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FURTHER INTERPOLATION INEQUALITIES RELATED TO

ARITHMETIC–GEOMETRIC MEAN, CAUCHY–SCHWARZ AND

HÖLDER INEQUALITIES FOR UNITARILY INVARIANT NORMS

MOHAMMAD AL-KHLYLEH AND FADI ALRIMAWI

Abstract. An inequality for matrices that interpolates between the Cauchy-Schwarz and the
arithmetic-geometric mean inequalities for unitarily invariant norms has been obtained by Aude-
naert. Alakhrass obtained a related result to Audenaert’s inequality using a log-convex function
g defined on [0,1] . Very recently, Zou obtained an inequality for matrices that unifies Hölder’s
inequality and the arithmetic-geometric mean inequality for unitarily invariant norms. A gener-
alized version of Zou’s inequality for unitarily invariant norms is given, and an alternative proof
of Audenaert’s inequality using a refined version of Alakhrass’s function is presented.
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