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FURTHER SUBADDITIVE MATRIX INEQUALITIES

I. H. GUMUS, H. R. MORADI AND M. SABABHEH *

(Communicated by J.-C. Bourin)

Abstract. Matrix inequalities that extend certain scalar ones have been in the center of numer-
ous researchers’ attention. In this article, we explore the celebrated subadditive inequality for
matrices via concave functions and present a reversed version of this result. Our approach will
be tackling concave functions properties and some delicate manipulations of matrices and inner
products.

1. Introduction

In 1999, Ando and Zhan proved that an operator monotone function f : [0,00) —
[0,0) satisfies the subadditive inequality [1]

HF A+ B[ < [I1fF(A)+ f(BII], (D
for all n x n positive semidefinite matrices A,B (written A,B > 0) and any unitarily
invariant norm || - ||| on the algebra .7, of all complex n x n matrices, with identity
1.

In this context, a function f : [0,00) — [0,00) is said to be operator monotone if
it preserves the partial order among Hermitian matrices. That is, if it satisfies f(A) <
f(B) whenever A < B are two positive semidefinite matrices. The partial order “< ”
among Hermitian matrices is defined by

A<B & B—-A>0.

It is quite interesting that a non-negative function f defined on [0, o) is operator
monotone if and only if it is operator concave, in the sense that for all A,B > 0,

F((1=0)A+1B) > (1—1)f(A)+1f(B), VO <t < 1.

Later, in 2007, Bourin and Uchiyama proved (1) for concave functions; a condition that
is much weaker than operator monotony (or operator concavity), [3].
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The motivation behind (1) is that a concave function f : [0,00) — [0,0) necessarily
satisfies

fla+b) < fla)+f(b), a,bel0,). 2)

Our first goal in this article is to show a new refinement and reverse for (2). More
precisely, we show that

(1) (8 (53)
<fla+b)—(f(a)+f (b)) )
(158 (152 (13)

It is unfortunate that the matrix version of (2) is not true. That is, an operator
concave function f does not necessarily satisfy

f(A+B) < f(A)+f(B) “)

for the positive semidefinite matrices A, B.
In [5], (4) was discussed in details, where additional assumptions were assumed to
obtain different forms of such inequalities.

Searching the literature, we find no mention for a reverse of (1). Our second and
main goal of this article is to find a positive term I" such that for a concave function
f:[0,0) — [0,%0) with f(0) =0, one has the following reversed version of (1)

HF(A+B)[[[+T > [[|f(A) + f(B)]

for all positive semidefinite matrices A, B and any unitarily invariant norm ||| - |||. This
will be done in Lemma 2 and Theorem 2 below.

Our approach to prove Lemma 2 and Theorem 2 will be a delicate treatment of
concave functions and inner product properties, where (3) will play a major role.

2. Main results

In this section, we present our results, where we begin with the discussion of
concave functions inequalities, then we apply those results to matrices.

Recall that a concave function is distinguished by the fact that it lies above its
secants on the interval of concavity. However, if f: [a,b] — R is concave, then one can
easily see that the function g(z) = f((1 —t)a+1tb) — ((1 —1)f(a) +1f(b)) is concave
on [0, 1]. Consequently, the graph of g(z) is above its secants on [0,1/2] and [1/2,1].
This observation leads to the well known inequality [4, 6, 7]

(=7 @-+e ) < 5 (1 =narin)+2r (LT (920)) )



FURTHER SUBADDITIVE MATRIX INEQUALITIES 1129

where 0 <7< 1 and r = min{z,1—1¢}.
[la)+/(b) f( ) atb
Noting negativity of —f ( > ) we see how (5) refines the inequality

(1 —t)f(a)+1f(b) < f((1—t)a+1b)
for concave functions. Manipulating concave inequalities also lead to a reversed version

as follows [4, 8]
(1—1)f (@) +1f (b)+2R Q(a;b) - f(a);rf(b)

where 0 <7< 1 and R = max{r,1 —1}.
Our first result provides a refinement and a reverse for (2). The proof will use both
(5) and (6). As far as we know, this approach has never been tickled in the literature.

)>f<<1—r>a+rb>, 6)

THEOREM 1. Let f:]0,00) — R be a concave function with f(0) =0. Then for

any a,b >0,
la—b|\ [ f(a+b) a+b
21+ +b)( ()

<fla+b)- (b)) (7)
() (<)

Proof. For a,b>0 and 0 <t < 1, (6) implies

(-ns(@+ir@+2r (s (0) - LD 5 (1o,
where R = max {¢,1 —1}.

Replacing @ by 0 and b by x > 0, we have

Flx) = £ (v (1-0)-0) < (1-1) £(0) +17(x) + 2R (f(

Since f(0) = 0, the above inequality implies

Fltx) <1f (0)+2R (f (3)- @) :
where R =max{z,1 —7} and 0 <7 < 1.
Applying this inequality twice implies

fla+b)= QLerf(a+b)+aL+bf(a+b)
>f<aL+b'(a+b)> 2R (f (“;b) —f(“;b))
o) (1 (55) 252)

—r@+sw-4r(r(37) - 1),
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where R = max { 2%, abﬂ}
Consequently,

fla)+FB) < f<a+b>+4R(f(“+b)—f<“”’>).

2 2
Noting that R = max { ;% -2, } = %ﬁ)h‘ we reach
|a — b| a+b fla+0)
< - 7
r@+rer<2 (14950 (1 (% SR

which proves the first inequality in (7).
Now we shall prove the second inequality in (7). From (5), we have

(1=2)f (@) +1f(b) <f((1—t)a+tb)+2r<f(a)‘;f(b) _f<a42rb>)7

where r =min{z,1 —¢}.
This implies, when a = 0,

Consequently,

b
f(a+b)=aLMf(a+b)+a—+bf(a+b)

<f(a)Hr(f(a;b) _f<a—;b>)+f(b)+2r<f(a2+b) _f<a—;b>)
:f(a)+f(b)+4r<f(a2+b)—f(a;b)>’

}_ a+b—la—b|
a+b’ u+b 2(a+b)

where r = min{ . This completes the proof of the theorem.

REMARK 1. Notice that if f : [0,e0) — R is a concave function with f(0) =0,

then for any a,b > 0,
0>f(a2—|— b) f<a+b>

Since

fla+b) _ fla)+f(b) a+b
) SO0 (1)

where the first inequality follows from the subadditivity of concave function and the
second inequality follows directly from the definition of a concave function.
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COROLLARY 1. Let f:]0,00) — R be a concave function with f(0) =0. Then
forany a,b >0,

f(a;b> B (f(a)—;f(b)) B \ZJ—FZ\ <f<a-;b) _f(a;b))_

In the sequel, we will present our applications of the above scalar inequalities to
matrices. For this purpose, we will need the following well known lemma.

LEMMA 1. ([2,p. 281))If f:J — R is concave and if A € My, is Hermitian with
spectrum in J, then

(f(A)x,x) < f ((Ax,x),

for all unit vectors x € C".

As an application of Theorem 1, we have the following reversed version of the cele-
brated subadditive inequality (1) for concave functions. For the next two main results,
we adopt the notations Apin (X) and Amax (X) to denote the least and largest eigenvalues
of the Hermitian matrix X € .#,,, respectively.

In the following lemma, we present the reversed version of (1) for the usual oper-
ator norm. The unitarily invariant norm version is shown then.

LEMMA 2. Let A,B € .#, be two positive definite matrices and let f : [0,0) —
[0,00) be a concave function, with f(0) =0. Then

@)+ sy < 2P

(2 (3) - @) +lr@a+B)l,

where o0 = Apin(A+ B), B = Amax(JA — B|), 1 = Amax(A+ B) and || -|| is the usual

operator norm.

Proof. 1If ||x|| =1, we have ((A+ B)x,x) > o.. Now since f : [0,0) — i
concave it follows that f is increasing. Consequently, —f (((A+ B)x,x)) < —f (o).
This together with the fact that f is increasing imply

(

(A-B)x,)| A+B A+ BN
2( (A+B >x,x>)<f <<< 2 >>) 2 )
(1+2) r(2) ).
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Consequently, by applying Theorem 1, with a = (Ax,x) and b = (Bx,x), we have
f(A)+f(B)x
f(A)x, > (
<f ((Ax,x) + f (<Bx7 >) (by Lemma 1)

(1 (13- e

+ f({(A+B)x,x)) (by Theorem 1)

o~ o~

//\

<(148) (s (3) ~rt@) + s+ ) oy ),
This implies
W+ <P o (1) fa) + (A BxY).

for any unit vector x € C". Now, by taking supremum over unit vector x, and recalling
that f is increasing, we obtain the desired inequality.

Now we are ready to present the main result in this article, where we show the
unitarily invariant norm version of Lemma 2. In the proof, we will need the following
basic lemma [2, Problem 1.6. 15].

LEMMA 3. Let A € M, be Hermitian and let A{(A) = Ar(A) = -+ > Ay (A) de-
note all eigenvalues of A, counting multiplicities. Then, for 1 <k < n,

k
AL(A) = max Z (Axmc,-) s
i=1

N

Il
—_

where the maximum is taken over all sets of k orthonormal vectors xy,---,x; in C".

THEOREM 2. Let A,B € .4, be two positive definite matrices and let f :[0,00) —
[0,00) be a concave function, with f(0) =0. If ||| - ||| is a unitarily invariant norm on
My, normalized so that |||I||| = 1, then

a+[3

@)+ @< EE (21 (F) ~ f(@) +lIf A+ B

where o, B and 1 are as in Lemma 2.

Proof.
Let x1,xp,---,x, be orthonormal eigenvectors corresponding to the eigenvalues
AM =A== A, of f(A)+ f(B). For simplicity, let

- oy () s
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Then, for 1 <k <n,

\g!
&
=
=
+
~

(B)) ((f(A) + f(B))xi,xi)

T
L
Il
~ ﬁ'M»
=

<, ((yI+ f(A+B))xi,x;) (by Lemma2)

I
—_

M=

< D Ai(YI+ f(A+B)) (by Lemma 3).

I
—_

Now, since A and B are positive and f : [0,0) — [0,0), we have

17 (A) + 7By < NIV +FA+ B[ 1),

where ||| |[|() denotes the ky-Fan norms. From this, it follows that (see [2, Theorem
1IvV.2.2, p. 93])

A (A)+ B < [yl + A+ B[,

for any unitarily invariant norm ||| - |||. But this latter inequality implies that

A A) +FBI < v+ [ (A+ B,

which completes the proof.
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REFERENCES

[1] T. ANDO AND X. ZHAN, Norm inequalities related to operator monotone functions, Math. Ann., 315
(1999), 771-780.

[2] R. BHATIA, Matrix analysis, Springer-Verlag, New York, 1997.

[3] J.C.BOURIN AND M. UCHIYAMA, A matrix subadditivity inequality for f(A+B) and f(A)+f (B),
Linear Algebra Appl., 423 (2007), 512-518.

[4] F. MITROI, About the precision in Jensen—Steffensen inequality, An. Univ. Craiova Ser. Mat. Inform.,
37, 4 (2010), 73-84.

[5] H. R. MORADI, Z. HEYDARBEYGI AND M. SABABHEH, Subadditive inequalities for operators,
Math. Ineq. Appl., 23, 1 (2020), 317-327.

[6] M. SABABHEH, Improved Jensen’s inequality, Math. Ineq. Appl., 20, 2 (2017), 389—403.



1134

1. H. GUMUS, H. R. MORADI AND M. SABABHEH

[7]1 M. SABABHEH, Means refinements via convexity, Mediterr. J. Math., 14, 3 (2017), 125.
[8] M. SABABHEH, Convexity and matrix means, Linear Algebra Appl., 506 (2016), 588—602.

(Received April 18, 2020)

Mathematical Inequalities & Applications
v .ele-math.com

mia@e

le-math.com

1. H. Giimiis

Department of Mathematics

Faculty of Arts and Sciences, Adiyaman University
Adiyaman, Turkey

e-mail: igumus@adiyaman.edu.tr

H. R. Moradi

Department of Mathematics
Payame Noor University (PNU)
P.O. Box 19395-4697, Tehran, Iran

e-mail: hrmoradi@mshdiau.ac.ir

M. Sababheh

Department of Basic Sciences

Princess Sumaya University for Technology
Al Jubaiha, Amman, Jordan

e-mail: sababheh@psut.edu.jo; sababheh@yahoo.com



