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VOLTERRA INTEGRAL OPERATORS
FROM ‘@5—2-&-5 INTO F(pA,pA+sA—2,q)

CONGHUI SHEN, ZENGJIAN LOU AND SONGXIAO L1*

(Communicated by J. Jaksetic)

Abstract. Let 1 < p <o, 0<g<e,0<s, A <1 suchthat g+sA > 1. We characterize the

boundedness and compactness of inclusion mapping from Dirichlet type spaces .@;’72 ., into tent

spaces Ty 4(4). As an application, the boundedness of the Volterra operator Ty, its companion

operator I, and the multiplication operator M, from @”,’72 45 0 F(pA,pA +sA —2,q) are

given. Furthermore, we study the essential norm and compactness of 7, and I .

1. Introduction

Let D be the unit disk of the complex plane C and dID be its boundary, the unit
circle. Let (D) denote the space of all analytic functions in D endowed with the
topology of uniform convergence on compact subsets. Given 0 < p < e and o0 > —1,
the Dirichlet type space 2} is the set of all functions f € (D) such that

1/

by = O + [ 1 @)PdAa(z) <o

Here dAy(z) = (a4 1)(1 —|2|?)*dA(z) and dA(z) = %dxdy is the normalized Lebesgue
area measure on I. As is known, if p < o+ 1, then we have that 7, = Ag,_,, the
weighted Bergman space (see, for example, Theorem 6 of [4]). If p > a+2, then
95 C >, the Banach algebra of all bounded analytic functions with the supremum
norm || f|| = = sup,cp | f(2)| (see, for example, [31]). This means that the space 7%
becomes a proper Dirichlet type space when p —2 < o < p — 1. The spaces ‘@1571 are
closely related with Hardy spaces. In fact, 912 = 7 in the sense of equivalent norms.
From [4] we have @5_1 C P when 0 < p< 2. If 2< p < oo, then P C _@5_1, see
[12]. The spaces 9{7’72 are the well known analytic Besov space.

The Bloch space Z is the class of all f € 7 (D) for which

1f 1l == 1£(0)] +Slel]§(1 —[2Z)1f ()] < oo
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The little Bloch space %y, consists of all f € .7°(D) such that

tim (1 )2 =
It is known that the spaces @5_2 and H, are subspaces of the Bloch space 4.

Let 0 < p<oo, =2 < g<ooand 0 <t < oo. The space F(p,q,t) consists of those
f € (D) such that

£ g0y 7= 550 [ P @I (1= Y0~ a2 dA ) <=

This space was first introduced by Zhao in [33]. When p=2,¢ =0, F(p,q,t) is just
the Q, space. It is well known that F(p,p —2,1) = % for all + > 1 in the sense of
equivalent norms, see [33].

Let u be a nonnegative Borel measure on ID. For 0 < p < e and 0 < g < o, the
tent space T, ,(1) consists of all -measurable functions f such that

1
p = — rq < oo,
HfHTp‘q(y) ISQ%I])D) mq /S(I) ‘f(Z)| [,L(Z)

Given g € (D), the Volterra integral operator T, and its companion operator I,
with symbol g are defined by

Z Z
Tof(@)i= [ ¢ ool 1f@):= [ () (w)aw, f € #(D), z€D,
respectively. Recall that the multiplication operator M, is defined by

M, f(z) :=g(2)f(z), feH (D), zeD.

The operators T, and I, are closely related to M,. For example, note that the following
relation holds

Tof +1of = Mg f — f(0)g(0).

Let (X,||-|lx) and (Y,|-|ly) be analytic function spaces. Denote M(X,Y) the set of
multipliers from X to Y, that is,

M(X,Y):={ge#D): fgcY, VfeX}.

By the closed graph theorem, if g € M(X,Y), then we have that the operator M, : X — Y
is bounded.

Operator T, seems studied for the first time in [15]. After that many authors have
studied this, as well as some other related operators on the unit disc or the unit ball in
C" (see, for example, [1, 2, 5,6, 7, 8,9, 10, 11, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26,27, 28, 32]). Some of these papers study the operators from or to the general space
F(p,q,t) and the Dirichlet-type space (see [9, 14, 20, 22, 23, 26]).



VOLTERRA INTEGRAL OPERATORS 1089

Xiao in [32] studied the embedding from Q, space (0 < p < 1)into T ,(1). As
an application, he characterized the boundedness and compactness of the operator T,
on the Q, space. Pau and Zhao studied the embedding from M&bius invariant Besov
type space F(p,p—2,s) into T, ,(ut) in [14]. Liu and Lou studied the embedding from
Morrey spaces to 7> 4 (i) in [13].

In this paper, we first characterize the boundedness and compactness of the em-
bedding from @ ., into tent spaces T3 ,(ft). Then as an application, the bound-

edness of Ty, I, and M, from Qp 245 10 F(pA,pA +sA —2,q) are given. Further-
more, we study the essentlal norm and compactness of T, and [,. For some previ-
ous results on essential norms of integral type and related operators see, for example,
[5,6,7,18,21,23,27, 28].

The article is organized as follows. In the next section, we state some preliminary
results. The embedding theorems from :@;;72 4y to tent spaces and the boundedness

of T, and I, from :@pfer to F(pA,pA+sA —2,q) are given in Sections 3 and 4,
respectlvely In the last section, we estimate the essential norm of 7, and I,.
Throughout this paper, C denotes a positive constant, it is not necessary to be the
same from one line to another. Let f and g be two positive functions. For convenience,
we write f < g, if f < Cg holds, where C is a positive constant independent of f and

g. If f<gand g < f, then wesay f<g.

2. Preliminary results

Let I be an arc of dD and || be the normalized Lebesgue arc length of 1. The
Carleson square based on I, denoted by S(I), is defined by

S(I) = {zzreie6D:1—\I|<r<1,ei961}.

Let u be a positive Borel measure on D. For 0 < s < oo, u is called an s-Carleson

measure if sup;c,p : III( D < oo, If U is an s-Carleson measure, then we set

u(si
il = sup @)
cop M|

We need the following equivalent description of s-Carleson measure (see, e.g.,

[14]).

LEMMA 2.1. Let u be a nonnegative Borel measure on D. If 0 < s,# < oo, then
U is an s-Carleson measure if and only if

\al
< oo
wp [ (et

Moreover,

sup u(S()) /Md (2).

= sup
con M aeD /D |1 —az[**!
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The following point evaluation estimate is folklore. It is proved by using, for
example, the standard methods in Lemma 3 and Lemma 4 in [20]. Hence, the proof is
omitted.

LEMMA 2.2, Let I<p<eand 0<s<1.If f€ 2], , then

fllar ..
el S

The following integral estimates are fundamental in function spaces and operator
theory, see [16, 1.4.10. Proposition] (the case that we need can be also found in [34,
Lemma 3.10]).

LEMMA 2.3. Suppose that z€ D, c isreal, 1 > —1, and

— WPy
9= [ A oA ().

(1) If ¢ <0, then as a function of z, ., is bounded on ID.
(i) If ¢ =0, then I ,(z) < log ﬁ7 as |z —17.

(iii) If ¢ > 0, then I.,(z) < as |z] — 1.

1
(1=]z2)e”

Finally, here we will also use the following lemma which has been recently proved
in [7].

LEMMA 2.4. For 0 <r <1, let (.|, <, be the characteristic function of the set
{z:|z] <r}. If u is a s-Carleson measure on D, then u is a vanishing s-Carleson
measure if and only if [|u — p,[|s — 0 as r — 17, where du, = Y(z.|-|<dUL.

3. Embedding from @5_2 s to tent spaces

In this section, we study the embedding from Z* -2 tO tent spaces. We give a
complete characterization for the boundedness and compactness of the inclusion map-
ping i: @ _24s— Tpa g(1). We say that the inclusion mapping @ s — Toag(p) is
compact 1f

1
: pA _
Jim 77 / DI du(z) =0
whenever I C dD and {f,} is a bounded sequence in @ _54y that converges to 0
uniformly on compact subsets of .

THEOREM 3.1. Let U be a nonnegative Borel measure on D. Let 1 < p < oo, 0 <

s, <1 and 0 < g < oo such that g+ sA > 1. Then the inclusion mapping i : @572+_\, —
T,

vi,g(1) is bounded if and only if W is a (q+ sA)-Carleson measure. Furthermore,

1217 = Nl ptllg 452
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Proof. Assume that the operator i : @
let

245 — Tpa 4(1t) is bounded. Given a € D,

L~ |af?
1+Y7
)

Ja(z) = zeD. (1)

(1—az
Using Lemma 2.3, we have f, € :@ o4 With sup,cp HqujP < 1. Fixanarc I C
dD. Let ¢ be the center of I and a = (1 — |I|)e’®. Then
[1—az| <1—la| = 1],

and l
p?L

whenever z € S(I). So

u(Si A . A .
B = T o I @) U ) < TP, | S P

Consequently, u is a (g + sA)-Carleson measure and

A
[[tllgsa < NP~
Conversely, suppose that  isa (g+sA) Carleson measure. Fix f € :@ o4, Let

I be any arc on dD and a = (1 —|I|)e’, where €’ is the midpoint of I. From Lemma
2.2,

Illgp,,,  Wfllay

—2+s

()]

T
Obviously,
7 fo Q@) S i [ @ i)+ [ 176) = )l g
=L(a)+DL(a).
It is clear that
u(s(0)

Lia) S Tjaon Hfllgp S Hnu”q+s7LHf||9P

By the assumed condition and Theorem 7.4 in [34], we know that i : AZ rsh
LP*(du) is bounded. By Theorem 4.28 in [34], we have

L1f@Pdae) = 170)F + [ 17 Q1= :Prda).
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Based on these facts, we turn to estimate I («a). The estimate will be divided into two
cases.
Case I: g+sA =2

_ [ M@-r@i*
Bla)= [ )

|1 —azla
<(1-pafyt [ HEA "0 Y gu
la) ﬂ/ " N aﬁiﬂi;'“ anto
\/1/ f () 1_1;;?:_@ P aac

= (=[P [ 1709uw) ~ fl@)*da(w)

= (1=l [ (0 0u) ()17 (1= ) dA(w)
= (=[aPP* [ 17 (@I (1= gu(w) P)dA(w)
= [ 1popr L™

|1—azl*

If 0 < A < I, then Holder’s inequality yields that
lf.\'l(l _ |a‘2)2+sl

@5 [ 17 @A - gy LR aA()

11— azl*

A 7L 1-A
/ s (1—fzP) (1—\a| )t
< ( D ‘f (Z)|p(1_‘2|2)p_2+ dA(Z)> </D |1 - aZ| 1*1 dA(Z)) .

Applying Lemma 2.3, we get

ZHK (1‘—|Z| )
1— dA(z) S 1.
( ‘a| ) /D]_a22+u y},+2+y)% (Z)N

So
A
h(a) < 7117
p—2+

If A =1, then

a) S /D |f/(Z)|p (1— ‘Z|2)p(17_ |a‘2)2+sdA(Z) < /D ‘f/(Z)|p(1 o ‘Z|2)p_2+SdA(Z)

11— az|*
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i~ HfIIW

Case2: 1 <q+sA<2.
=1—=lal”) — f(a)[P*
@)= (1= [ /@)~ S(@)du
e [ MR S@ (1= laP)?
41mquD - au(:)

11— az|*
M 1—
2 q/ ‘f 1_|aZT4 |a| ) d[,L(Z)
)PA(1 - :
|Cl| 2 q/ ‘f 1_|aZT4 |Cl| ) ( _‘Z|2)q72+sldA(Z)

ﬂvwfimﬂ%w<mwm—mmeMmm
S W=1aP* [ 1o @ulw) = F@IP (1~ W) aA(w)
= (L=l [ [(F0 u) ()17 (1 = )92 A )

_ ‘f/(z)|1?l (1 _ |a|2)q+2S)L(l _ |Z|2)pk+q—2+sk
‘1 _ az‘2q+2.\'l

dA(z).

If 0 < A < 1, then according to Holder’s inequality, we have

A
w>s(Agf@Mw1—sz2*WA@Q

7L+q 2

Xéuww> U O RS

2 +21
|1 —az| 1 =

-2

It follows from Lemma 2.3 that

q+2¢l (1 — ‘Z| ) -1
(1-1a?)TF | S A S 1
D ‘1-—»&2‘ 1— + -1

Consequently,
I < pA
(@) S 17117
p—2+

If A =1, then

a) 5 /D |f/(Z)|p (1 — |a|2)¢1+2.\'(1 _ ‘Z|2)p+q72+di(Z)

|1 — az|2at2s

S/le'(Z)l”(l—|Z|2)”_2“dA() HfIIW

+s
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Combining the estimates /;(a) and I;(a), we conclude that the inclusion mapping i :
@5—24,-5 - pl,q(ou) is bounded and Hi”p}L 5 Hou”qus?L'

THEOREM 3.2. Let 1 <p <o, 0<5,A <1 and 0 < g <o suchthat qg+sA > 1.
Let | be a positive Borel measure on . Then the inclusion mapping i : @5_2+S —
T,p4(1) is compact if and only if W is a vanishing (q+ sA)-Carleson measure.

Proof. Assume that i : @ —o4s — Tpa (1) is compact. Given a sequence of arcs

n n—oo [dp| = Y. n i n = — |1 ‘n.
{I,} with limy,_..|I,| =0 Denote the center of I, by ¢/% and a, = (1 —|I,])e’%. Let

1— ‘an|2

—, z2€D. ()
(l—aZz)HF

fn(Z) =

It is clear that {f,} is bounded in @5_2 ., and {f,} converges to zero uniformly on
any compact subset of . Since

1— |a,|? _s
(@) = ———= < (I—la]) » = [L]
|1 — dnz]

we obtain

H(SU)) _ 1

p}L — [e3e)
D= T o, AR 0, n e

By the arbitrariness of {I,}, we deduce that y is a vanishing (g + sA)-Carleson mea-
sure.

Conversely, suppose that p is a vanishing (g + sA)-Carleson measure, then u
is also a (g + sA)-Carleson measure and lier |4 — trl|g+52 = O by Lemma 2.4.

It follows from Theorem 3.1 that i : @l’; s = Tprq(u) is bounded. Let {f,} be

a bounded sequence in :@p _»,, such that {f,} converges to zero uniformly on each
compact subset of D. We have

1 1
7 Jo P an@ < o [ @I @) + o [P - w0
1
S RIACIE ORI e A
1
S Sy RO i)+ = gz

Letting n — oo and then r — 1, we obtain lim, ... ﬁ Js 1fa(2)|Pdi(z) = 0. This
shows that the inclusion mapping i : @ 045 — Tpa q(1) is compact.

4. Boundedness of T,, I, and M,

In the present section, via the embedding theorem (Theorem 3.1), we provide char-
acterizations for the boundedness of Volterra integral operator 7, and its companion
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operator I, from 2% 245 10 F(pA,pA+5sA —2,q). Moreover, we study the multipli-
cation operator M, from _@1‘12“ to F(pA,pA+sA—2,q).

THEOREM 4.1. Let 1 < p < oo, 0 <s,A <1 and 0 < g < oo such that pA > 1
and q+sA > 1. If g € (D), then Ty : @11:72“‘ — F(pA,pA +sA —2,q) is bounded
if and only if g € ZB. Furthermore, ||T,|| <

Proof. Assume that Ty, : _@p o4y — F(pA,pA+sA —2,q) is bounded. For a fixed
a € D, define f, asin (1). Then fa € 9 oy With SuPaeDHqugl’ < L. So

ITefell st t-20) < 1Tl Wfellor STl

In addition, Lemma 4.12 of [34] gives

5 (1=a?)P* A24sh
Tl g aos 2 = [ 8 OFF g (1= P22 (10 Ao
p?L 1 _ ‘a|2)pl+q(l _ |Z|2)pl—2+sl+qu
/ €' (2)] 11— az|ph+si+2q (2)
— | |Pl (1 - ‘a|2)pl(1 B |W|2)p172+Sl+qu(W)
8 |1 _dw|p7L+s7L

2l (a)l”k(l — la?)P*
It follows that

2
8" (@)|(1 = al*) S | TefallFpr.prssa—2.q) S I Tell-

Thus, g € 2 and ||g[| < || T |-
Now suppose g € A. Using the equivalent norm of Bloch function [33], we have

A - s
lgll% Xsug/mIg’(Z)I”’l(l—\ZI2)”l (1= |@a(z) )14 dA(2)
ac

7 2zt 1= 1aP 7
—sup [ €@ 2 (2 ) aa

acD |l—az\2
1 10\ P 2\ pA—2+sA+
= sup o [ @I (1= )RR A ).
1com [T144 Jsa)

This means that dpi,(z) = |g/(2)|P* (1 — |z|?)P* =22 +4dA(z) is a (g + sA)-Carleson
measure and ||t ||, =< ||g||p/l From Theorem 3.1, the inclusion mapping i : @
T, 4(Mg) is bounded. If f € @ then

—24s
—2+s?

1T IR 2yt =sup /D F@IP* I8 @)1= 274254 (1= |gu(2) ) 7dA(2)
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_ 1—]al? \?
—sup [ @PH @ -2 (12 ) aag
acDJ/D ‘ az\
1 A
= sup — 2)|P*d
sup o [ @I an @ =1,
A
S\\ug\\q+m\fll’;5 _ngH IIfH
As a consequence, Ty : @

2y — F(pA,pA+sA—2,q) isbounded and || Ty || < [|g| -

THEOREM 4.2. Let 1 < p <oo, 0 < s5,A <1 and 0 < g < o such that pA > 1

and q+sA > 1. If g € (D), then I, : @p rs = F(PA,pA +sA —2,q) is bounded

if and only if g € 7. Furthermore, HIgH llgll e
Proof. Let g € 2. Given f € :@ _o4y forany a €D, let

a)= /]D) ‘g(z)|P7L|f/(Z)|P7L(1 o ‘Z|2)P)L—2+57L(1 . ‘(Pa(Z)|2)qu(Z).

If 0 < A < 1, then Holder’s inequality gives
A —2+s.
@) <Nl [ 1@ = P24 (1 = (@) 1A
A
<Ueltp ([ r@ra- Py i)

1-1
7L+q 2
1—|a))T7(1—
Y RS s P
D \I—Ez\l%
Set 204q-2
q q—
(1—]al) T (1~ [z]*) T
J(a) = / i dA(2).
D |1 —az| =%
It follows from Lemma 2.3 that
g 1—[z?) %
J(a)=(1—\a|2)131/ ( ‘Z%q ——dAR) S 1. 3)
D ‘1 az‘ +l—?L
Consequently, I(a) < || gH%w I¥a ||’;1,, and hence
: p—2+s
ngf”F(pl,pl#»Sle,q) 5 HgHJf”HfHQI’LZH' “)

If A =1, then

eI (i prs—2.q) < N815= sup | @I (1= [2P)P 72 (1 — |gu(z)|*)7dA(2)
ac
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< HgH'}fm/D|f’(Z)|p(1 — 2P dA(z)
< p . P
18115 Hf||@’z;72+

So (4) is also true. We conclude that I, : 9{7’7
and ||| < lg|le=-

Conversely, for a fixed a € D with |a| > %, we define f, asin (1). We know that
SUP,en Hf“H@,‘,’,zﬂ <1 and hence

s — F(pA,pA+5sA —2,q) is bounded

Mefall .o 5220 < Wl Ifall o . S el
Furthermore, Lemma 4.12 of [34] gives

pA > pA (1_‘a|2)p7t 2\ pA—2+sA 2\q
||IgfaHF(,,,17p,1+S,1,27q)N/D\g(zﬂ W(l—\d ) (1—|@a(2)[")?dA(z)

1— |w|2)pl—2+sk+q

= [ goutm*!
D

2 ls(a)P.

Therefore, |g(a)| S ||L||- By the choice of a, we deduce that g € 7 and ||g|| 7~ <
el

In the following, by using Theorems 4.1 and 4.2, we characterize the multipliers
from 77,  to F(pA,pA+si—2,q).

11— aw|** dA(w)

THEOREM 4.3. Let 1 < p < oo, 0 <s,A <1 and 0 < g < oo such that pA > 1
and g+ s\ > 1. Then M(_@572+S7F(p?t7p?t +sA—2,q)) = .

Proof. Given g € 5. It follows from Theorems 4.1 and 4.2 that both integral
operators

T,: 9"

s — F(pA,pA+sA —2,q) and I, : .@572+_\, — F(pA,pA+sA—2.,q)

are bounded. So M, : _@1‘12“ — F(pA,pA+sA —2,q) is bounded.

Conversely, let f € F(pA,pA +sA —2,q) and a € D. From Lemma 4.12 of [34],
we have

A A 2\ pA—2+s5A )
17 1F 2 parsn—2.0) 2 /D\f%z)l” (1= [2P)"* 7252 (1 — |gu(2) ) 9dA ()

1—lal? pA+SA (] — w2 PA—=2+sA+q
=/D\f’(<pa(w))\”l( al )l—cz(w|2PL+|2S)7L dA(w)

Z (L= [a)P* P4 f (@)

~

Namely,

||fHF(p7L,p7L+s?L—2,q)
(1—a|?)! "

f@)] 5
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Since a is arbitrary, we get

|f(a)| < ”fHF(p?L,ler.\'leZ,q).

(1—lal?)»
Forany a € D, let f, be defined as in (1). Then {f,} is bounded in _@I’;z - It follows
that M, f, € F(pA,pA+sA —2,q) and then

‘Mgfu(z)| < ||Mgfa||F(pl7pl+-slf27q) < HMg” “fa“@£72+x < HMg” v

(1—|z[2)7 To-zPr T -y
AS a consequence,
1—|af? A
_ 1+£g(z) S g2 3
(1—az)'* (1—[z2)

Taking z = a, we obtain |g(a)| < ||M,||. By the arbitrariness of a € D, we conclude
that g € 777 and ||g[[r= < [|Mg]-

5. Essential norm of 7, and /,

In this section, we discuss the essential norm of 7, and I, from @5_2 4 O
F(pA,pA +sA —2,q). We start by recalling some related definitions and notations.
Let (X,||-|lx) and (Y| -|ly) be Banach spaces and T : X — Y be a bounded linear

operator. The essential norm of 7 : X — Y, denoted by ||T||., is defined by

7 := i2f{||T—K||XHY : K is compact from X to Y }.

It is not difficult to check that 7 : X — Y is compact if and only if ||T]|, = 0. So the
estimation of [|T||. gives the requirement for T to be compact. Let Z be a closed
subspace of X. Given f € X, the distance from f to Z, denoted by distx(f,Z), is
defined by

disty (f,2) == inf [|f — glx-

The following lemma gives the distance from the Bloch function to the little Bloch
space, see [3, 30].

LEMMA 5.1. If f € A, then

limsup(1 — [z*)|f(2)| = distz(f, Zo) = limsup || f — f |-

l2|—1- 1=

Here f,(z) = f(rz), 0<r<1,z€D.

To give the essential norm of 7, from 9{7’72 45 10 F(pA,pA +sA —2,q), we need the
following lemma.
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LEMMA 5.2. Let 1 < p <oo, 0<s,A <1 and 0 < g < e such that pA > 1 and

g+sA>1.1f0<r<1 and g € A, then T, .@p res = F(PA,pA +sA —2,q) is
compact.

Proof. Given {f,} C 2, ,, suchthat {f,} converges to zero uniformly on any
compact subset of D and supn H fall gp ) < 1. Foreach a € D, let
P— s

@)= [ @1~ )2 (1= g0 dAG).

If 0 < A < 1, then by Holder’s inequality and (3),

o< ([ imera- )

224q—2

s [ ED T

11— az|T7

< ([ 1nora-EPr2rase)

1‘ Hr'f , z€D. It follows that

-2

Since g € B, we get |g.(z)| <

T Fallf o st =sup Ifn(Z)I”llg’r(Z)l”l(l—\le)”l’”“"l(l—|<Pu(Z)I2)‘1dA(Z)
F(pA,p 4)

5(1—M wp [ 1P (1P (1 ()P dA)

pA A
< ”g',',z = ([ @ra-irran)

If A = 1, similarly we have

a0 ol -2 = 582 [ I G111 )1~ (2R

pP
S o [ R EP (=P aAG),

Since
[ @PA =12 SN, . (1= 2?72 S (1= [z?)P~?
p—2+s

and (1 —|z|?)?~2dA(z) < o, applying the Dominated Convergence Theorem we get

tim [ ()17 (1= ) 2da) = [ lim |£()]7(1= P2 dA() =0,
n—-oo J)
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which implies that lim, .. || Ty, f» ||§(M7pl+s1727q) =0.Hence T, : 27 ,, — F(pA,pA
+sA —2,q) is compact, as desired.

The following result is an important tool to study the essential norm of operators
on some analytic function spaces, see [29].

LEMMA 5.3. Let X,Y be two Banach spaces of analytic functions on ID. Suppose
that:

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T:X —Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence {f,} in X such
that {f,,} converges to zero uniformly on every compact set of DD, then the sequence
{T f,} converges to zero in the norm of Y.

The following result provide the estimation of the essential norm of 7, from

174 to F(pA,pA+sA—2,q).

p—2+s

THEOREM 5.1. Let 1 < p <o, 0 <s5,A <1 and 0 < g < oo such that pA > 1
and q+sA > 1. If g€ A (D) and T : 9§_2+S—>F(p7t,p7t +sA —2,q) is bounded,
then

I Telle < limsup(1 — |z*)|g'(z)| = distz (g, Z0)-

2] —1~

Proof. Let {a,} be a sequence in D such that lim,_,.. |a,| = 1. For each n, let f,
be defined as in (2). Then {f,} is bounded in @;’72 - Furthermore, {f,} convergesto

zero uniformly on every compact subset of ID. Given a compact operator K : @5_2 s
F(pA,pA+sA—2,q), by Lemma 5.3 we have lim, . [|K ful|F(p2 pr+s1—2,9) = 0. SO

|Te — K| Z limsup [|(Te — K) full[F(pa pa+sa—2.q)

n—

2 limsup (||TganF(pz,pA+sA—2,q) - HKfn||F(p7L,p7L+s7L—2,q)>
N—s00

= lim sup H Tgfn ||F(p7t,p7t+s?L—2,q)
n—oo

L
PA

> timsup [ 15,@PH I @1 - k)24 [P 1aA(2))

n—oo

> limsup(1 — |a,|*)|g (an)|,

n—oo
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and hence

| Telle Z limsup(1 — [an|*)|8 (an)].

It follows from Lemma 5.1 and the arbitrariness of {a,} that

I T;lle 2 limsup(1 — |2[*) g’ (z)| = dist (g, Zo).

2] —1~

On the other hand, by Lemma 5.2, T, : 174

p—21s F(pA,pA+sA—2,q) is com-
pact. Then

1Tglle < 1T = Tg, | = | T, | = llg — &/ll2-
Using Lemma 5.1 again, we have

I Telle < limsup|lg — g/l 2 = distzs (g, Zo)-

~Y
r—1

The proof is complete.
By Theorem 5.1 we easily get the following corollary.

COROLLARY 5.1. Let 1 <p <oo, 0<5,A <1 and 0 < g < oo such that pA > 1
and q+sA > 1. If g € A (D), then T, : @5_2+S — F(pA,pA+sA —2,q) is compact
if and only if g € B,.

We next estimate the essential norm of 1, from @5_2 s 0 F(pA,pA+sA—2,q).

THEOREM 5.2. Let 1 < p <o, 0 <s5,A <1 and 0 < g < oo such that pA > 1
and q+sA > 1. If g€ (D) and I, : _@5_2+S — F(pA,pA+sA—2,q) is bounded,
then

1 glle = llgll.o=

Proof. Let {a,}, {fn} and K be defined as in the proof of Theorem 5.1. Since K :
9117’72“ — F(pA,pA+sA —2,q) is compact, we get limy—. [|[Kfull p(pr,pr+sa—2.9) =0
by Lemma 5.3. Hence,

1Ie — K|| Z limsup [|(Ig — K) full[F(pa pa+52—2.9)
n—oo

2 1imsup (e full o pisst 2.0~ 1K SillFra st -24))
n—oo

= limsup ngfn ||F(p7t,p7t+s?t—2,q)'

n—

Therefore,
I glle Z limsup || g full F(pa pr+si—2.q)-
n—oo
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Similar argument as in the proof of Theorem 4.2 shows that

which implies that |
On the other hand, Theorem 4.2 gives

pA
| Igfn”F(pA,p)ws)L—Zq)

zsup [ [s(c gt LIl Yy e g, ysaace
beD |1_ .~ |2pl+sl

an o
2 16 W i |2'p§m< L= [t)PA 254 (1 |, (2))9dAG)

_ A—2+sA+q
_ o (L= [w?)?
/]D)'goq)an(w)' |1 —a_nW|S7L

dA(w) Z |g(an) |,

~

Lelle Z llgll 2=

elle = inf [l — KI| < [l S llgll =

The proof is complete.

COROLLARY 5.2. Let 1 <p <oo, 0<5,A <1 and 0 < g < oo such that pA > 1

and q+sA > 1. If g € (D), then I, : @ —nis— F(pA,pA +sA —2,q) is compact
if and only if g = 0.
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