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GENERALIZED TRIANGLE INEQUALITY OF

THE SECOND TYPE IN QUASI NORMED SPACES

ASIYEH REZAEI AND FARZAD DADIPOUR

Abstract. We investigate a generalized triangle inequality of the second type in the framework
of quasi normed spaces. More precisely, by using the well-known Aoki-Rolewicz theorem and
some quasi normed inequalities, we obtain some regions of R

n which contain the set of all n -
tuples satisfying the mentioned inequality. Moreover, some reverse inclusions are also discussed.
As applications, we deduce some new results associated with generalizations of the triangle
inequality in p -normed spaces and we get some already known results in a new approach.
Mathematics subject classification (2010): 46A16, 47A30, 46B20.
Keywords and phrases: Triangle inequality of the second type, generalized triangle inequality, Aoki-

Rolewicz theorem, quasi normed space.

RE F ER EN C ES

[1] T. AOKI, Locally bounded topological spaces, Proc. Imp. Acad. Tokyo, 18, (1942), 588–594.
[2] H. BELBACHIR, M. MIRZAVAZIRI AND M. S. MOSLEHIAN, q-norms are really norms, Aust. J.

Math. Anal. Appl., 3, (2006), 1–3.
[3] F. DADIPOUR, M. S. MOSLEHIAN, J. M. RASSIAS AND S. E. TAKAHASI, Characterization of a

generalized triangle inequality in normed spaces, Nonlinear Anal., 75, (2012), 735–741.
[4] S. S. DRAGOMIR, Y. J. CHO AND S. S. KIM, Some inequalities in inner product spaces related to

the generalized triangle inequality, Appl. Math. Comput., 217, (2011), 5.
[5] H. HUDZIK AND T. R. LANDES, Characteristic of convexity of Köthe function spaces, Math. Ann.,
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