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EULER–LAGRANGE EQUATIONS ASSOCIATED WITH EXTREMAL

FUNCTIONS OF SEVERAL NONLOCAL INEQUALITIES

YAYUN LI

Abstract. This paper is concerned with the extremal functions of several kinds of non-local in-
equalities, including the Hardy-Littlewood-Sobolev inequality, fractional Gagliardo-Nirenberg
inequality, nonlocal Gagliardo-Nirenberg inequality and Coulomb-Sobolev inequality. First, we
derive the Euler-Lagrange equations which they satisfy. Second, we investigate the existence of
some integrable classical solutions for these equations, where the Pohozaev identity plays a key
role.
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