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VOLTERRA INTEGRAL OPERATORS

FROM D p
p−2+s INTO F(pλ , pλ + sλ − 2,q)

CONGHUI SHEN, ZENGJIAN LOU AND SONGXIAO LI ∗

(Communicated by J. Jakšetić)

Abstract. Let 1 < p < ∞ , 0 < q < ∞ , 0 < s, λ � 1 such that q+ sλ > 1 . We characterize the
boundedness and compactness of inclusion mapping from Dirichlet type spaces D p

p−2+s into tent
spaces Tpλ ,q(μ) . As an application, the boundedness of the Volterra operator Tg , its companion
operator Ig and the multiplication operator Mg from D p

p−2+s to F(pλ , pλ + sλ − 2,q) are
given. Furthermore, we study the essential norm and compactness of Tg and Ig .

1. Introduction

Let D be the unit disk of the complex plane C and ∂D be its boundary, the unit
circle. Let H (D) denote the space of all analytic functions in D endowed with the
topology of uniform convergence on compact subsets. Given 0 < p < ∞ and α > −1,
the Dirichlet type space D p

α is the set of all functions f ∈ H (D) such that

‖ f‖p
D

p
α

:= | f (0)|p +
∫

D

| f ′(z)|pdAα(z) < ∞.

Here dAα(z)= (α +1)(1−|z|2)αdA(z) and dA(z)= 1
π dxdy is the normalized Lebesgue

area measure on D. As is known, if p < α + 1, then we have that D p
α = Ap

α−p, the
weighted Bergman space (see, for example, Theorem 6 of [4]). If p > α + 2, then
D p

α ⊂ H ∞ , the Banach algebra of all bounded analytic functions with the supremum
norm ‖ f‖H ∞ = supz∈D | f (z)| (see, for example, [31]). This means that the space D p

α
becomes a proper Dirichlet type space when p−2 � α � p−1. The spaces D p

p−1 are

closely related with Hardy spaces. In fact, D2
1 = H 2 in the sense of equivalent norms.

From [4] we have D p
p−1 ⊆H p when 0 < p � 2. If 2 � p < ∞, then H p ⊆D p

p−1, see
[12]. The spaces D p

p−2 are the well known analytic Besov space.
The Bloch space B is the class of all f ∈ H (D) for which

‖ f‖B := | f (0)|+ sup
z∈D

(1−|z|2)| f ′(z)| < ∞.
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The little Bloch space B0, consists of all f ∈ H (D) such that

lim
|z|→1

(1−|z|2)| f ′(z)| = 0.

It is known that the spaces D p
p−2 and B0 are subspaces of the Bloch space B.

Let 0 < p < ∞, −2 < q < ∞ and 0 < t < ∞. The space F(p,q,t) consists of those
f ∈ H (D) such that

‖ f‖p
F(p,q,t) := sup

a∈D

∫
D

| f ′(z)|p(1−|z|2)q(1−|ϕa(z)|2)t dA(z) < ∞.

This space was first introduced by Zhao in [33]. When p = 2,q = 0, F(p,q,t) is just
the Qt space. It is well known that F(p, p− 2,t) = B for all t > 1 in the sense of
equivalent norms, see [33].

Let μ be a nonnegative Borel measure on D. For 0 < p < ∞ and 0 < q < ∞, the
tent space Tp,q(μ) consists of all μ -measurable functions f such that

‖ f‖p
Tp,q(μ) := sup

I⊆∂D

1
|I|q

∫
S(I)

| f (z)|pdμ(z) < ∞.

Given g ∈H (D), the Volterra integral operator Tg and its companion operator Ig
with symbol g are defined by

Tg f (z) :=
∫ z

0
g′(w) f (w)dw, Ig f (z) :=

∫ z

0
g(w) f ′(w)dw, f ∈ H (D), z ∈ D,

respectively. Recall that the multiplication operator Mg is defined by

Mg f (z) := g(z) f (z), f ∈ H (D), z ∈ D.

The operators Tg and Ig are closely related to Mg. For example, note that the following
relation holds

Tg f + Ig f = Mg f − f (0)g(0).

Let (X ,‖ · ‖X) and (Y,‖ · ‖Y ) be analytic function spaces. Denote M(X ,Y ) the set of
multipliers from X to Y, that is,

M(X ,Y ) := {g ∈ H (D) : f g ∈Y, ∀ f ∈ X}.

By the closed graph theorem, if g∈M(X ,Y ), then we have that the operator Mg : X →Y
is bounded.

Operator Tg seems studied for the first time in [15]. After that many authors have
studied this, as well as some other related operators on the unit disc or the unit ball in
Cn (see, for example, [1, 2, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 32]). Some of these papers study the operators from or to the general space
F(p,q, t) and the Dirichlet-type space (see [9, 14, 20, 22, 23, 26]).
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Xiao in [32] studied the embedding from Qp space (0 < p < 1) into T2,q(μ) . As
an application, he characterized the boundedness and compactness of the operator Tg

on the Qp space. Pau and Zhao studied the embedding from Möbius invariant Besov
type space F(p, p−2,s) into Tp,q(μ) in [14]. Liu and Lou studied the embedding from
Morrey spaces to T2,q(μ) in [13].

In this paper, we first characterize the boundedness and compactness of the em-
bedding from D p

p−2+s into tent spaces Tpλ ,q(μ) . Then as an application, the bound-
edness of Tg , Ig and Mg from D p

p−2+s to F(pλ , pλ + sλ − 2,q) are given. Further-
more, we study the essential norm and compactness of Tg and Ig . For some previ-
ous results on essential norms of integral type and related operators see, for example,
[5, 6, 7, 18, 21, 23, 27, 28].

The article is organized as follows. In the next section, we state some preliminary
results. The embedding theorems from D p

p−2+s to tent spaces and the boundedness
of Tg and Ig from D p

p−2+s to F(pλ , pλ + sλ − 2,q) are given in Sections 3 and 4,
respectively. In the last section, we estimate the essential norm of Tg and Ig .

Throughout this paper, C denotes a positive constant, it is not necessary to be the
same from one line to another. Let f and g be two positive functions. For convenience,
we write f � g, if f � Cg holds, where C is a positive constant independent of f and
g. If f � g and g � f , then we say f 
 g.

2. Preliminary results

Let I be an arc of ∂D and |I| be the normalized Lebesgue arc length of I. The
Carleson square based on I, denoted by S(I), is defined by

S(I) :=
{

z = reiθ ∈ D : 1−|I|� r < 1,eiθ ∈ I
}

.

Let μ be a positive Borel measure on D. For 0 < s < ∞, μ is called an s-Carleson
measure if supI⊆∂D

μ(S(I))
|I|s < ∞. If μ is an s-Carleson measure, then we set

‖μ‖s := sup
I⊆∂D

μ(S(I))
|I|s .

We need the following equivalent description of s-Carleson measure (see, e.g.,
[14]).

LEMMA 2.1. Let μ be a nonnegative Borel measure on D. If 0 < s,t < ∞, then
μ is an s-Carleson measure if and only if

sup
a∈D

∫
D

(1−|a|2)t
|1− az|s+t dμ(z) < ∞.

Moreover,

sup
I⊆∂D

μ(S(I))
|I|s 
 sup

a∈D

∫
D

(1−|a|2)t
|1− az|s+t dμ(z).
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The following point evaluation estimate is folklore. It is proved by using, for
example, the standard methods in Lemma 3 and Lemma 4 in [20]. Hence, the proof is
omitted.

LEMMA 2.2. Let 1 < p < ∞ and 0 < s � 1. If f ∈ D p
p−2+s, then

| f (z)| �
‖ f‖D

p
p−2+s

(1−|z|2) s
p
, z ∈ D.

The following integral estimates are fundamental in function spaces and operator
theory, see [16, 1.4.10. Proposition] (the case that we need can be also found in [34,
Lemma 3.10]).

LEMMA 2.3. Suppose that z ∈ D, c is real, t > −1, and

Ic,t(z) =
∫

D

(1−|w|2)t
|1−wz|2+t+c dA(w).

(i) If c < 0, then as a function of z, Ic,t is bounded on D.
(ii) If c = 0, then Ic,t(z) 
 log 1

1−|z|2 , as |z| → 1−.

(iii) If c > 0, then Ic,t(z) 
 1
(1−|z|2)c , as |z| → 1−.

Finally, here we will also use the following lemma which has been recently proved
in [7].

LEMMA 2.4. For 0 < r < 1, let χ{z:|z|<r} be the characteristic function of the set
{z : |z| < r} . If μ is a s-Carleson measure on D , then μ is a vanishing s-Carleson
measure if and only if ‖μ − μr‖s → 0 as r → 1− , where dμr = χ{z:|z|<r}dμ .

3. Embedding from D p
p−2+s to tent spaces

In this section, we study the embedding from D p
p−2+s to tent spaces. We give a

complete characterization for the boundedness and compactness of the inclusion map-
ping i : D p

p−2+s → Tpλ ,q(μ). We say that the inclusion mapping D p
p−2+s → Tpλ ,q(μ) is

compact if

lim
n→∞

1
|I|q

∫
S(I)

| fn(z)|pλ dμ(z) = 0

whenever I ⊆ ∂D and { fn} is a bounded sequence in D p
p−2+s that converges to 0

uniformly on compact subsets of D .

THEOREM 3.1. Let μ be a nonnegative Borel measure on D. Let 1 < p < ∞ , 0 <
s,λ � 1 and 0 < q < ∞ such that q+sλ > 1. Then the inclusion mapping i : D p

p−2+s →
Tpλ ,q(μ) is bounded if and only if μ is a (q + sλ )-Carleson measure. Furthermore,

‖i‖pλ 
 ‖μ‖q+sλ .
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Proof. Assume that the operator i : D p
p−2+s → Tpλ ,q(μ) is bounded. Given a∈ D,

let

fa(z) :=
1−|a|2

(1− az)1+ s
p
, z ∈ D. (1)

Using Lemma 2.3, we have fa ∈ D p
p−2+s with supa∈D ‖ fa‖D p

p−2+s
� 1. Fix an arc I ⊆

∂D. Let eiθ be the center of I and a = (1−|I|)eiθ . Then

|1− az| 
 1−|a|= |I|,
and

| fa(z)|pλ 
 1

|I|sλ
whenever z ∈ S(I). So

μ(S(I))
|I|q+sλ 
 1

|I|q
∫

S(I)
| fa(z)|pλ dμ(z) � ‖ fa‖pλ

Tpλ ,q(μ) � ‖i‖pλ‖ fa‖pλ
D p

p−2+s
� ‖i‖pλ .

Consequently, μ is a (q+ sλ )-Carleson measure and

‖μ‖q+sλ � ‖i‖pλ .

Conversely, suppose that μ is a (q+ sλ )-Carleson measure. Fix f ∈D p
p−2+s. Let

I be any arc on ∂D and a = (1−|I|)eiθ , where eiθ is the midpoint of I. From Lemma
2.2,

| f (a)| �
‖ f‖D p

p−2+s

(1−|a|) s
p

=
‖ f‖D p

p−2+s

|I| s
p

.

Obviously,

1
|I|q

∫
S(I)

| f (z)|pλ dμ(z) � 1
|I|q

∫
S(I)

| f (a)|pλ dμ(z)+
1
|I|q

∫
S(I)

| f (z)− f (a)|pλ dμ(z)

= I1(a)+ I2(a).

It is clear that

I1(a) � μ(S(I))
|I|q+sλ ‖ f‖pλ

D p
p−2+s

� ‖μ‖q+sλ‖ f‖pλ
D p

p−2+s
.

By the assumed condition and Theorem 7.4 in [34], we know that i : Apλ
q−2+sλ →

Lpλ (dμ) is bounded. By Theorem 4.28 in [34], we have∫
D

| f (z)|pdA(z) 
 | f (0)|p +
∫

D

| f ′(z)|p(1−|z|2)pdA(z).
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Based on these facts, we turn to estimate I2(a). The estimate will be divided into two
cases.

Case 1: q+ sλ � 2.

I2(a) 

∫

S(I)

| f (z)− f (a)|pλ

|1− az|q dμ(z)


 (1−|a|2)sλ
∫

S(I)

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|2+sλ+q
dμ(z)

� (1−|a|2)sλ
∫

D

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|2+sλ+q
dμ(z)

� (1−|a|2)sλ
∫

D

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|2+sλ+q
(1−|z|2)q−2+sλ dA(z)

� (1−|a|2)sλ
∫

D

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|4 dA(z)

= (1−|a|2)sλ
∫

D

| f ◦ϕa(w)− f (a)|pλ dA(w)


 (1−|a|2)sλ
∫

D

|( f ◦ϕa)′(w)|pλ (1−|w|2)pλ dA(w)

= (1−|a|2)sλ
∫

D

| f ′(ϕa(w))|pλ (1−|ϕa(w)|2)pλ dA(w)

=
∫

D

| f ′(z)|pλ (1−|z|2)pλ (1−|a|2)2+sλ

|1− az|4 dA(z).

If 0 < λ < 1, then Hölder’s inequality yields that

I2(a) �
∫

D

| f ′(z)|pλ (1−|z|2)pλ−2λ+sλ (1−|z|2)2λ−sλ (1−|a|2)2+sλ

|1− az|4 dA(z)

�
(∫

D

| f ′(z)|p(1−|z|2)p−2+sdA(z)
)λ
(∫

D

(1−|z|2) 2λ−sλ
1−λ (1−|a|2) 2+sλ

1−λ

|1− az| 4
1−λ

dA(z)

)1−λ

.

Applying Lemma 2.3, we get

(1−|a|2) 2+sλ
1−λ

∫
D

(1−|z|2) 2λ−sλ
1−λ

|1− az|2+ 2λ−sλ
1−λ + 2+sλ

1−λ
dA(z) � 1.

So

I2(a) � ‖ f‖pλ
D p

p−2+s
.

If λ = 1, then

I2(a) �
∫

D

| f ′(z)|p (1−|z|2)p(1−|a|2)2+s

|1− az|4 dA(z) �
∫

D

| f ′(z)|p(1−|z|2)p−2+sdA(z)
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� ‖ f‖p
D p

p−2+s
.

Case 2: 1 < q+ sλ < 2.

I2(a) 
 (1−|a|2)−q
∫

S(I)
| f (z)− f (a)|pλ dμ(z)


 (1−|a|2)2−q
∫

S(I)

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|4 dμ(z)

� (1−|a|2)2−q
∫

D

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|4 dμ(z)

� (1−|a|2)2−q
∫

D

| f (z)− f (a)|pλ (1−|a|2)2

|1− az|4 (1−|z|2)q−2+sλ dA(z)

= (1−|a|2)2−q
∫

D

| f ◦ϕa(w)− f (a)|pλ (1−|ϕa(w)|2)q−2+sλdA(w)

� (1−|a|2)sλ
∫

D

| f ◦ϕa(w)− f (a)|pλ (1−|w|2)q−2+sλ dA(w)


 (1−|a|2)sλ
∫

D

|( f ◦ϕa)′(w)|pλ (1−|w|2)pλ+q−2+sλdA(w)

=
∫

D

| f ′(z)|pλ (1−|a|2)q+2sλ (1−|z|2)pλ+q−2+sλ

|1− az|2q+2sλ dA(z).

If 0 < λ < 1, then according to Hölder’s inequality, we have

I2(a) �
(∫

D

| f ′(z)|p(1−|z|2)p−2+sdA(z)
)λ

×
⎛
⎝∫

D

(1−|a|2) q+2sλ
1−λ (1−|z|2) 2λ+q−2

1−λ

|1− az| 2q+2sλ
1−λ

dA(z)

⎞
⎠

1−λ

.

It follows from Lemma 2.3 that

(1−|a|2) q+2sλ
1−λ

∫
D

(1−|z|2) 2λ+q−2
1−λ

|1− az|2+ 2λ+q−2
1−λ + q+2sλ

1−λ

dA(z) � 1.

Consequently,

I2(a) � ‖ f‖pλ
D p

p−2+s
.

If λ = 1, then

I2(a) �
∫

D

| f ′(z)|p (1−|a|2)q+2s(1−|z|2)p+q−2+s

|1− az|2q+2s dA(z)

�
∫

D

| f ′(z)|p(1−|z|2)p−2+sdA(z) � ‖ f‖p
D p

p−2+s
.
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Combining the estimates I1(a) and I2(a), we conclude that the inclusion mapping i :
D p

p−2+s → Tpλ ,q(μ) is bounded and ‖i‖pλ � ‖μ‖q+sλ .

THEOREM 3.2. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that q+sλ > 1.
Let μ be a positive Borel measure on D . Then the inclusion mapping i : D p

p−2+s →
Tpλ ,q(μ) is compact if and only if μ is a vanishing (q+ sλ )-Carleson measure.

Proof. Assume that i : D p
p−2+s → Tpλ ,q(μ) is compact. Given a sequence of arcs

{In} with limn→∞ |In| = 0. Denote the center of In by eiθn and an = (1−|In|)eiθn . Let

fn(z) :=
1−|an|2

(1−anz)
1+ s

p
, z ∈ D. (2)

It is clear that { fn} is bounded in D p
p−2+s and { fn} converges to zero uniformly on

any compact subset of D. Since

| fn(z)| = 1−|an|2
|1−anz|1+ s

p

 (1−|an|)−

s
p = |In|−

s
p , z ∈ S(In),

we obtain

μ(S(In))
|In|q+sλ 
 1

|In|q
∫

S(In)
| fn(z)|pλ dμ(z) → 0, n → ∞.

By the arbitrariness of {In}, we deduce that μ is a vanishing (q+ sλ )-Carleson mea-
sure.

Conversely, suppose that μ is a vanishing (q + sλ )-Carleson measure, then μ
is also a (q + sλ )-Carleson measure and limr→1− ‖μ − μr‖q+sλ = 0 by Lemma 2.4.
It follows from Theorem 3.1 that i : D p

p−2+s → Tpλ ,q(μ) is bounded. Let { fn} be
a bounded sequence in D p

p−2+s such that { fn} converges to zero uniformly on each
compact subset of D. We have

1
|I|q

∫
S(I)

| fn(z)|pdμ(z) � 1
|I|q

∫
S(I)

| fn(z)|pλ dμr(z)+
1
|I|q

∫
S(I)

| fn(z)|pλ d(μ − μr)(z)

� 1
|I|q

∫
S(I)

| fn(z)|pλ dμr(z)+‖μ − μr‖q+sλ‖ fn‖pλ
D

p
p−2+s

� 1
|I|q

∫
S(I)

| fn(z)|pλ dμr(z)+‖μ − μr‖q+sλ .

Letting n → ∞ and then r → 1, we obtain limn→∞
1
|I|q
∫
S(I) | fn(z)|pdμ(z) = 0. This

shows that the inclusion mapping i : D p
p−2+s → Tpλ ,q(μ) is compact.

4. Boundedness of Tg, Ig and Mg

In the present section, via the embedding theorem (Theorem3.1), we provide char-
acterizations for the boundedness of Volterra integral operator Tg and its companion
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operator Ig from D p
p−2+s to F(pλ , pλ + sλ −2,q). Moreover, we study the multipli-

cation operator Mg from D p
p−2+s to F(pλ , pλ + sλ −2,q).

THEOREM 4.1. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. If g ∈ H (D), then Tg : D p

p−2+s → F(pλ , pλ + sλ −2,q) is bounded
if and only if g ∈ B. Furthermore, ‖Tg‖ 
 ‖g‖B.

Proof. Assume that Tg : D p
p−2+s → F(pλ , pλ + sλ −2,q) is bounded. For a fixed

a ∈ D, define fa as in (1). Then fa ∈ D p
p−2+s with supa∈D ‖ fa‖D

p
p−2+s

� 1. So

‖Tg fa‖F(pλ ,pλ+sλ−2,q) � ‖Tg‖ ‖ fa‖D p
p−2+s

� ‖Tg‖.

In addition, Lemma 4.12 of [34] gives

‖Tg fa‖pλ
F(pλ ,pλ+sλ−2,q) �

∫
D

|g′(z)|pλ (1−|a|2)pλ

|1−az|pλ+sλ (1−|z|2)pλ−2+sλ (1−|ϕa(z)|2)qdA(z)

=
∫

D

|g′(z)|pλ (1−|a|2)pλ+q(1−|z|2)pλ−2+sλ+q

|1− az|pλ+sλ+2q
dA(z)

=
∫

D

|g′(ϕa(w))|pλ (1−|a|2)pλ (1−|w|2)pλ−2+sλ+q

|1− aw|pλ+sλ dA(w)

�|g′(a)|pλ (1−|a|2)pλ .

It follows that

|g′(a)|(1−|a|2) � ‖Tg fa‖F(pλ ,pλ+sλ−2,q) � ‖Tg‖.

Thus, g ∈ B and ‖g‖B � ‖Tg‖.
Now suppose g ∈ B. Using the equivalent norm of Bloch function [33], we have

‖g‖pλ
B 
 sup

a∈D

∫
D

|g′(z)|pλ (1−|z|2)pλ−2(1−|ϕa(z)|2)q+sλ dA(z)

= sup
a∈D

∫
D

|g′(z)|pλ (1−|z|2)pλ−2+sλ+q
(

1−|a|2
|1− az|2

)q+sλ

dA(z)


 sup
I⊂∂D

1

|I|q+sλ

∫
S(I)

|g′(z)|pλ (1−|z|2)pλ−2+sλ+qdA(z).

This means that dμg(z) = |g′(z)|pλ (1− |z|2)pλ−2+sλ+qdA(z) is a (q + sλ )-Carleson

measure and ‖μg‖q+sλ 
‖g‖pλ
B . From Theorem3.1, the inclusion mapping i : D p

p−2+s →
Tpλ ,q(μg) is bounded. If f ∈ D p

p−2+s, then

‖Tg f‖pλ
F(pλ ,pλ+sλ−2,q) =sup

a∈D

∫
D

| f (z)|pλ |g′(z)|pλ (1−|z|2)pλ−2+sλ (1−|ϕa(z)|2)qdA(z)
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=sup
a∈D

∫
D

| f (z)|pλ |g′(z)|pλ (1−|z|2)pλ−2+sλ+q
(

1−|a|2
|1−az|2

)q

dA(z)


 sup
I⊂∂D

1
|I|q

∫
S(I)

| f (z)|pλ dμg(z) = ‖ f‖pλ
Tpλ ,q(μg)

�‖μg‖q+sλ‖ f‖pλ
D

p
p−2+s


 ‖g‖pλ
B ‖ f‖pλ

D
p
p−2+s

.

As a consequence, Tg : D p
p−2+s →F(pλ , pλ +sλ −2,q) is bounded and ‖Tg‖� ‖g‖B.

THEOREM 4.2. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. If g ∈ H (D), then Ig : D p

p−2+s → F(pλ , pλ + sλ −2,q) is bounded
if and only if g ∈ H ∞. Furthermore, ‖Ig‖ 
 ‖g‖H ∞ .

Proof. Let g ∈ H ∞. Given f ∈ D p
p−2+s, for any a ∈ D, let

I(a) =
∫

D

|g(z)|pλ | f ′(z)|pλ (1−|z|2)pλ−2+sλ(1−|ϕa(z)|2)qdA(z).

If 0 < λ < 1, then Hölder’s inequality gives

I(a) �‖g‖pλ
H ∞

∫
D

| f ′(z)|pλ (1−|z|2)pλ−2+sλ(1−|ϕa(z)|2)qdA(z)

�‖g‖pλ
H ∞

(∫
D

| f ′(z)|p(1−|z|2)p−2+sdA(z)
)λ

×
⎛
⎝∫

D

(1−|a|2) q
1−λ (1−|z|2) 2λ+q−2

1−λ

|1− az| 2q
1−λ

dA(z)

⎞
⎠

1−λ

.

Set

J(a) =
∫

D

(1−|a|2) q
1−λ (1−|z|2) 2λ+q−2

1−λ

|1− az| 2q
1−λ

dA(z).

It follows from Lemma 2.3 that

J(a) = (1−|a|2) q
1−λ

∫
D

(1−|z|2) 2λ+q−2
1−λ

|1− az|2+ 2λ+q−2
1−λ + q

1−λ

dA(z) � 1. (3)

Consequently, I(a) � ‖g‖pλ
H ∞‖ f‖pλ

D p
p−2+s

and hence

‖Ig f‖F(pλ ,pλ+sλ−2,q) � ‖g‖H ∞‖ f‖D p
p−2+s

. (4)

If λ = 1, then

‖Ig f‖p
F(pλ ,pλ+sλ−2,q) � ‖g‖p

H ∞ sup
a∈D

∫
D

| f ′(z)|p(1−|z|2)p−2+s(1−|ϕa(z)|2)qdA(z)
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� ‖g‖p
H ∞

∫
D

| f ′(z)|p(1−|z|2)p−2+sdA(z)

� ‖g‖p
H ∞‖ f‖p

D p
p−2+s

.

So (4) is also true. We conclude that Ig : D p
p−2+s → F(pλ , pλ + sλ −2,q) is bounded

and ‖Ig‖ � ‖g‖H ∞ .
Conversely, for a fixed a ∈ D with |a| � 1

2 , we define fa as in (1). We know that
supa∈D ‖ fa‖D p

p−2+s
� 1 and hence

‖Ig fa‖F(pλ ,pλ+sλ−2,q) � ‖Ig‖ ‖ fa‖D p
p−2+s

� ‖Ig‖.

Furthermore, Lemma 4.12 of [34] gives

‖Ig fa‖pλ
F(pλ ,pλ+sλ−2,q) �

∫
D

|g(z)|pλ (1−|a|2)pλ

|1−az|2pλ+sλ (1−|z|2)pλ−2+sλ (1−|ϕa(z)|2)qdA(z)

=
∫

D

|g ◦ϕa(w)|pλ (1−|w|2)pλ−2+sλ+q

|1− aw|sλ dA(w)

� |g(a)|pλ .

Therefore, |g(a)| � ‖Ig‖. By the choice of a, we deduce that g ∈ H ∞ and ‖g‖H ∞ �
‖Ig‖.

In the following, by using Theorems 4.1 and 4.2, we characterize the multipliers
from D p

p−2+s to F(pλ , pλ + sλ −2,q).

THEOREM 4.3. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. Then M(D p

p−2+s,F(pλ , pλ + sλ −2,q)) = H ∞.

Proof. Given g ∈ H ∞. It follows from Theorems 4.1 and 4.2 that both integral
operators

Tg : D p
p−2+s → F(pλ , pλ + sλ −2,q) and Ig : D p

p−2+s → F(pλ , pλ + sλ −2,q)

are bounded. So Mg : D p
p−2+s → F(pλ , pλ + sλ −2,q) is bounded.

Conversely, let f ∈ F(pλ , pλ + sλ −2,q) and a ∈ D. From Lemma 4.12 of [34],
we have

‖ f‖pλ
F(pλ ,pλ+sλ−2,q) �

∫
D

| f ′(z)|pλ (1−|z|2)pλ−2+sλ(1−|ϕa(z)|2)qdA(z)

=
∫

D

| f ′(ϕa(w))|pλ (1−|a|2)pλ+sλ (1−|w|2)pλ−2+sλ+q

|1− aw|2pλ+2sλ dA(w)

� (1−|a|2)pλ+sλ | f ′(a)|pλ .

Namely,

| f ′(a)| � ‖ f‖F(pλ ,pλ+sλ−2,q)

(1−|a|2)1+ s
p

.
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Since a is arbitrary, we get

| f (a)| � ‖ f‖F(pλ ,pλ+sλ−2,q)

(1−|a|2) s
p

.

For any a∈ D, let fa be defined as in (1). Then { fa} is bounded in D p
p−2+s. It follows

that Mg fa ∈ F(pλ , pλ + sλ −2,q) and then

|Mg fa(z)| �
‖Mg fa‖F(pλ ,pλ+sλ−2,q)

(1−|z|2) s
p

�
‖Mg‖ ‖ fa‖D p

p−2+s

(1−|z|2) s
p

� ‖Mg‖
(1−|z|2) s

p
.

As a consequence, ∣∣∣∣∣ 1−|a|2
(1− az)1+ s

p
g(z)

∣∣∣∣∣� ‖Mg‖
(1−|z|2) s

p
.

Taking z = a, we obtain |g(a)| � ‖Mg‖. By the arbitrariness of a ∈ D, we conclude
that g ∈ H ∞ and ‖g‖H ∞ � ‖Mg‖.

5. Essential norm of Tg and Ig

In this section, we discuss the essential norm of Tg and Ig from D p
p−2+s to

F(pλ , pλ + sλ − 2,q). We start by recalling some related definitions and notations.
Let (X ,‖ · ‖X) and (Y,‖ · ‖Y ) be Banach spaces and T : X → Y be a bounded linear
operator. The essential norm of T : X → Y, denoted by ‖T‖e, is defined by

‖T‖e := inf
K
{‖T −K‖X→Y : K is compact from X to Y}.

It is not difficult to check that T : X → Y is compact if and only if ‖T‖e = 0. So the
estimation of ‖T‖e gives the requirement for T to be compact. Let Z be a closed
subspace of X . Given f ∈ X , the distance from f to Z , denoted by distX( f ,Z), is
defined by

distX( f ,Z) := inf
g∈Z

‖ f −g‖X .

The following lemma gives the distance from the Bloch function to the little Bloch
space, see [3, 30].

LEMMA 5.1. If f ∈ B, then

limsup
|z|→1−

(1−|z|2)| f ′(z)| 
 distB( f ,B0) 
 limsup
r→1−

‖ f − fr‖B.

Here fr(z) = f (rz), 0 < r < 1,z ∈ D.

To give the essential norm of Tg from D p
p−2+s to F(pλ , pλ + sλ −2,q), we need the

following lemma.
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LEMMA 5.2. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1 and
q + sλ > 1. If 0 < r < 1 and g ∈ B, then Tgr : D p

p−2+s → F(pλ , pλ + sλ − 2,q) is
compact.

Proof. Given { fn} ⊂ D p
p−2+s such that { fn} converges to zero uniformly on any

compact subset of D and supn ‖ fn‖D p
p−2+s

� 1. For each a ∈ D, let

I(a) =
∫

D

| fn(z)|pλ (1−|z|2)pλ−2+sλ(1−|ϕa(z)|2)qdA(z).

If 0 < λ < 1, then by Hölder’s inequality and (3),

I(a) �
(∫

D

| fn(z)|p(1−|z|2)p−2+sdA(z)
)λ

×
⎛
⎝(1−|a|2) q

1−λ

∫
D

(1−|z|2) 2λ+q−2
1−λ

|1− az| 2q
1−λ

dA(z)

⎞
⎠

1−λ

�
(∫

D

| fn(z)|p(1−|z|2)p−2+sdA(z)
)λ

.

Since g ∈ B, we get |g′r(z)| � ‖g‖B
1−r2

, z ∈ D. It follows that

‖Tgr fn‖pλ
F(pλ ,pλ+sλ−2,q) =sup

a∈D

∫
D

| fn(z)|pλ |g′r(z)|pλ (1−|z|2)pλ−2+sλ (1−|ϕa(z)|2)qdA(z)

� ‖g‖pλ
B

(1−r2)pλ sup
a∈D

∫
D

| fn(z)|pλ (1−|z|2)pλ−2+sλ (1−|ϕa(z)|2)qdA(z)

� ‖g‖pλ
B

(1− r2)pλ

(∫
D

| fn(z)|p(1−|z|2)p−2+sdA(z)
)λ

.

If λ = 1, similarly we have

‖Tgr fn‖p
F(pλ ,pλ+sλ−2,q) = sup

a∈D

∫
D

| fn(z)|p|g′r(z)|p(1−|z|2)p−2+s(1−|ϕa(z)|2)qdA(z)

� ‖g‖p
B

(1− r2)p

∫
D

| fn(z)|p(1−|z|2)p−2+sdA(z).

Since
| fn(z)|p(1−|z|2)p−2+s � ‖ fn‖p

D
p
p−2+s

(1−|z|2)p−2 � (1−|z|2)p−2

and
∫
D
(1−|z|2)p−2dA(z) < ∞, applying the Dominated Convergence Theorem we get

lim
n→∞

∫
D

| fn(z)|p(1−|z|2)p−2+sdA(z) =
∫

D

lim
n→∞

| fn(z)|p(1−|z|2)p−2+sdA(z) = 0,
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which implies that limn→∞ ‖Tgr fn‖p
F(pλ ,pλ+sλ−2,q) = 0. Hence Tgr : D p

p−2+s →F(pλ , pλ
+ sλ −2,q) is compact, as desired.

The following result is an important tool to study the essential norm of operators
on some analytic function spaces, see [29].

LEMMA 5.3. Let X ,Y be two Banach spaces of analytic functions on D . Suppose
that:

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T : X → Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence { fn} in X such
that { fn} converges to zero uniformly on every compact set of D , then the sequence
{T fn} converges to zero in the norm of Y .

The following result provide the estimation of the essential norm of Tg from
D p

p−2+s to F(pλ , pλ + sλ −2,q).

THEOREM 5.1. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. If g ∈ H (D) and Tg : D p

p−2+s → F(pλ , pλ + sλ −2,q) is bounded,
then

‖Tg‖e 
 limsup
|z|→1−

(1−|z|2)|g′(z)| 
 distB(g,B0).

Proof. Let {an} be a sequence in D such that limn→∞ |an|= 1. For each n, let fn
be defined as in (2). Then { fn} is bounded in D p

p−2+s. Furthermore, { fn} converges to
zero uniformly on every compact subset of D. Given a compact operator K : D p

p−2+s →
F(pλ , pλ + sλ −2,q), by Lemma 5.3 we have limn→∞ ‖K fn‖F(pλ ,pλ+sλ−2,q) = 0. So

‖Tg−K‖ � limsup
n→∞

‖(Tg−K) fn‖F(pλ ,pλ+sλ−2,q)

� limsup
n→∞

(
‖Tg fn‖F(pλ ,pλ+sλ−2,q)−‖K fn‖F(pλ ,pλ+sλ−2,q)

)
= limsup

n→∞
‖Tg fn‖F(pλ ,pλ+sλ−2,q)

� limsup
n→∞

(∫
D

| fn(z)|pλ |g′(z)|pλ (1−|z|2)pλ−2+sλ (1−|ϕan(z)|2)qdA(z)
) 1

pλ

� limsup
n→∞

(1−|an|2)|g′(an)|,
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and hence

‖Tg‖e � limsup
n→∞

(1−|an|2)|g′(an)|.

It follows from Lemma 5.1 and the arbitrariness of {an} that

‖Tg‖e � limsup
|z|→1−

(1−|z|2)|g′(z)| 
 distB(g,B0).

On the other hand, by Lemma 5.2, Tgr : D p
p−2+s → F(pλ , pλ + sλ −2,q) is com-

pact. Then

‖Tg‖e � ‖Tg−Tgr‖ = ‖Tg−gr‖ 
 ‖g−gr‖B.

Using Lemma 5.1 again, we have

‖Tg‖e � limsup
r→1−

‖g−gr‖B 
 distB(g,B0).

The proof is complete.
By Theorem 5.1 we easily get the following corollary.

COROLLARY 5.1. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. If g ∈ H (D), then Tg : D p

p−2+s → F(pλ , pλ + sλ −2,q) is compact
if and only if g ∈ B0.

We next estimate the essential norm of Ig from D p
p−2+s to F(pλ , pλ + sλ −2,q).

THEOREM 5.2. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. If g ∈ H (D) and Ig : D p

p−2+s → F(pλ , pλ + sλ − 2,q) is bounded,
then

‖Ig‖e 
 ‖g‖H ∞ .

Proof. Let {an}, { fn} and K be defined as in the proof of Theorem 5.1. Since K :
D p

p−2+s → F(pλ , pλ +sλ −2,q) is compact, we get limn→∞ ‖K fn‖F(pλ ,pλ+sλ−2,q) = 0
by Lemma 5.3. Hence,

‖Ig−K‖ � limsup
n→∞

‖(Ig−K) fn‖F(pλ ,pλ+sλ−2,q)

� limsup
n→∞

(
‖Ig fn‖F(pλ ,pλ+sλ−2,q)−‖K fn‖F(pλ ,pλ+sλ−2,q)

)
= limsup

n→∞
‖Ig fn‖F(pλ ,pλ+sλ−2,q).

Therefore,
‖Ig‖e � limsup

n→∞
‖Ig fn‖F(pλ ,pλ+sλ−2,q).
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Similar argument as in the proof of Theorem 4.2 shows that

‖Ig fn‖pλ
F(pλ ,pλ+sλ−2,q)

�sup
b∈D

∫
D

|g(z)|pλ (1−|an|2)pλ

|1−anz|2pλ+sλ (1−|z|2)pλ−2+sλ (1−|ϕb(z)|2)qdA(z)

�
∫

D

|g(z)|pλ (1−|an|2)pλ

|1−anz|2pλ+sλ (1−|z|2)pλ−2+sλ (1−|ϕan(z)|2)qdA(z)

=
∫

D

|g ◦ϕan(w)|pλ (1−|w|2)pλ−2+sλ+q

|1−anw|sλ dA(w) � |g(an)|pλ ,

which implies that ‖Ig‖e � ‖g‖H ∞ .
On the other hand, Theorem 4.2 gives

‖Ig‖e = inf
K
‖Ig−K‖ � ‖Ig‖ � ‖g‖H ∞ .

The proof is complete.

COROLLARY 5.2. Let 1 < p < ∞ , 0 < s,λ � 1 and 0 < q < ∞ such that pλ � 1
and q+ sλ > 1. If g ∈ H (D), then Ig : D p

p−2+s → F(pλ , pλ + sλ −2,q) is compact
if and only if g = 0.
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