Abstract. Let 5 (D) be the space of analytic functions on the unit disc . Let ¢ be an analytic
self-map of D and v,y € (D). Let Cy, My and Z denote the composition, multiplication
and differentiation operators, respectively. In order to treat the products of these operators in a
unified manner, Stevi¢ et al. introduced the following operator

Ty ol =V1-fo@+ya-foQ, fe (D).

We characterize the boundedness and compactness of the operators Ty, y,,o from weighted
Bergman spaces to weighted-type and little weighted-type spaces of analytic functions. Also,
we give examples of bounded, unbounded, compact and non compact operators Ty, y,.¢ -

1. Introduction

Let 57 (D) be the space of analytic functions on the unit disc I in the complex
plane C. Let ¢ be an analytic self-map of D and y € (D). The weighted compo-
sition operator Wy, o : (D) — (D) is defined as

Wyof =W -foo,

for fe (D). If v =1, then Wy, reduces to the composition operator and it is
denoted by Cyp. Also, if ¢ is the identity map, then Wy, reduces to the multipli-
cation operator and it is denoted by My,. Thus the class of weighted composition
operators Wy, o = My Cy is the product of multiplication operators and composition
operators. Weighted composition operators have been appearing in a natural way on
different spaces of functions. For example: the isometries of Hardy spaces, Bergman
spaces and many other spaces of analytic functions are weighted composition operators.
For details on this, we refer to the monographs of Fleming and Jamison [8, 9]. Also,
we refer to the monographs of Cowen and MacCluer [6], Shapiro [36] and Singh and
Manhas [38] for more information on composition operators and weighted composition
operators.
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Let 2 = @' be the differentiation operator on 7 (D) defined by 2f = f'. If
n € Ny, then the operator 2" is defined by 2"f = f"), f € (D). Since the differ-
entiation operator Z is typically unbounded on many analytic function spaces, recently
many mathematicians have started exploring different properties of the following prod-
ucts of multiplication, composition and differentiation operators on different spaces of
analytic functions.

IMyCof =y - fop+ye' - foo; MyCo2f =vy-f og;
CoPMyf =y o -fop+yog-fog; MyPCof =o' - f'o@;
PCoMyf =y 0@-¢' - fop+yop - fop; CoMyZf=wyoq-fo@.

ey

If w(z) =1, forall z €D, then we get the product of composition operators and
differentiation operators ZCyMy = ZC¢y and Cyp IMy, = Cy 7 . The boundedness and
compactness of the products ZC, and CyZ of composition operators and differenti-
ation operators between Bergman spaces and Hardy spaces were first studied by Hib-
schweiler and Portnoy in [12] and then on Hardy spaces by Ohno [35]. Furthermore, Li
and Stevi¢ in [17, 18, 19, 20, 21] studied the boundedness and compactness of the op-
erator 2C, between Bloch-type spaces, weighted Bergman spaces AL and Bloch-type
spaces AP | the space of bounded analytic functions H* and a-Bloch spaces, mixed-
norm spaces and o -Bloch spaces as well as Zygmund spaces and Bloch-type (Bers
spaces). Also, Stevi¢ [39, 41] studied these product operators between Bergman spaces
as well as from H* and Bloch spaces to nth weighted-type spaces. The property of
boundedness from below of the operator ZC, on Bloch-type spaces has been studied
by Liu and Li in [23]. If ¢ is the identity map, then we get the product of multiplica-
tion and differentiation operator My, Cy = YMy, and My, 2PCy = My % . Yu and Liu
in [49] studied the products ZMy, and My % from mixed norm spaces to the Bloch-
type spaces and Zhu [52] investigated these products from Bergman-type spaces to
Bers-type spaces. Also, Liu and Li in [22] studied the operator ZM,, from H* to Zyg-
mund spaces. Further, the product of weighted composition operators and differentia-
tion operators ZWy, o = My Cyp and Wy, o 7 = M,Cy 7 were studied by Sharma [37]
between weighted Bergman-Nevanlinna and Bloch-type spaces. Li, Wang and Zhang
[16] investigated ZWy, , between weighted Bergman space and H*. Also, Jiang in
[13] explored Wy, o and Wy, o2 from weighted Bergman spaces to Zygmund-type
and Bloch-type spaces. In [40, 42], Stevi¢ studied weighted differentiation composi-
tion operators Wy, , 2" from mixed-norm spaces to weighted-type spaces whereas Zhu
[53] studied generalized weighted composition operators Wy, , 2" from Bloch spaces
into Bers-type spaces. Manhas and Zhao [30, 31, 32] studied the operators ZW, , and
Wy,oZ between weighted Banach spaces of analytic functions and weighted Zygmund
(Bloch) type spaces.

Let y1,y, € (D) and ¢ : D — D be an analytic map. Then in [44], Stevié et
al. introduced the following operator which unifies all the products of multiplication,
composition and differentiation operators given in (1).

Tyiyof =Y1-fop+ya-foo, feAD). )
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By choosing appropriate y;, ¥, and ¢ in (2), we get all product type operators given
in (1). More specifically, we have Ty v o = ZWy o = IMyCyp, Toy.9 = Wy o2 =
MyCo 2, Toyg .o =MyZCo; To.yop,o = CoMyZ: Tiyrop)gl (yog)e' .o = ZCoMy and
Tyog,yop.o = CoZMy.

In [43, 44, 45], Stevic¢ and co-workers studied these operators Ty, y,,o on weighted
Bergman spaces and between Hardy and o -Bloch spaces. Also, Jiang [14] investigated
these operators from Zygmund spaces to the Bloch-Orlicz spaces, whereas Zhang and
Liu [50] studied these operators from mixed-norm spaces to weighted-type spaces. In
[2], Bai studied the Stevi¢-Sharma operators from area Nevanlinna spaces to Bloch-
Orlicz type spaces and in [26], Liu and Yu studied these operators from Besov spaces
into weighted-type spaces H,;". In [10], Guo and Shu investigated the boundedness and
compactness of Stevié-Sharma operators from Hardy spaces to Stevi¢ weighted spaces.
Also, in [24], Liu et al. studied an extension of Stevi¢-Sharma operator from mixed-
norm spaces to weighted-type spaces on the unit ball and then further Liu and Yu in
[25] studied these operators from the general space F(p,q,s) to weighted-type spaces
on the unit ball.

In this paper our aim is to characterize the boundedness and compactness of Ty, y;,.¢
from weighted Bergman spaces to weighted-type and little weighted-type spaces of an-
alytic functions generalizing the results of Li, Wang and Zhang [16], Wolf [48] and
Jiang [13]. Also, we give examples of bounded, unbounded, compact and non compact
operators Ty, y,.e illustrating the role of inducing maps and weights.

2. Preliminaries

Let v be a strictly positive, continuous and bounded function on . We will call
such a function v as a weight function or simply a weight. We define the weighted-type
and little weighted-type spaces of analytic functions as follows:

={feD):|Ifll :=s1€1£v(z) [f(2)] < oo}

and

Hip={f €2 D): lim v(z)|f(2)| = 0}.

Izl =1

Clearly H;" is a Banach space under the norm ||f||, :=supv(z) |f(z)| and it is a natural
zeD
space in the sense that the norm convergence in H;” implies uniform convergence on

compact subsets of . Also, HY is a closed subspace of H;". In case v(z) = 1, then
H;> = H”. The weighted Bergman space of analytic functions is defined as follows:

1
P

Mg =3 FEX®): flpi= | [IQIV@AAR) | < 1<p<o
D

where dA(z) denotes the normalized area measure. If v(z) =1, then A, , = A,, the
classical Bergman space. If v(z) = (1 — |2]*)*, a > —1, then A, , = Aq is the stan-
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dard weighted Bergman space. For more information on Bergman spaces, we refer to
Hedenmalm, Korenblum and Zhu [11], Duren and Schuster [7] and Zhu [51].
The associated weight v for a given weight v is defined as follows:

-1
W(z) = (sup [f@]:feHT, [Iflly < 1) A

z€eD

where &, : H;> — C is the point evaluation linear functional. In the setting of general
weighted spaces of analytic functions, the associated weight plays an important role. It
has been seen in [4] that the following relations between v and v hold:

0 < v < v, and vis bounded and continuous; 3)

£l < 1 if and only if || f||s < 13 @

for each z € D there exists f; in the closed unit ball B}’ of H;” such that

@) = i) )

A weight v is said to be radial if v(z) = v(|z|) for every z € D. Also, a weight v
is called essential if there is a constant £ > 0 such that

<!
—~
la\l

v(z) <v(z) <kv(2) (6)

forevery z € D.
In [28], Lusky introduced the following condition (L1) which plays an important
role in this paper:
1—2!
inf /¢ )

= % @b

Radial weights which satisfy condition (L1) are always essential (see [5]).

The standard weights vy (z) = (1 —|z[*)*, where o > 0, and the logarithmic
weights vg(z) = (1—1log(1—[z|*))P, B < 0 satisfy condition (L1). For more details on
the weighted-type and little weighted-type spaces of analytic functions which have im-
portant applications in functional analysis, complex analysis, partial differential equa-
tions, convolution equations and distribution theory, we refer to [3, 4, 27, 28].

Next, in our paper we also consider the following weights. We define the weight
v as

v(z) := v(|z|?) forevery z € D, (7)

where Vv is an analytic function on D, non-vanishing, strictly positive on [0,1) and
satisfying lin} v(r)=0.
r—

The following are some of the examples (see [46]) illustrating these type of weights:

(w1) If we consider vy (z) = (1 —2z)*, where o > 1, then we have the standard weights
va(z) = (1—[z]*)%.



WEIGHTED COMPOSITION OPERATORS 1055

1
(w2) If we consider vy (z) =exp (9%, where o > 1, then we have the exponential
R
weights Vg (z) =exp (-:H”
(w3) If we define v(z) = sin(1 — z), then we have the weight v(z) = sin(1 —|z|?).

These examples also satisfy condition (L1) (see [28]).

For a € D, we define the functions v,(z) := v(a@z), ¢.(z) = {= and p(z,a) =
|@4(z)|, for every z € D. The function v, is holomorphic since v is holomorphic.
Also, ¢, is called Mobius transformation that interchanges a and 0 and p is known as

the pseudohyperbolic metric on . Note that ¢,(¢,(z)) =z and

ron 1
¥,(z) = —m,

The notation A < B means that there is a positive constant C such that A < CB.
In this paper we use the notation A < B, which means that both A < B and B <X A.

3. Boundedness and compactness of the operators Ty, y, ¢ : Ay, — H;,

In order to obtain our main results of boundedness and compactness of the opera-
tors Ty, ,y,,p» We need to state and prove the following lemmas.
We begin with stating the first lemma which is proved in ([46], Lemma 3 ).

LEMMA 1. Let v be a radial weight as defined in (7) such that

supsap " a(@2(2)

<C < oo,
achzed  V(@a(2))

and v satisfies condition (L1). Then there exists C, > 0 such that for every f € A,

[f(2) = f(a)] <Cvf||v7pmax{ : : : }P(M)

(1= ) rv(z)7 (1—|a]?)7v(a)?

forevery z,a € D.

LEMMA 2. Let v be a weight as defined in Lemma 1. Then there exists C, > 0
such that for every f € A,

Golf vp
2 1
(1= [z2) " 7u(z)7

f(@)I <
forevery z€D.

Proof. By Lemma 1, the proof is completely analogous to the proof of Lemma 3
given in [48] and hence we omit the proof here.

Next we state the following lemma for the space A,,, whose proof can be obtained
by using Lemma 2 and the techniques of Lemma 3 of [47] which is proved for H;".
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LEMMA 3. Let v be a weight as defined in Lemma 1. Then there exists r € (0,1)
and a constant M > 0 such that for f € A,

‘f/(Z) —f’(a)\ < M HJZHV,Pp(Z?a)
rv(a)? (1-al)*7

for every z,a € D with p(z,a) < 5

LEMMA 4. Let v be a weight as defined in Lemma 1. Then there is a constant K
such that for every f € A,,p,

@) - @) < Kllfv,pmaX{ :

1
: , — ¢ P(z,a)
1=z *Pv(z)? (1—aP) Pv(a)? }

==

forevery z,ac D.

Proof. By Lemma 3, we can find r € (0,1) and a constant M > 0 such that

‘f/(Z)—f/(a)‘ <M HJ?”WP(ZM)
rv(a)7 (1-a]?)""

for every z,a € D with p(z,a) <

'@ = F@l<If ()I+ If’(a)\

< CIIvazp ;
(1—]z) T rv(z)?

<2G[|f]lv,p max

. Now in case that p(z,a) > 5 then by Lemma 2,

G Hf”w
\al )P0

C [1£1v,p max

@ (1) o v(a)r }p(w)'
Now if we put
K:max{4Cv,M},
r
then we get

1 1
1£@) — £(@) <K||f] max{ — — }p<z,a>.
' 1= )o@ (1= [a2) *Pv(a)?

The corresponding estimate to Lemma 2 can be obtained for the second derivative
by using Lemma 4. Inductively we can have the following two lemmas

1
{ v@)r (1-|aP) rv(a)r }
{ \ZI
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LEMMA 5. Let v be a weight as defined in Lemma 1. Then there is C, > 0 such
that for every f € A,

1M (2)| < Collfllvp

(1= |22 P v(z)

for every z €D and every n € Ny.

LEMMA 6. Let v be a weight as defined in Lemma 1. Then there is C, > 0 such
that for every f € Ay

1 1
7" (2) = (w)] <Cvf||v,pmaX{ 2 ; }P(Z,W)

1 2 1
(L= [z Pv(z)? (1= W) Pv(w)r
forevery z,w € D and every n € Ny.

In order to prove the compactness of the operator Ty, y, .o, we need the following
result and the proof can be deduced from Proposition 3.11 in [6].

LEMMA 7. Let w1,y € (D) and ¢ : D — D be an analytic map. Then the
operator Ty, y,.p : Avp — H,; is compact if and only if Ty, y,.@ : Avp — H) is
bounded and for any bounded sequence {f,} in A, such that f, — O uniformly on
compact subsets of D as n — oo, ||Ty, yn.ofallw — 0 as n— eo.

In the following theorem, we characterize the self map ¢ : D — D and yy,y» €
(D) which induce bounded operator Ty, y, ¢

THEOREM 1. Let v be a weight as defined in Lemma 1 and let w be an arbitrary
weight. Let yi,y, € (D) and ¢ : D — D be an analytic map. Then the operator
Ty, y.0 - Avp — H is bounded if and only if

(i) My =sup% < oo
2D (1-|p(2)|2) P v(9(2) P

(ll) Mz = sup W(Z)W/ZZ(Z)‘
z€D (1-]o(2)]?)

Moreover, if the operator Ty, v, ¢ : Avp — H,; is bounded, then

1Ty .0 llA,,—bz =< My + M. @)

Proof. First assume that the conditions (i) and (ii) hold. Let f € A, ,. Then by
using Lemma 5, we have

1Ty y,0fllw = SEEW(Z)WI (2)f(9(2) + y2(2).f (9(2))]

< supw(2)[wi ()] (9(2) [+ SEHI;W(Z)Ile(Z)Hf’@P(Z))I

zeD
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<G| fllvp (su wiz )Wl( ) T +sup wiz )|K2§Z)| 1)
D (1-|p()P)7v(9(@)? =D (1-]pR)2) " Fr(p()?
<CVHf”v,p(Ml‘|‘]‘42).

Thus
||Tu/1,u/2,goHA],‘paH$ < Cv(Ml +M2)~ (9)

This proves that the operator Ty, y,.¢ : Ay, — H,; is bounded.
Conversely, assume that the operator Ty, y, ¢ : Ay, — H,; is bounded. Fix a € D. By
(5), there exist f&a) € B such that

1
v(e(a))’

Since v satisfies the condition (L1), it is essential and hence we can replace v by v.
Now define

[fo( (@(a)” =

ST

80(a)(2) = Pp(a) (D) fp(a) (2) Ppp(a) (2)
forall z € ID. Then

lep@llz, = [ leow@Pr(@)aAR)
D
= [¥(@100a Q1 o (I 9y ()
D

< supy () fyto |p/|% 19y (IPAAR) <1
z€eD

Therefore gy(4) € Avp, 8g(a)(@(a)) =0 and
1
2
(1= lop(a)2) " 7 v(g(a))

|g:p(u)((l’(a))\ =

==

Thus

2 [Ty, v2.08p(a) |l

Zw ()|(TW17W27<Pg<p(a))(a)|

> (@) Y1 (@)8(a) (9(@)) + Y2(a)g ) (9(a)

_ w@ly@l
(1—lp@)P)"* Pv(p(a))?

|A\7,[)_’H

| ‘TWhWMP

Thus

M sy @)

2 g ||]lll Y (PHA —Hz < oo, (10)
D ] 2 £ 1,¥2, wp w
( ‘[F(Ll)' )1 l((p (a))

==
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This proves the condition (ii). Now we establish the condition (i). Let a € D. Then
again according to (5), there exist f&a) in B such that

@@ = s

Define .
he (@) = fo(a) (Z)(pfp(a)(z)ﬁ, zeD.

Clearly /¢4y € Ayp and ||hg()llv,p < 1. Thus by using Lemma 5, we have

Ty v0lla, -tz 2 Ty yn.0he@lw
> w(@)|(Tyy s htoa) (@)
> w(@) [ W1 (@)hg(a(9(a)) + Ya(@)hly ) (9(a))]
> w(@) [ Wi (@)h(a)(9(@))] - w(@) vy, (9(a))]
(@) Y1 (@) | fp(a) (9(0)]| 9] ) (@(@)) 7

2 N2 I 1+2 - (1D
(I—lp(@))rv(e@)? (1—[p(@)*) "7v(e(a))”
Now from condition (10) and (11), we have
vy = sup @@l
€D (1—[g(a)?)7v(p(a))?
w(z a
< Tyl + Gl sup ——2 VL
€D (1 —[@(a)|?) " rv(¢(a))?
< (L+C)[ Ty v pllay,—mg <o (12)

This proves the condition (i). Also, the asymptotic relation (8) follows from (9), (10)
and (12).
In the next theorem we characterize the compactness of the operator Ty, v, ¢ -

THEOREM 2. Let v be a weight as defined in Lemma 1 and let w be an arbitrary
weight. Let yi,y, € (D) and ¢ : D — D be an analytic map. Then the operator
Ty, .0 - Avp — HJJ is compact if and only if

(i) Ki =supw(z)|y1(2)] <o,
zeD

(ii) Kz =supw(z)|ya(z)] < oo,
zeD

(iii) lim sup —QWEL___ _q
r=Lo()|>r (1-19()2) P v(9(2)) P
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(iv) lim sup W(Z)|1W22(Z)| —0.
r=Lip()[>r (1-l0@)2) 7 v(e(2)

Sl

Proof. First, we assume that the conditions (i)-(iv) hold. Let {f; },en be a bounded
sequence in A, , such that it converges to zero uniformly on compact subsets of ID. To
show that Ty, y, e is compact, in view of Lemma 7, it is enough to show that the op-
erator Ty, v, is bounded and ||Ty, y,.¢fu||w — O as n — co. We begin with showing
that Ty, vy, is bounded. In view of (iii) and (iv), for € =1, there is r € (0,1) such
that whenever r < [@(z)| < 1, we have

@@l -

and
w(z)[y2(2)]

2 1

(1= "7 v(e(2)7

Since the weight v is a strictly positive and continuous function on D, there exists a

constant & > 0 such that v(¢(z)) > 6 for all z € D satisfying |¢(z)| < r. Hence for
|o(z)| < r, we use (i) and (ii) to get the following inequalities:

<1. (14)

W(Z)|W12(Z)| T < Klz T (15)
(1=lp@)P) 7 v(p@E)r  (1—=r2)76»

and
w(2) |y (2)] K>

(1= o)) v(p()r
From (13), (14), (15) and (16), we have

(16)

sup W(Z)Wg(zﬂ 7 :max{ sup ! T
D (1-lp@)P)rv(e(2)r lo@l<r (1=lp(2) )7 v(e(2)”

< sup

S
=
v
~
—~
—
|
S
—~
la\l
~— |<
|5}
~—
<
—~
S
—~
3l
~—
~—
<=

K

<—> 71
(1—r2)r g7

+1 (17)

and

wp— MO { up GIUGI
<0 (1= |pR)P) (o) o< (1= p(@)P)  7v(p(2))7

)
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up w() ya(2) }
2 1
oG (1= () TP v(e(z)7
w(Z)|Y2(2
- G
pl<r (1 |9() ) Fr(p()?
w(z)|y2(z
- Qv
@ (1= [(2)?) " rv(e())”
K>
(1—r2)F58s
Thus (17) and (18) implies that the conditions (i) and (ii) of Theorem 1 are satisfied.
Hence Ty, v, : Avp — H,, is bounded.
Next, we show that ||Ty, y,.¢fu|lw — 0 as n — oo. From conditions (iii) and (iv),

it follows that for every € > 0 , there is r € (0, 1) such that whenever r < |¢(z)| < 1,
we have

< (18)

W@, 19
(1=1lo(@)*)7v(e(2)”
and
W@l 0

2 1

(1= "7 v(e(2)?

Now since f;, converges to zero uniformly on compact subsets of ), Cauchy’s esti-

mates implies that f, converges to zero uniformly on compact subsets of D. Hence

there is an nyp € N such that, if |¢(z)| < r and n > ng, then |f,(¢(z))] < € and
|/2(@(z))| < €. By using the conditions (i) and (ii), we have

‘ ?H)F w(2)| w1 (2) fu(9(2) + ¥2(2) £, (0(2))]
o(z)|<r

<e <| sup w(2)|ya(2)] + sup W(Z)W2(1)|>
®

(@)I<r lp(z)<r

<e (supw(a)lwi 9+ supw(a)va(o)
zeD zeD
<e(Ki +K»). 1)
Since {fy}nen is bounded in A, j,, sup||f,|,, <M. Thus from (19), (20) and (21), it
follows that !

1Ty .0 Sl = SIEJHI;W(Z)Wl (@)fa(9(2) + v2(2) £ (0(2)]

= max { sup  w(2)|y1(2)fa(9(2) + w2 (), (0(2));

r<|o(z)|<1

sup w(2)|yi(2)/u(@(2) + 2 (Z)f£(<P(Z))}

lp(z)]<r
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< ‘51(11; lw(z)|1l/1(Z)fn(ﬁo(z))‘f‘l!/z(Z)fé((P(Z))|
r<|p(z)|<

+‘ S(all)IID w(2) |1 (2) fa(9(2) + v2(2) £, (9(2))]
o(z)|<r

w(2) W1 (2G| fullvp

r<lo@I<1 (1 — |@(2)2)Pv(e(2))?
o w(Z)IWz(Z)llszfn |V’pl +e(Ki+Ko)
r<lo@)<1 (1 —|@(2)[2) " Pv(e(z))?

< (2MC, +Ki + K>)e.

<

This proves that the operator Ty, y,.p : Avp — H,; is compact.
Conversely, assume that the operator Ty, y,,¢ : Ayp — H; is compact. Since
Ty, v, is bounded, by taking f(z) =1 and g(z) = z, we have

Ty, .m0 f|lw = supw(z)|y1(2)],

zeD
and
Ty ys,08llw = jggW(Z)llm (@)2) + va(2)l-
Thus it follows that
§E£W(Z)|lm @] = ITyrya0 1w < Ty yniplla,, -z <, 22)
and

supw(z) |y (2)@(2) + ()| = Ty1,u.08llw < [ Tyaumolla,—pz <o (23)
z€

Also, we have

supw(z) |2 (2)] < supw(2)|y1(2)9(z) + va(2)| +supw(z)|yi(z)[suplo(z)].  (24)
zeD zeD z€D zeD

From (22), (23) and (24) and ||@|| < 1, one can conclude

supw(z)|ya(z)] < .
zeD
Thus conditions (i) and (ii) are proved.
Now to prove condition (iv), let {z,},eny be a sequence in D with |@(z,)] — 1
such that

lim sup w(@)va () tm w(zn) |y (zn)|

el (1o ) Fiv(eR)r " (1— o)) T v(e()7

==
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By choosing a subsequence we may assume that there exist ng € N such that |@(z,)|" >
2 , for every n > ng. According to (5), there exist fp € By, such that

L
(@(zn))

Since v satisfies the condition (L1), it is essential and hence we can replace v by v.
For each n, consider the following function

[fotan) (@(2n))[” =

8n(2) = Pp(z,) ()P, 2 )7 fota) (2"

Clearly g, € A, and sup||gn||y,, < C. Also, g,(¢(z)) =0 and
n

(¢(za))"
(1= l9(za) ) "7 v(e(zn))7

Since g, — 0 uniformly on compact subsets of I, by Lemma 7, ||Ty, y,,08&nllw — 0
as n — oo, Thus

\gi,((p(zn))\ =

Ty yn.08nllw = w(zn) W1 (zn)gn(@(z 1))+ ¥2(20)8, (@ (20))]
(Zn)\llfz(zn)H (zn)["

¢
~ o)D) 7 v(9()
|

==

(1
> % (Zn)“f/i(zn) - (25)
(L= lo@)[*) " 7v(e(za))”
From (25), it follows that
lim w(zn)|W2(2n)] —0. (26)

(L= () P) P (@(z)) 7

This proves the condition (iv).
Next to prove condition (iii), again let {z, },en be a sequencein D, with |@(z,)| —
1 such that

O 1171 R L/ 5 Io
Sl (1= o) o) " (1|9 ve()

Again, using function fq,(Zn) as obtained earlier, we define

==

hn(2) = (quzn()fqozn()

Clearly, h, € A,,, with sup||hy||,, < C and
n

n(@(2)) = o)

(1=lo()?)

==

v(@(z))
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Since &, — 0 uniformly on compact subsets of D, again by Lemma (7), ||Ty, y.ohn||w —
0 as n— oco. Now

1Ty 0l = w(zn) [ W1 (2)in (9 (2n)) + W2 (@) iy (0(20)) |
> w(2n) [ W1 (zn) hn (@ (zn)) | = W(zn) [ W2 (2) i, (@ (20))]|
|

_ (zn)|llf1(zn) @ (zn)]" = —w(z) Y (@) [ (@(za)|
(1= |9() ) P v(@ ()7
o1 el el g

(= [p@)P) P v(p@)? (1= lo@)) V(o)

Further, (28) implies that

w(zn) Wi (zn)] < 2C,Cw(zn) W2 (2n)|
2 = 2
(1= 1o@)P)7v(z))7  (1=]o)?)  7v(p(z))
From (26) and (29),it follows that

+2[| Ty bl (29)

==
==

i @G
(1= 1@()[)7v(@(zn))”

which proves the condition (iii). This completes the proof of the theorem.
If we (D) and ¢ : D — D is an analytic map, then the boundedness and
compactness of the product of weighted composition operators and differentiation op-

erators ZWy o = Tyt yo .o and Wy P =Ty y o follows from Theorem 1 and Theorem
2 which we state in the following two corollaries.

:07

COROLLARY 1. Let v be a weight as defined in Lemma | and let w be an arbi-
trary weight. Let y € 77 (D) and ¢ be an analytic self-map of D. Then:

(a) the operator YWy o : Ay, — H,; is bounded if and only if
(i) M; = sup W(Z)W/()‘ < oo}
€D (1-]p()1?) P v(9(2)

(
(ll) M2 = sup w(z)|y(z )H‘P @] .
2D (1-lp@P) P r(p()?

Bl

< oo,
Moreover, if the operator PWy ¢ : A,,, — H,; is bounded, then
H @WWQD ||Av.p*>H$ = Ml + Mz'

(b) the operator IWy o : A, , — H;; is compact if and only if
(i) Ki=supw(z)|y'(2)] <
z€eD

(ii) Ky = sggw(z)lv(z)«p’(z)! <o}
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(iii) lim sup % —0:
=L@ >r (1-l@)P) P () ?
(iv) hm sup w(@)|w(2)¢'(2)] —0

=1 ip)>r (1-lp@R) 7 r(e() ?

COROLLARY 2. Let v be a weight as defined in Lemma | and let w be an arbi-
trary weight. Let w € 7 (D) and @ be an analytic self-map of D. Then

(a) the operator Wy o9 : A, , — H,; is bounded if and only if

L= sup W(Z)IK(;Z)l .
D (1—]9(2)]?) "7v(e(2))?

Moreover, if the operator WW,,@ 1A, p — H is bounded, then

< oo,

Wy.02lla,,—ng < L.
(b) the operator Wy, o9 : A, , — H;; is compact if and only if v € H;; and

lim sup W(Z)IW(ZZ)I _o.
el (1= pE)P) 7 v(e()

REMARK 1. If we consider the weight v(z) = (1 — |z|*)* where o > 1, then
clearly v satisfies the condition of Lemma 1. Now if we take w(z) = (1 - |z| )8,
B > 0 for every z € D, then Corollary | will reduce to Theorem 4.3 and Theorem 4.4
obtained by Jiang [13]. Also, if w(z) =1 for every z € D, Corollary | will reduce to
Proposition 1 and Proposition 2 obtained by Wolf [48].

==

Let w € 5 (D). In Theorem | and Theorem 2, if we take ¢ : D — D as the identity
map, then we get the boundedness and compactness of the product of multiplication
operators and differentiation operators My, = Ty . and My 7 = Tg y o Which we
state in the following two corollaries.

COROLLARY 3. Let v be a weight as defined in Lemma | and let w be an arbi-
trary weight. Let @ € 7 (D). Then:

(a) the operator IMy, : A, , — H; is bounded if and only if

(i) § = sup —EELL < oo
2€D (1—[2[2) Pv(z) P
(ii) Sy =sup—WIL_ <o

— 2 T
2D (1-[z) " P(z)P

Moreover, if the operator IMy, : A,,,, — H;; is bounded, then

|ZMy||a, ,—Hz =< S1+S2.
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(b) the operator IMy, : A, , — H.; is compact if and only if

w2y (2)

(i) lim —=5—"7 =0;
|2 =1 (1—|z)2) P v(z) P
(i) lim —GVEL__ _q,

Bl

2
2 =1 (1-|z2) P v(z)

COROLLARY 4. Let v be a weight as defined in Lemma | and let w be an arbi-
trary weight. Let @ € 7 (D). Then:

(a) the operator My 7 : A, , — H; is bounded if and only if

5= sup W(Z”K(;)' i
€D (1—z[2) " Pv(z)?

Moreover, if the operator My 9 : A,,,, — H;; is bounded, then
||MW@||AV.p4’H$ =S.
(b) the operator My % : A, , — H,; is compact if and only if

lim W(Z)IW(ZZ)I o
=1 (1= [22) o v(z)7

COROLLARY 5. Let v be a weight as defined in Lemma | and let w be a weight
1

such that % is bounded. Then the operator IMy(My D) : A,,, — H;; is bounded if
and only if IMy(My ) is compact if and only if y = 0.

Proof. If the operator ZMy, or My % is bounded, then according to Corollary 3
(a)(ii) or Corollary 4(a), it follow that there exist a constant C > 0 such that

W(Z)IIV(ZZ)I _<c 30)
(1=1[z1%) " Pv(2)?
1 1
for all z € D. Since “- is bounded, there exist A > 0 such that V;(g) < A, for all
z € D. Thus from (30), we get

YO e
(112"

Further,
2
w(z)] < AC(1— |27

By the maximum modulus theorem, y = 0.
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REMARK 2. From Corollary 3 and Corollary 4, it is clear that if M, is bounded
(compact), then My % is bounded (compact). But the converse need not be true. This
we explain in the following Example 1.

1
EXAMPLE 1. Let p=1, w(z) = (1 —[z]*)*e F7, v(z) = (1—|z*) and y(z) =

1
e¢1-2 . Then we have

__1 1
—_1512)4, 1-[2 —2
W(Z)‘W(Z” _ (1 |Z| ) € el e 1,‘2‘261,‘2‘2 — 1

(1- ‘Z|2)l+%v(z)% (1 =122 (1 = [z

Thus by Corollary 4(a), Ml,,@ 1A, — H; is bounded. But for z = r, we have

1 1
PV 2r —
w)ly' ()] (lP)e P IEape ] o

e
<
(1= ) Pr()F oy o

—

5 — °°, asr — 1.

Hence according to Corollary 3(a), ZM,, is not bounded.
1

On the other hand, if we take w(z) = (1 —|z|?)%¢ '~? and v,y same as above,
then we have

(1-[z2) 7 v(z)7
Further, (31) implies that
U 4€9117 €] IR

(1= ) (o)
and hence by Corollary 4(b), My 2 is compact. But for z = r we have
!
OV 520, asr .
(L=1r2)Pv(r)?

Thus by Corollary 3(b), ZM,, is not compact.

In the following two examples we construct bounded, unbounded, compact, non-
compact operators Ty, vy ¢ -

EXAMPLE 2. In this example, we give bounded and unbounded operators Ty, y,.¢ -
Consider p = 1. let v(z) = (1 —|z)?) and w(z) = (1 —|z|)°. Define ¢(z) = %,
y1(z) =2z and y,(z) = % . Then we obtain

w(2) |y ()| (1—[z)2l|

B (1= [pl) ) vlp)Fr x=b (1~ 1HIPP
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2(1—[z])°

<sup—m————F——
€D (1—|z\>3 (\z|+1>3
2 2
<sup128(1 —|z])? < oo.
zeD

This satisfies the first condition of Theorem 1. Now we verify the condition (ii).

sup w(z)|ya(2)| —w (1—2])3[z1*3
eb (1 — 2)1+3 5 €D (1—|ﬂ‘2)4
€D (1—]o(2)]?) "Pv(p(z))r = 3
=12z
€D (1—2\z|>4 (\z|2+1>4

<sup 128(1 — |z])|2]? < eo.
zeD

Hence by Theorem 1, Ty, y, o is bounded. Next, let the weight v and the map ¢ be
the same as before. Now if we define w(z) = (1 —|z|)* and ya(z) = (1%)4, then we

have

w@lw@l (-
(I—lo@)P) Fiv(e)r  (1-|%P)°

Forz=r,
w(r)|ya(r)] _ 1 — oo asr— 1.
(1—lo(r)) v(o(r)  (1—(=£)2)"

This shows that the condition (ii) of Theorem 1 is not satisfied. Hence Ty, y, ¢ is
unbounded.

EXAMPLE 3. Inthis example, we give compact and non compact operators Ty, y,,¢ -
First, we give an example of compact operator Ty, y, . Consider p = 1. Let v(z) =
1

(1= 2?) and w(z) = (1= |2])°. Define ¢(z) = =+, i () = 257 and ya(2) = 1

Clearly, |@(z)] — 1 implies |z] — 1. It is easy to verify conditions (i) and (ii) of Theo-
rem 2. Next, we establish conditions (iii) and (iv) of Theorem 2.

7"

@@l (-]
(1=lp@P)rv(p)r (1= |5 R) 1 -2
. RO,
(1—2\ZI> (\ZI;1> (1— |ZD2
< 64(1—]z]) — 0, as|z] — 1. (32)
Also,
w(@)lya () (R

(1-le@P)  v(e@)r  (1-|5R) 14
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(1—1z))°
S - \* [ e+
(T) (T) (1—1zl)
< 256(1 — |2|) — O, asld — 1. (33)

It follows from (32) and (33) that the conditions (iii) and (iv) of Theorem 2 are satisfied.
Hence the operator Ty, y, .o is compact.

Next, we give an example of a bounded operator Ty, v, o Which is not compact.
For this, if we define w(z) = (1 —|z|)° and take v, @, y; and y;, as before, then from
(32) and (33) we have

and

wup w(Z)\lffi(;)\ .
€D (1—[o(2)[2) Pv(e(z)”

Thus by Theorem 1, Ty, y, .o is bounded. Next, we show Ty, v, ¢ is not compact. For,
let z = r, then we have

< oo

w(r)|ya(r)] -y
(1= p(P) “Fu(p(r)7  (1—FP) 11—
B (l—r)5
() ) a-n
256
zm—ﬂ#o,asr—ﬂ.

This shows that condition (iv) of Theorem 2 is not satisfied. Hence the operator Ty, y,.¢
is not compact.

4. Boundedness and compactness of the operators Ty, v, ¢ : Ayp — H,

We begin with stating the following lemma (see Lemma 2.1 in [34] or Lemma 1
in [29]) which we shall use to characterize the compactness of the operator Ty, y, ¢ -

LEMMA 8. Let w be an arbitrary weight and K be closed set in HT. Then K is
compact if and only if it is bounded and

lim supw(z)|f(z)| =0.
lz2[—1 ek

REMARK 3. In Lemma 8, if the set K is not closed, then we can replace the word
compact by the word relatively compact.
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THEOREM 3. Let v be a weight as defined in Lemma 1 and let w be an arbitrary
weight. Let yi,y, € (D) and ¢ : D — D be an analytic map. Then the operator
Ty, .0 : Avp — Hyy is bounded if and only if Ty, y, ¢ : Avp — H,; is bounded, and
Vi, Yo € HC:()

Proof. First, assume that the operator Ty, y,, 'E 1Ay p — HJ is bounded. Then
it is clear that the operator Ty, y,.¢ : Ay, — H,; is bounded. Now if fi(z) =1 and

f2(z) =2z, thenclearly fi,f> €A, ., and hence Ty, y, o fi = W1 € Hyyy and Ty, y, 0f2 €
H7 . Thus

éfﬂw(z) lyi(z)| =0, (34)
and
é\iﬂ w(2)y1(2)9(z) + ya(z)| = 0. (35)
Since

w(2)|v2(2)| < w(2)|w1(2)@(2) + va(2)| + w(2) w1 (2)],
from (34) and (35), it follows that

lim w(z)|ya(2)] = 0. (36)

|z —1

Hence y, € H(.
Conversely, suppose that the operator Ty, v, ¢ : Ay, — H,; is bounded and 1, y»
€ Hyy. Let f € A, Then for each polynomial p(z), we have

I%\iEIW( )Ty 0P ()| = ll‘lm w(@)|y1(2)p(e(2) + v2(2)p (9(2))]

< |;‘191W(Z)|lm( )|||p||m+|1‘1m w(@) 2 @)1 [l =0

Thus Ty, y,,op € Hy. Since it is well known that the set of polynomials is dense in
A, for the radial weight v ('see [1, p. 10] or [15, p. 343] or [33, p. 134]), there exist a
sequence of polynomials {p,} such that || f — p,||,,, — 0 as n — o=. Hence

1 Ty1 w20 = Ty w0 Pallw < 1Ty yn .0 ‘Av‘pﬁH;}’ 1f = Pallvp — 0, asn— oo.
Since Hy), is closed subspace of H,;, we get Ty, y, ¢ (Avp) C H . Hence the operator
Ty v, + Avp — HJy is bounded.

REMARK 4. From Theorem 3, it follows that if the operator Ty, y,,¢ : Avp —
HY, is bounded, then Ty, y, ¢ : Ayp — H,; is also bounded. But the converse may
not be true. This we shall explain in the following example.
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4
EXAMPLE 4. Let p=1,v(z) =1 —|z]*, w(z) = <1 - %) , 0(2)
et and yr(z) = ¢* . Then we have

2
< (1—%)&2 <e
and

w(2)|va(2)|

forall ze D,

2\ 4
-5y

(- 10@P" e (1) (1)

2
<ell” < e, forall z € D.

Thus both the conditions of Theorem 1 are satisfied and hence Ty, y, .o : Ayp — H;
is bounded. But for z = r, we have

I =lim(1-—) ¢'=(3 '
|Z\IE>11W(Z)|V/1(Z)| r‘_‘}}( 4) ¢ (4) 70
That is, y; ¢ H7y.

Thus according to Theorem 3, Ty, y,.¢ 1 Avp — HJ is not
bounded.

THEOREM 4. Let v be a weight as defined in Lemma 1 and let w be an arbitrary
weight. Let w1,y € (D) and ¢ : D — D be an analytic map. Then the operator
Ty, .9 - Avp — H is compact if and only if
(i) lim W(Z)WZZ(Z)\ - =0;

k=1 =l P) P v(p)”
(ii) lim — @IV

@ _g
2 1 .
=1 (1-1p()P) P v(p()?

Proof. 1f the conditions (i) and (ii) hold, then clearly conditions (i) and (ii) of
Theorem 1 are satisfied. Thus the operator Ty, y,.¢ : Ay,p — H,; is bounded. Also,
since a2 ,
(1=lp@) ) Pv(eR)" <Ci
and ) |
(1=lp@ )P v(p(R)7 <G
from (i) and (ii), we have

fim wlva(9] = tim 2 oLl

(1— o)) P v(p()7

==
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< lim Ciw(@)|ya(2)] _o,

E=1 (1 - o)) P v(p(2)7

and
lim w()|wi (0)] = lim YRLWLEI0— 9@ )P (p()?
|z|—1 |z] =1 (1— ‘(p(z)‘ )pv((p(z))p
< lim —@WEI___,

1 2 I
P (1=l (@) ) 7 v(e(2))?
Thus y1,y, € H7, and hence Theorem 3 implies that the operator Ty, y,,¢ : Avp —
H, is bounded. Let f € A,p. Now by using Lemma 5, we have

W) (Tyy a0 f) (@) = w(@) W1 (2)f(9(2) + v2(2) f (9(2))]
wRWEIG Iy WYy
|

T (1—1p@P) P v(eE)  (1-[p@P)" 7 v(e()

(37)

=

Let
K= TW17W27(P{f€AVI7 Hf”vp 1}

Then clearly the set K is bounded in HT\ and hence using conditions (i), (ii) in (37), it
follows that

lim sup ()| (Tyyn.of) (2)] = 0. (38)
=1 flhps1
Thus in view of Lemma 8, we get the compactness of the operator Ty, y,.¢ : Ayp —
H7y.
Conversely, suppose that the operator Ty, y,¢ : Avp — H, is compact. Now
again by using the same argument of Theorem 3, we can get

éfflw(z) lyi(z)| =0, (39)
and
\351 w(z)|y2(z)| =0. (40)

Thatis, y1,y, € H,. Since the operator Ty, .y, ¢ : A,y — H,J is compact, Theorem
2 implies that

lim sup w(z)lvnz(z)l o, 1)
o) >r (1—|0(2)]2) 7 v(e(z))?

and
lim sup w(z)|ya(2)] _o. (42)

r—1 2 1+2 1

l@>r (1= @) ) Pv(e(2)?

Let € > 0. Then from (41) and (42), it follows that there exist 1,7, € (0,1) such that
whenever r; < |@(z)| < 1 and r, < |@(z)| < 1, we have

w(2) |y (2)|
(1=le)P)rv(e()”

<eg, (43)
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and
WOl (44)
(I—[o@)[*) "Pv(e(2)”
Let 5 .
My = inf (1 —|t|})Pv(r)7, (45)
[t|<r
and ,
M, = inf (1 —|z|? ) (t)E. (46)
[r|<r
Thus for |@(z)| < r; and |@(z)| < 2, (45) and (46) implies that
My < (1 |p@)P)7v(9()7, 47)
and ) |
My < (1-o@))  Pv(e(2)7. (48)

Let €, = €M and & = €M, . Then according to (39) and (40), there exist 01,6, € (0,1)
such that whenever ) < |z] <1 and &, < |z] < 1, we have

w(2)|y1(2)] < e, (49)

w(2)|y2(2)| < &. (50)

Further, using (47) and (48), (49) and (50) implies that whenever |z| > &1, |@(z)| < 71
and [z| > &, |@(z)| < r2, we have

v@niEl -
(1=]e@)[*)7v(e(z)”
and
w(2)|ya(2)] e (52)

o142 1
(I—lo@)[?) "rv(e(z)?
Thus on combining (43),(44), (51) and (52), we have

v@wmEl )
(1=lo@)?)rv(e)?
and
w(z)y2(2)] <e (54)

2 1

(1= "7 v(e2)?

whenever, |z| > 0, and |z| > & . This proves the conditions (i) and (ii). This completes
the proof of the theorem.

Let y € (D). In Theorem 2, Theorem 3 and Theorem 4 if ¢ : D — D is the
identity map, then we get the boundedness and compactness of the product of multi-
plication operators and differentiation operators IMy, = Ty o and My 2 = To y ¢
which we state in the following three corollaries.
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COROLLARY 6. Let v be a weight as defined in Lemma 1 and let w be an arbi-
trary weight. Then:
(a) DMy : Ay — HY is bounded if and only if IMy, : A, p — Hy is bounded.
(b) My : Ay, — Hy is bounded if and only if My : A, p — Hy is bounded.
Proof. (a) If My, : A, ), — H;;, is bounded, then clearly My, : A, ), — H;; is

bounded. Conversely, suppose that the operator IMy, : A, — Hy; is bounded. Then
according to Corollary 3(a), we have

/
Mp'l <8y, forallze D (55)
(1= [zP)Pv(z)?
and
w(z)|w(z)| <Ss, forall z € D. (56)

(1 |2P) Hhv(a)»
Further, (55) and (56), implies that

2
W@y @) <S$i1(1- 127w, z€D (57)
and
w142 L
w(@)|y(2)] < S2(1—[2[7) "Pv(2)7, z€D. (58)
Since the weight v is bounded, (57) and (58) implies that
hmw W' (2)] =0 (59)
and
‘lliml w(z)|y(z)] = 0. (60)
Z d

That is, y,y’ € Hy. Thus from Theorem 3, it follows that ZMy, : A, , — Hy, is
bounded.
(b) The proof is analogous to the proof of part (a).

COROLLARY 7. Let v be a weight as defined in Lemma 1 and let w be an arbi-
trary weight. Then the following statements are equivalent:

(a) The operator IMy, : A, ), — H; is compact.
(b) The operator ZMy : A, — HY is compact.

(c) The following conditions hold:

(ii) lim
l2l=1 (1-|z2)
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COROLLARY 8. Let v be a weight as defined in Lemma 1 and let w be an arbi-
trary weight. Then the following statements are equivalent:

(a) The operator My : A, , — H;, is compact.
(b) The operator My 7 : A, — wo s compact.

w(2)|y(2)|
2 T
Py z) p

(¢) lim =0.

|
=1 (1)

COROLLARY 9. Let v be a weight as defined in Lemma 1 and let w be a weight
1

such that % is bounded. Then the following statements are equivalent:
(a) The operator IMy(MyP) : A, , — H,; is bounded.
(b) The operator IMy(My P) : A, — H,; is compact.
(c) The operator My (My ) : A, p — Hy), is compact.
(d) w=0.
Proof. The proof follows from Corollary 5, Corollary 7 and Corollary 8.
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