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FURTHER INTERPOLATION INEQUALITIES RELATED TO
ARITHMETIC-GEOMETRIC MEAN, CAUCHY-SCHWARZ AND
HOLDER INEQUALITIES FOR UNITARILY INVARIANT NORMS

MOHAMMAD AL-KHLYLEH* AND FADI ALRIMAWI

(Communicated by J.-C. Bourin)

Abstract. An inequality for matrices that interpolates between the Cauchy-Schwarz and the
arithmetic-geometric mean inequalities for unitarily invariant norms has been obtained by Aude-
naert. Alakhrass obtained a related result to Audenaert’s inequality using a log-convex function
g defined on [0, 1]. Very recently, Zou obtained an inequality for matrices that unifies Holder’s
inequality and the arithmetic-geometric mean inequality for unitarily invariant norms. A gener-
alized version of Zou’s inequality for unitarily invariant norms is given, and an alternative proof
of Audenaert’s inequality using a refined version of Alakhrass’s function is presented.

1. Introduction

Let M,(C) be the space of all n x n complex matrices, and let |||.||| on M, (C)
denote the unitarily invariant norm. Let s1(A) > s2(A) > ... > 5,(A) denote the eigen-

values of |A| = (A*A)% arranged in a decreasing order, i.e., the singular values of A
where A € M,(C). If s;(A) € R for i = 1,2,...,n, then we write them as A;(4) >
M(A) = ... = A(A). Tt is known that s;(A*) = s;(JA]) = s;(A) for i =1,2,...,n
where A € M,(C). The Ky Fan norm of A € M,(C) is [|A[|4) = >k si(A), for
k=1,2,...,n. The Fan dominance theorem (see [5, p. 93]) asserts that [|A[| ) < B[
for k=1,2,...,n if and only if |||A]|| < |||B]|| for every unitarily invariant norm. For
more about the unitarily invariant norms, we refer the reader to [5, 14].

The arithmetic-geometric mean inequality for singular values of matrices, which
has been obtained in [8], asserts that

1
5j(A"B) < 35(AA" + BB) for j=1.2,....n, (1)

for all A,B € M,,(C). The unitarily invariant norm version of the inequality (1) says
that

Lo
llaBIll < 5lllaa"+ BB|]. 2
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A generalization of the inequality (2), which has been obtained in [6, 12], asserts that
1 .
IA*XBIll < S [llAA™X + X BB, 3)

forall A,B,X € M, (C).
The Cauchy-Schwarz inequality for unitarily invariant norms of matrices says that

* 2 * *
IIA”BI[|~ < [[[AA™]|| [[|1BB"]], 4)

forall A,B € M,(C).
Here are some generalizations of the inequality (4),

IHABII? < li(a4 *)’HI ey, )
I 4Bl < || 4 (88| ||". ©)
14X B> < HIAA*XHIHIXBBHI ™

Q=
~
o0
~

I a*xBr) < |||laax) %||”

IXBB*|?

forall A,B,X € M,,(C), r >0, and p,q > 1 such that %—i—%} = 1. The inequality (5) has
been obtained by Horn and Mathias in [9], while the inequality (6) has been obtained
by Horn and Zhan in [ 1], and the inequality (8) firstly introduced by Kosaki in [13].
Note that the inequality (6) is the Holder’s inequality for unitarily invariant norms of
matrices. A closer look at the Cauchy-Schwarz inequality and its applications can be
found in [7].

Using some calculations, it can be found in [2] that the inequality (3) leads to the
inequality (7).

Audenaert in [4] proved that

I/ 14*BY 1 < [||(@Aa” + (1 - a)BB") %

P x H’((l—a)AA*—kaBB*)%

forall A,B € M,(C), r >0, p,qg> 1 such that %—ké =1, and for all & € [0,1]. The
inequality (9) interpolates in a natural way between the inequality (2) and the inequality
(6).

Very recently, a generalization of the inequality (9) has been given in [15]. This
generalization asserts that

114X B ||| < Il [oAA™X + (1= )X BB ¢ || |(1 — 0)AA™X + X BB,
(10)
for all A,B,X € M,(C), p,q > 1 such that % +é =1,r> max{# Ll]}, and for all
o € [0,1]. The inequality (10) interpolates between the inequalities (3) and (8).
Alakhrass obtained in [1] a log-convex function g defined on [0, 1] and satisfies
the following
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Ila*xB| = 5(3) < &(@)

(11)
< |[|eAA*X + (1 — o)X BB*||| [||(1 — o))AA*X + o X BB*|||,

forall o € [0,1].
In Section 2, we prove a generalization the inequality (10). In Section 3, we intro-

duce an alternative proof of the inequality (9), this proof presents implicitly a refinement
of (11) for the special case when X =1.

2. Main result
We will use the following lemmas, which can be found in [5], to start our work.

LEMMA 1. If A € M,(C), then

k k
[T12)] <ITsi),
j=1 =

for 1 <k<n.

LEMMA 2. If A,B € M,(C), then

k k k
[1siaB) <I1si(a) [1s;(B),
j=1 j=1 j=1
for 1 <k<n.
And we need the following lemmas which can be found respectively in [3] and [15].

LEMMA 3. Let A,B € M, (C) be a positive semidefinite matrices and let 0 < o0 <
1. Then

5;(A%B""%) <sj(aA+ (1 —a)B),
for 1 < j<n.

LEMMA 4. Let A,B,X € M,,(C) where X is positive semidefinite, p,q > 1 such
that %4—}1 =1, r}max{%,}}}. Then

m(ax%AA*X% +(1—a)X%BB*X%)”’m < Il |AA™X + (1 — o)X BB |||,
and

)H((l —a)xiAax} +aX%BB*X%>rqH‘ < Il [(1 = @)AA™X + aXBB*|"|||,

forall a €[0,1].
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We start our results with the following theorem.

THEOREM 1. Let A,B € M,(C) and %—Fé =1, pg>1,r=0.1f f1,/2,81,8
are non-negative continuous functions such that fi(t)f>(t) =t and g,(t)g2(t) =1t for

t >0, then

1
rp p

B < (i (aa) + (1 - @) e e

12)

2
)

(1 -7 (44") + agy (88"))

forall a €[0,1].
Proof. Forany k=1,2,....,n, using Lemmas 1, 2 and 3, we get that

k
i(1A*B]") =[] ;2 (B"AA*B)
Jj=1

:w

~.
I
—_

;% (AA*BBY)

&1»

~
I
iR

|
=
<

2 (

>

(AA") f1 (AA™) g1 (BB") g2(BB"))

~.
I
—_

™

I
=

A;? (f1(AA") g1 (BB") g2 (BB") f2 (AA™))

~.
Il
-

[T/ (/1 (AA") g1 (BB") 52 (BB") /2 (4A"))

VA
z»

~.
Il
-

I
o
“
~.
N~

~
l
e

(74 aan) (ar™e 88) " (st (88)) (1o (AA*))la)

<ﬁ (% 440) " (erre 889) )3 ((eat 88) (127 an)) )
<1+ (ofi (AN )+(1-a)gi ™7 (BB") )s;* (g2 (BB)+(1-@) 77 (AA))
j=1
and so

k k L

[Ts (4B <TTs;% (efi (Aa%) <1—a>g1m<BB*>)

j=1 j=1 (13)
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Now let L=XZ and M = Y7 where
X=diag(si(@fi * (AA*}+(1-0)g; 7% (BB"). ..., sa(afi @ (AA"}+(1-0)g; 7o (BB"))),
Y=diag(s((1-0) /7 (A"} +0g2@ (BBY)),....5u((1-2) f 77 (A"} +0tg2 (BB)).

Then, we get from the inequality (13) that

=~

k

H (14"B|") < [T s;(Lm

j=1 j=1
Since the weak majorization follows from the weak log-majorization, we conclude that
k

Z (14"B]") < Zsj (xr%).

By the Fan dominance theorem, we get that

IHaBII < ||[x2¥4 || (14)
Using inequality (6), leads to
1
sl <11
1
1,0, PN Z||7
|| (et any+ 0 - e m) (1s)

"‘1

(1 -0 (40") + ago (88"))

1
‘ q

COROLLARY 1. Let A,B € M,(C) and I%—l—l =1, p,g>1,r>0. If mn,u and
v are real numbers such that m+n=u-+v=1, then

Combining the inequalities (14) and (15) leads to the inequality (12).

’P

I wesr < (ataas® + - coromy

(16)

forall a €[0,1].

Proof. Let fi =t", b =1t", g1 =t" and gy =1t in the inequality (12) to get the
result.
Note that the inequality (16) generalizes the inequality (9).
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COROLLARY 2. Let A,B,X € M,(C) and %+§ =1,p,q>1,r>0, ac|0,1].
If f1,/2,81,82 are non-negative continuous functions such that f(t)f>(t) =t and
g1(t)g2(t) =1t fort >0, then

x| ||| (et (1x1Purancuix) e (b )7
<[ (i (1X12vaa vIx|2) + (1 - 0)g 7w (%12 BB7IX]

A S NIRRT

<|[((1=e o7 (X120 a4°UIX ) +ago (112 8X12)) ||

7

where X = U |X| is the polar decomposition of X. In particular, if X is positive
semidefinite, we have

1
rp ;

H‘ ‘A*XB‘%

<[[[(en® (xtanxt) + (- wgre (xips'xt))

1
q

[~}

x H’((l —a)fprE (X2A4°X3) + g (X%BB*X'))W

Proof. Since X = U |X| for some unitary matrix U, then

‘(\X\%U*A)* (\XﬁB)

The inequality (17) follows directly by replacing A, B and r in the inequality (12)
respectively by |X|%U*A, \X\%B and 2r.

2r

s

= ‘H A*U |X|B|*"

REMARK 1. To see that the inequality (17) generalizes the inequality (10), let
fi=g2=1t%and f» = g; =t'~% in the inequality (17) to get that

1
P

rp
<m(a|x\%U*AA*U\X|%+(1—a)|x|%BB*|X|%) ‘

1
q

rq
x )H((l — @)X|2UAAUIX | + alX|2BB|X?)

If » > max { 1%7 Ll] } , using Lemma 4 leads to

1
| x| <il lawaaro x)+ 1 - oo 57

< 1(1 = e)U"AA™U X | + o X | BB ||
|| |U* (@AA™U X |+ (1 — )U X | BB*)|P|||7

<1 1U* (1 = @)AA™U |X| + aU |X| BB") ||| o
|| |U* (@AA"X + (1 — 0)XBB")|"P||7

< I 1U* (1 — @)AA"X + ax BB
|| |0AA™X + (1 — )X BB|"|| 7

|l 1(1 = 0)AA*X + aXBB*|™|||4.
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3. Alternative proof of Audenaert’s inequality

To introduce the alternative proof, we need the following lemma which is nothing
but a direct consequence of Theorem 1.2 in [10].

LEMMA 5. Let A,B,X € M,,(C) such that A and B are positive semidefinite and
let r > 0. Then the function

o) = |[[Ja=xs = ||| ||||a' x5

(18)

is log-convex on [0,1].

It is clear that the function f(o¢) defined in Lemma 5 is convex and satisfies the
property that f(c) = f(1— ) for 0 < o < 1. Moreover, it is decreasing on [0, 3],
increasing on [%, 1] and attains its minimum at % . We are now ready to present Aude-
naert’s inequality alternative proof.

Proof of the inequality (9). Apply Lemma 5 to the positive semidefinite matrices
AA*, BB*, and replace X by I, to get that the function

s = [liaa

is log-convex (and hence convex) on the interval [0, 1], decreasing on [0, 3], increasing
on [1,1] and attains its minimum at .
Using Lemma 3, we get that

)= (BB*)“ (19)

5; ()(AA*)“(BB*)““ ) =5 ((AA*)“(BB*)““) < s; (0AA* + (1 — ) BBY),

and so
sjr (‘(AA*)OC(BB*)I—OC

Since 0 < % < 1, and using the submultiplicativity of the unitarily invariant norm, we
get that

) < s/ (CAA* + (1 — at)BB"),

therefore
< [[[(oAA™ + (1 — o) BBY)'|]|. (20)

l@an + (1 - "y = ((n + (1 - @ypm )7
S ((“AA*HI—a)BB*)%)Z‘ ’ @D
< (aAA*+(1—a)BB*)%
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Combining the inequalities (20) and (21) leads to the inequality

2
H“ (BB (eAA* +(1—a)BB)) 7 ||| 22)
Similarly, and since 0 < é < 1, we get that
2
|H| )= (BB")| ((1— a)AA* + aBB") ||| . (23)

Combining the inequalities (22) and (23) with the equation (19) leads to the inequaltiy

2
q

o) <|||(@aa*+ (- syt |7l (1 - e)an” + asp) (24)

Now let A* = U |A*| and B* =V |B*| be the polar decompositions of A* and B* where
U and V are unitary matrices. Then

1 *) 1 p*| 712 *1 1Dk 1k T2 * 712
£(3) =MW ISP = W0 W lB VEIE =1 Bl e

Combining the inequality (24) with the latter equality in (25) gives

*r2_l
sy =7 (3)

< fla) (26)
Defining g(o) = +/f (o) forall o € [0,1], and taking the square root for all the sides
in (26) leads to

1
AB||l=¢| =
I 1"l g(z)

<gl(a) 27)

B

m (aAA* + (1 — a)BB*)F

H((l —a)AA*+aBB*)%‘

<’H(aAA*+(1—a)BB*)% P 0

H 1 — 0)AA* + aBB")?

Note that (27) represents a generalization of (11) for the special case when X = 1.
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