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IMPROVED HARDY INEQUALITIES WITH EXACT REMAINDER TERMS

NGUYEN TUAN DUY, NGUYEN LAM, NGUYEN ANH TRIET ∗ AND WEIJIA YIN

(Communicated by J. Pečarić)

Abstract. We set up several identities that imply some versions of the Hardy type inequalities.
These equalities give a straightforward understanding of several Hardy type inequalities as well
as the nonexistence of nontrivial optimizers. These identities also provide the “virtual” extrem-
izers for many Hardy type inequalities.

1. Introduction

The main subject of this article is the following celebrated Hardy inequality that
plays extremely important roles in many areas such as analysis, probability and partial
differential equations: ∫

RN

|∇u|2 dx �
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx. (1.1)

As pointed out in [4, 8], we actually have the following identity that characterizes the
form of the vanishing remainder terms and provides a simple and direct interpretation
of the Hardy inequalities as well as the nonexistence of nontrivial optimizers:∫

RN

|∇u|2 dx =
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx+

∫
RN

∣∣∣∣∇u+
N−2

2
u
|x|

x
|x|
∣∣∣∣2 dx. (1.2)

We note that the second term on the RHS of (1.2) vanishes when u(x) = c |x|− N−2
2 .

However, in the case
∫

RN

|u|2
|x|2 dx is infinite unless c = 0. Hence we can say that (1.1) has

“virtual” optimizer |x|− N−2
2 .

It is also worth mentioning that the following equality was proved in [28]:∫
RN

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx =
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx+

∫
RN

∣∣∣∣ x
|x| ·∇u+

N−2
2

u
|x|
∣∣∣∣2 dx. (1.3)
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Since
∫

RN

|∇u|2 dx �
∫

RN

∣∣∣ x
|x| ·∇u

∣∣∣2 dx , (1.3) provides an improved version for the Hardy

inequality . Actually, R = x
|x| ·∇ is just the radial derivative since in the polar coordi-

nate (r,σ) =
(
|x| , x

|x|
)

, we have x
|x| ·∇u = ∂r (uσ) . We also note here that the operator

R has appeared naturally in the literature. Indeed, a considerable effort has been de-
voted to investigate the functional and geometric inequalities on general homogeneous
groups. However, as mentioned in [33], since these spaces do not have to be stratified
or even graded, the concept of horizontal gradients does not make sense. Thus, it is log-
ical to work with the full gradient. On the other hand, unless the homogeneous groups
are abelian, the full gradient is not homogeneous. Nevertheless, on the homogeneous
groups, the operator R is homogeneous of order −1 and thus, is reasonable to work
with. Actually, the Hardy type inequalities with radial derivative have been studied ex-
tensively recently. See [9, 10, 11, 20, 21, 24, 25, 26, 29, 30, 32, 33, 34, 35, 36, 37], to
name just a few.

The optimal constant
(

N−2
2

)2
in the Hardy inequality is never achieved. Hence,

one may want to improve the Hardy inequalities by adding extra nonnegative terms to
the RHS of (1.1). On the whole space RN , Ghoussoub and Moradifam proved in [18]
that there is no strictly positive V ∈V 1 ((0,∞)) such that the inequality∫

RN

|∇u|2 dx−
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx �

∫
RN

V (|x|) |u|2 dx

holds for all u ∈ C∞
0

(
RN
)
. However, it was showed that extra terms can be added to

the Hardy inequality on bounded domains. For instance, let Ω be a bounded domain
in RN , N � 3, with 0 ∈ Ω , then in order to investigate the stability of singular so-
lutions of nonlinear elliptic equations, Brezis and Vázquez verified in [5] that for all
u ∈W 1,2

0 (Ω) :∫
Ω

|∇u|2 dx−
(

N−2
2

)2 ∫
Ω

|u|2
|x|2 dx � z2

0ω
2
N
N |Ω|− 2

N

∫
Ω

|u|2 dx (1.4)

where ωN is the volume of the unit ball and z0 = 2.4048... is the first zero of the Bessel

function J0 (z) . The constant z2
0ω

2
N
N |Ω|− 2

N is optimal when Ω is a ball.
The first aim of this paper is to provide another look to (1.4) in the spirit of (1.2)

and (1.3). More precisely, motivated by the results in [5] and [28], we will prove that

THEOREM 1. For u ∈C∞
0 (BR) , we have∫

BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx (1.5)

=
z2
0

R2

∫
BR

|u|2 dx+
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2

J0;R(|x|)u

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R (|x|)

|x| N−2
2

∣∣∣∣∣
2

dx
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and ∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx (1.6)

=
z2
0

R2

∫
BR

|u|2 dx+
∫
BR

∣∣∣∣∣∇
(

|x|N−2
2

J0;R(|x|)u

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R (|x|)

|x|N−2
2

∣∣∣∣∣
2

dx.

Here J0;R(z) = J0
( z0

R z
)
. The second term in the RHS of (1.5) vanishes if and only if u

has the form

u(x) =
J0;R(|x|)
|x|N−2

2

φ
(

x
|x|
)

for some functions φ : SN−1 → R . The second term in the RHS of (1.6) vanishes if and

only if u(x) = c J0;R(|x|)
|x|N−2

2
for some constant c. However, in these cases

∫
BR

|u|2
|x|2 dx is infinite

unless u = 0 .

As a consequence, we get

∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx �
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx+

z2
0

R2

∫
BR

|u|2 dx (1.7)

which implies

∫
BR

|∇u|2 dx �
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx+

z2
0

R2

∫
BR

|u|2 dx. (1.8)

The constants
(

N−2
2

)2
and

z20
R2 are sharp. The equalities in (1.7) and (1.8) are never

achieved unless u = 0. However, we can say that they have “virtual” optimizers
J0;R(|x|)
|x| N−2

2
φ
(

x
|x|
)

and J0;R(|x|)
|x|N−2

2
respectively .

Now, since z2
0ω

2
N
N |Ω|− 2

N is not attained in W 1,2
0 (Ω) , it is natural to conjecture that

z2
0ω

2
N
N |Ω|− 2

N

∫
Ω

|u|2 dx is just a first term of an infinite series of extra terms that can be

added to the RHS of (1.4). This problem was investigated by many authors. We refer
the interested reader to [1, 2, 3, 6, 7, 13, 15, 16, 17, 27], among others. See also the
books [22, 23, 31] that are by now standard references on Hardy inequalities. In par-
ticular, in [14], the authors provided an infinite series expansion of Hardy’s inequality
that is in some sense optimal. It is also worth mentioning that in an attempt to improve,
extend and unify several results in this direction, Ghoussoub and Moradifam [19] intro-
duced the Hardy improving potentials-abbreviated as HI-potentials, and studied their
connections to the Hardy inequalities. One of their results can be read as follows:
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THEOREM A. Let P be a decreasing nonnegative C1− function on (0,R) . The
following are equivalent:

(1) P is a HI-potential on (0,R) , that is, the equation y′′(r)+ 1
r y

′(r)+P(r)y(r) =
0 has a positive solution on (0,R) .

(2) For any u ∈W 1,2
0 (BR) , there holds

∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx �

∫
BR

P(|x|) |u|2 dx. (1.9)

Our next purpose is to set up an improved version for the above result in the frame-
work of equalities. More precisely, we would like to show that

THEOREM 2. Assume that P is a HI-potential on (0,R) and ϕP;R is the positive
solution of y′′(r)+ 1

r y
′(r)+P(r)y(r) = 0 on (0,R) . For u ∈C∞

0 (BR) , we have

∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx (1.10)

=
∫
BR

P(|x|) |u|2 dx+
∫
B

∣∣∣∣∣ x
|x| ·∇

(
|x| N−2

2 u
ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx

and

∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx (1.11)

=
∫
BR

P(|x|) |u|2 dx+
∫
B

∣∣∣∣∣∇
(

|x| N−2
2 u

ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx.

The second term in the RHS of (1.10) vanishes if and only if u has the form

u(x) =
ϕP;R(|x|)
|x|N−2

2

φ
(

x
|x|
)

for some functions φ : SN−1 → R . The second term in the RHS of (1.11) vanishes if and
only if u has the form

u(x) = c
ϕP;R(|x|)
|x|N−2

2

.

However, in these cases
∫
BR

|u|2
|x|2 dx is infinite unless u = 0 .
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As a consequence, we have

∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx �
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx+

∫
BR

P(|x|) |u|2 dx. (1.12)

From Theorem 2, we can again say that ϕP;R(|x|)
|x| N−2

2
is the “virtual” optimizer for (1.9) and

ϕP;R(|x|)
|x|N−2

2
φ
(

x
|x|
)

is the “virtual” optimizer for (1.12). Moreover, if there is no c > 1 such

that cP is a HI-potential on (0,R) , then (1.9) and (1.12) are sharp in the sense that there
is no c > 1 such that∫

BR

|∇u|2 dx �
∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx �
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx+ c

∫
BR

P(|x|) |u|2 dx.

The rest of this paper concerns the two-weight Hardy inequalities. There are many
efforts to investigate the conditions of nonnegative weights V and W such that the
following weighted Hardy type inequalities hold∫

V (x) |∇u|2 dx �
∫

W (x) |u|2 dx.

The interested reader is referred to, for examples, the books [19, 31]. We state here
the result, that could be found in [18], on a necessary and sufficient condition of such a
pair:

THEOREM B. Let 0 < R � ∞ , V and W be positive C1 -functions on (0,R) such

that

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr < ∞ . Then the following are equivalent:

(1) (V,cW ) is a N−dimensional Bessel pair on (0,R) for some c > 0 .

(2)
∫
B

V (|x|) |∇u|2 dx � c
∫
B

W (|x|) |u|2 dx for all u ∈C∞
0 (B) for some c > 0 .

Here we say that a couple of C1− functions (V,W ) is a N−dimensional Bessel
pair on (0,R) if the ordinary differential equation

y′′(r)+
(

N−1
r

+
Vr (r)
V (r)

)
y′(r)+

W (r)
V (r)

y(r) = 0

has a positive solution on the interval (0,R) .
Our next goal is to set up the following result about the two-weight Hardy inequal-

ity in the spirit of [28]:

THEOREM 3. Let W be a positive continuous function on (0,R) such that there

exists a C1− function W̃ on (0,R) and dW̃
dr (r)=W (r) rN−1 . Then for all u∈C∞

0 (BR\{0}) ,
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we have ∫
BR

4W̃ 2 (|x|)
W (|x|) |x|2N−2

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx−
∫
BR

W (|x|) |u|2 dx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣ x
|x| ·∇

(
u(x)

√∣∣∣W̃ (|x|)
∣∣∣)∣∣∣∣∣

2

dx

and ∫
BR

4W̃ 2 (|x|)
W (|x|) |x|2N−2 |∇u(x)|2 dx−

∫
BR

W (|x|) |u|2 dx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣∇
(

u(x)
√∣∣∣W̃ (|x|)

∣∣∣)∣∣∣∣∣
2

dx.

If W̃ (0) = 0 , then the above identities hold for any u ∈C∞
0 (BR) .

As a consequence, we get

∫
RN

4W̃ 2 (|x|)
W (|x|) |x|2N−2

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx �
∫

RN

W (|x|) |u|2 dx

and ∫
RN

4W̃2 (|x|)
W (|x|) |x|2N−2 |∇u(x)|2 dx �

∫
RN

W (|x|) |u|2 dx.

We list here some direct applications of Theorem 3. If W (r) = 1
r2a+2 , a < N−2

2 ,

then W̃ (r) =
r∫

0

sN−3−2ads = 1
(N−2a−2) r

N−2a−2 and 4W̃ 2(|x|)
W (|x|)|x|2N−2 = 4

(N−2a−2)2
1

|x|2a . Hence

we get the weighted Hardy type inequalities

∫
RN

1

|x|2a |∇u(x)|2 dx � (N−2a−2)2

4

∫
RN

1

|x|2a+2 |u|2 dx

with “virtual” optimizer |x|a+1− N
2 . In the critical case, W (r) = 1

rN
, then W̃ (r) = lnr

and 4W̃2(|x|)
W(|x|)|x|2N−2 = 4|ln|x||2

|x|N−2 . Hence we have for u ∈C∞
0

(
RN \ {0})

4
∫

RN

|ln |x||2
|x|N−2

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx �
∫

RN

|u|2
|x|N dx
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with “virtual” extremizer 1√
|ln|x||φ

(
x
|x|
)

. Indeed, the equality happens in the above

inequality if and only if u(x) = 1√
|ln|x||φ

(
x
|x|
)

. However

∫
RN

|u|2
|x|N dx =

∫
SN−1

φ2 (σ)dσ
∞∫

0

1
r ln |r|dr

which is infinite unless u = 0. Another example is when W (r) = 1

rN(ln 1
r )

2 , R = 1. In

this case W̃ (r) = 1
ln 1

r
and 4W̃2(|x|)

W(|x|)|x|2N−2 = 4(
ln 1

|x|
)2

|x|N
(
ln 1

|x|
)2

|x|2N−2 = 4
|x|N−2 . Hence, we have

the following critical Hardy inequality:∫
B1

1

|x|N−2

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx � 1
4

∫
B1

|u|2

|x|N
(
ln 1

|x|
)2 dx

for u∈C∞
0 (B1) . The “virtual” optimizer of this critical Hardy inequality is

√
ln 1

|x|φ
(

x
|x|
)

.

When N = 2, we get ∫
B1

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx � 1
4

∫
B1

|u|2

|x|2
(
ln 1

|x|
)2 dx

that implies ∫
B1

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx � 1
4

∫
B1

|u|2

|x|2
(
1+ ln 1

|x|
)2 dx.

It was pointed out in [12] that the latter is equivalent to the critical case of the Sobolev-
Lorentz inequality.

Our last aim in this paper is to set up an improved version of Theorem B in the
setting of equalities. More precisely, we will show that

THEOREM 4. Let 0 < R � ∞ , V and W be positive radial C1− functions on BR \

{0} such that

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr < ∞ . Assume that (V,W ) is a

N−dimensional Bessel pair on (0,R) . Then for all u ∈C∞
0 (BR) :∫

BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
∫
BR

W (|x|) |u|2 dx =
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇

(
u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx

and ∫
BR

V (|x|) |∇u|2 dx−
∫
BR

W (|x|) |u|2 dx =
∫
BR

V (|x|)
∣∣∣∣∇( u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx
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where ϕV,W ;R is the positive solution of

y′′(r)+
(

N−1
r

+
Vr (r)
V (r)

)
y′(r)+

W (r)
V (r)

y(r) = 0

on the interval (0,R) .

As a consequence

∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx �
∫
BR

W (|x|) |u|2 dx

and ∫
BR

V (|x|) |∇u|2 dx �
∫
BR

W (|x|) |u|2 dx.

Moreover, if there is no c > 1 such that (V,cW) is a N−dimensional Bessel pair on
(0,R) , then the above inequalities are optimal in the sense that there is no c > 1 such
that ∫

BR

V (|x|) |∇u|2 dx �
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx � c
∫
BR

W (|x|) |u|2 dx.

By applying Theorem 4 to some explicit Bessel pairs, we get the following Hardy type
inequalities:

EXAMPLE 1. (V,W ) =
(
r−λ , (N−λ−2)2

4 r−λ−2
)

, 0 � λ � N − 2, is a N -dimen-

sional Bessel pair on (0,∞) with ϕV,W ;∞ (r) = r−
N−λ−2

2 . Hence, we have

∫
RN

1

|x|λ
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx− (N−λ −2)2

4

∫
RN

|u|2
|x|λ+2

dx

=
∫

RN

∣∣∣∣ x
|x| ·∇

(
|x| N−λ−2

2 u
)∣∣∣∣2
∣∣∣∣∣ 1

|x|N−λ−2
2

∣∣∣∣∣
2

dx

and

∫
RN

1

|x|λ
|∇u|2 dx− (N−λ −2)2

4

∫
RN

|u|2
|x|λ+2

dx =
∫

RN

∣∣∣∇(|x|N−λ−2
2 u

)∣∣∣2 ∣∣∣∣∣ 1

|x|N−λ−2
2

∣∣∣∣∣
2

dx.

EXAMPLE 2. For any R > 0, (V,W ) =
(
r−λ , (N−λ−2)2

4 r−λ−2 + z20
R2 r−λ

)
, 0 �

λ � N−2, is a N -dimensional Bessel pair on (0,R) with ϕV,W ;R (r) = r−
N−λ−2

2 J0
( rz0

R

)
=
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r−
N−λ−2

2 J0;R (r) . Here z0 = 2.4048... is the first zero of the Bessel function J0 (z) .
Then, for u ∈C∞

0 (BR) , we have∫
BR

1

|x|λ
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx− (N−λ −2)2

4

∫
BR

|u|2
|x|λ+2

dx

=
z2
0

R2

∫
BR

|u|2
|x|λ

dx+
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−λ−2

2

J0;R(|x|) u

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R (|x|)
|x|N−λ−2

2

∣∣∣∣∣
2

dx

and ∫
BR

1

|x|λ
|∇u|2 dx− (N−λ −2)2

4

∫
BR

|u|2
|x|λ+2

dx

=
z2
0

R2

∫
BR

|u|2
|x|λ

dx+
∫
BR

∣∣∣∣∣∇
(
|x|N−λ−2

2

J0;R(|x|) u

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R (|x|)
|x|N−λ−2

2

∣∣∣∣∣
2

dx.

2. Some useful lemmata

We list here some important results that will be used to treat the integrals by parts
in the following sections. The proofs of these results can be found in [19].

LEMMA 1. Assume P is nonnegative on (0,R) , a � 1 and that the equation y′′+
a
r y

′ +P(r)y = 0 has a positive solution ϕ on (0,R) . Then ϕ is decreasing on (0,R)
and has the following limiting behavior on the boundary

lim
r→0

r
ϕ ′ (r)
ϕ (r)

= 0 and limsup
r→R

ϕ ′ (r)
ϕ (r)

� 0.

LEMMA 2. Let Ω be a smooth bounded domain in RN containing 0 . Set R =
supx∈∂Ω |x| and assume that ϕ ∈C1 (0,R) is a positive solution of the ODE

y′′(r)+
(

N−1
r

+
Vr (r)
V (r)

)
y′(r)+

W (r)
V (r)

y(r) = 0

on (0,R) where V , W � 0 on (0,R) such that

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr <

∞ . Setting ψ (x) = u(x)
ϕ(|x|) for any u ∈C∞

0 (Ω) , we then have the following properties:

(1)

R∫
0

V (r)
(

ϕ ′(r)
ϕ(r)

)2
rN−1dr < ∞ and limr→0V (r) ϕ ′(r)

ϕ(r) rN−1 = 0.

(2)
∫
Ω

V (|x|)ϕ ′ (|x|)2 ψ2 (x)dx < ∞ and
∫
Ω

V (|x|)ϕ (|x|)2 |∇ψ |2 (x)dx < ∞.
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(3)

∣∣∣∣∣∣
∫
Ω

V (|x|)ϕ ′ (|x|)ϕ (|x|)ψ (x)
(

x
|x| ·∇ψ (x)

)
dx

∣∣∣∣∣∣< ∞.

(4) limr→0

∣∣∣∣∣∣
∫

∂Br

V (|x|)ϕ ′ (|x|)ϕ (|x|)ψ2 (x)ds

∣∣∣∣∣∣= 0.

Now, let u ∈C∞
0 (Ω) . We then extend u as zero outside Ω and may consider that

u ∈C∞
0

(
RN
)
. Hence, we can decompose u into spherical harmonics as follows:

u =
∞

∑
k=0

uk =
∞

∑
k=0

fk (r)φk (σ) ,

where φk (σ) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with
corresponding eigenvalues ck = k (N + k−2), k � 0. We note that the corresponding
components fk are in C∞

0 (Ω) and satisfy fk (r) = O
(
rk
)
, f ′k (r) = O

(
rk−1

)
as r ↓ 0.

In particular

φ0 (σ) = 1, c0 = 0 and f0 (r) =
1

|∂Br|
∫

∂Br

uds.

Also, for any k ∈ N :

Δuk =
(

Δ fk (r)− ck
fk (r)
r2

)
φk (σ) .

LEMMA 3. Assume that the decomposition of u into the spherical harmonics is

u =
∞

∑
k=0

uk =
∞

∑
k=0

fk (r)φk (σ) and assume that V is a positive radial C1− function on

R
N \ {0} . Then we have:∫

RN

V (|x|) |u|2 dx =
∞

∑
k=0

∫
RN

V (|x|) | fk (|x|)|2 dx.

∫
RN

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx =
∞

∑
k=0

∫
RN

V (|x|) |∇ fk (|x|)|2 dx.

∫
RN

V (|x|) |∇u|2 dx =
∞

∑
k=0

∫
RN

V (|x|) |∇ fk (|x|)|2 + ckV (|x|) | fk (|x|)|2
|x|2 dx.

Proof. By polar coordinate and direct computations, we have

∫
RN

V (|x|) |u|2 dx =
∞∫

0

∫
SN−1

V (r)

∣∣∣∣∣ ∞

∑
k=0

fk (r)φk (σ)

∣∣∣∣∣
2

rN−1drdσ =
∞

∑
k=0

∫
RN

V (|x|) | fk (|x|)|2 dx.
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Also ∫
RN

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx =
∞∫

0

∫
SN−1

V (r)

∣∣∣∣∣ ∞

∑
k=0

∂uk

∂ r

∣∣∣∣∣
2

rN−1drdσ

=
∞∫

0

∫
SN−1

V (r)

∣∣∣∣∣ ∞

∑
k=0

f ′k (r)φk (σ)

∣∣∣∣∣
2

rN−1drdσ

=
∞

∑
k=0

∣∣SN−1
∣∣ ∞∫

0

V (r)
∣∣ f ′k (r)

∣∣2 rN−1dr

=
∞

∑
k=0

∫
RN

V (|x|) |∇ fk (|x|)|2 .

Next, we note that∫
RN

uV (|x|)Δudx

=
∞∫

0

∫
SN−1

V (r)
∞

∑
k=0

fk (r)φk (σ)
∞

∑
k=0

(
f ′′k (r)+

N−1
r

f ′k (r)− ck
fk (r)
r2

)
φk (σ) rN−1drdσ

=
∞

∑
k=0

∣∣SN−1
∣∣ ∞∫

0

V (r) fk (r)
(

f ′′k (r)+
N−1

r
f ′k (r)− ck

fk (r)
r2

)
rN−1drdσ

and∫
RN

u∇V (|x|) ·∇udx

=
∞∫

0

∫
SN−1

(
∞

∑
k=0

fk (r)φk (σ)

)
V ′ (r)

r

[
(r,σ)·

∞

∑
k=0

(
f ′k (r)φk (σ) ,

fk (r)
r

∇
SN−1φk (σ)

)]
rN−1drdσ

=
∞

∑
k=0

∣∣SN−1
∣∣ ∞∫

0

V ′ (r) fk (r) f ′k (r)rN−1drdσ .

Hence∫
RN

V (|x|) |∇u|2 dx=−
∫

RN

u∇ · (V (|x|)∇u)dx=−
∫

RN

uV (|x|)Δudx−
∫

RN

u∇V (|x|) ·∇udx

=−
∞

∑
k=0

∣∣SN−1
∣∣ ∞∫
0

[
V (r) fk(r)

(
f ′′k (r)+

N−1
r

f ′k (r)−ck
fk (r)
r2

)
+V ′(r) fk (r) f ′k (r)

]
rN−1dr

=
∞

∑
k=0

∫
RN

V (|x|) |∇ fk (|x|)|2 + ckV (|x|) | fk (|x|)|2
|x|2 dx.
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3. Proof of Theorem 1

Proof of Theorem 1. By [28], we have∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx =

∫
BR

|x|2−N
∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
)∣∣∣∣2 dx

=
∫
BR

|x|2−N
∣∣∣∣ x
|x| ·∇v

∣∣∣∣2 dx

with v = |x|N−2
2 u .

Let ψ (x) = v(x)
J0;R(x) . We note that since J0 is the Bessel function: r2J′′0 (r)+rJ′0(r)+

r2J0 = 0 on (0,z0) , J0;R solves r2J′′0;R(r)+ rJ0;R(r)+ z20
R2 r2J0;R = 0 on (0,R) . Then

∫
BR

|x|2−N
∣∣∣∣ x
|x| ·∇v

∣∣∣∣2 dx =
∫

SN−1

R∫
0

|∂rv(rσ)|2 rdrdσ

=
∫

SN−1

R∫
0

|ψ |2 ∣∣J′0;R

∣∣2 rdrdσ+
∫

SN−1

R∫
0

|∂rψ (rσ)|2 |J0;R|2 rdrdσ+2
∫

SN−1

R∫
0

ψ∂rψJ0;RJ′0;Rrdrdσ .

Using integration by parts and Lemma 1, we get

2
∫

SN−1

R∫
0

ψ∂rψJ0;RJ′0;Rrdrdσ = −
∫

SN−1

R∫
0

|ψ |2 (J0;RJ′0;Rr
)′

drdσ

=−
∫

SN−1

R∫
0

|ψ |2 ∣∣J′0;R

∣∣2 rdrdσ −
∫

SN−1

R∫
0

|ψ |2
(
J0;RJ′0;R + J0;RJ

′′
0;Rr
)

drdσ .

Hence ∫
BR

|x|2−N
∣∣∣∣ x
|x| ·∇v

∣∣∣∣2 dx

=
∫

SN−1

R∫
0

|∂rψ |2 |J0;R|2 rdrdσ −
∫

SN−1

R∫
0

|v|2
(

J′0;R + J
′′
0;Rr

J0;R

)
drdσ

=
∫

SN−1

R∫
0

|∂rψ |2 |J0;R|2 rdrdσ +
z2
0

R2

∫
SN−1

R∫
0

|v|2 rdrdσ .

Noting that ∫
SN−1

R∫
0

|v|2 rdrdσ =
∫
BR

|u|2 dx,
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we obtain ∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx

=
z2
0

R2

∫
BR

|u|2 dx+
∫

SN−1

R∫
0

|∂rψ |2 |J0;R|2 1
rN−2 rN−1drdσ

=
z2
0

R2

∫
BR

|u|2 dx+
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
J0;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx.

We now decompose u into spherical harmonics: u =
∞

∑
k=0

uk =
∞

∑
k=0

fk (r)φk (σ) . By

Lemma 3, we have that

∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx

=
∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx+

∞

∑
k=0

ck

∫
BR

| fk (|x|)|2
|x|2 dx

=
z2
0

R2

∫
BR

|u|2 dx+
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
J0;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx+
∞

∑
k=0

ck

∫
BR

| fk (|x|)|2
|x|2 dx.

Noting that |x|N−2
2 u

J0;R(|x|) =
∞

∑
k=0

r
N−2

2
J0;R(r) fk (r)φk (σ) and using Lemma 3, we have

∫
BR

∣∣∣∣∣∇
(
|x|N−2

2 u
J0;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx

=
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
J0;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R(|x|)

|x| N−2
2

∣∣∣∣∣
2

dx+
∞

∑
k=0

ck

∫
BR

∣∣∣∣∣J0;R(|x|)
|x|N−2

2

∣∣∣∣∣
2

∣∣∣∣ |x|N−2
2 fk(|x|)

J0;R(|x|)

∣∣∣∣2
|x|2 dx

=
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
J0;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R(|x|)

|x| N−2
2

∣∣∣∣∣
2

dx+
∞

∑
k=0

ck

∫
BR

| fk (|x|)|2
|x|2 dx.

Hence ∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx
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=
z2
0

R2

∫
BR

|u|2 dx+
∫
BR

∣∣∣∣∣∇
(

|x|N−2
2 u

J0;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣J0;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx.

Now, if u = J0;R(|x|)
|x| N−2

2
, then

∫
BR

|u|2
|x|2 dx =

∣∣SN−1
∣∣ R∫

0

|J0;R(r)|2
r

dr.

Noting that J0;R(r) is a positive decreasing function on (0,R) , we have for some ε ∈
(0,R) that

R∫
0

|J0;R(r)|2
r

dr �
ε∫

0

|J0;R(ε)|2
r

dr = ∞.

4. Proof of Theorem 2

Proof of Theorem 2. Let ϕP;R be the positive solution of y′′(r)+ 1
r y

′(r)+P(r)y(r)=
0 on (0,R) . We recall that

∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx =

∫
B

|x|2−N
∣∣∣∣ x
|x| ·∇v

∣∣∣∣2 dx

where v = |x|N−2
2 u. Letting ψ (x) = v(x)

ϕP;R(|x|) and using the polar coordinate, we have

∫
B

|x|2−N
∣∣∣∣ x
|x| ·∇v

∣∣∣∣2 dx =
∫

SN−1

1∫
0

|∂rv(rσ)|2 rdrdσ

=
∫

SN−1

1∫
0

|ψ |2 ∣∣ϕ ′
P;R

∣∣2 rdrdσ +
∫

SN−1

1∫
0

|∂rψ |2 |ϕP;R|2 rdrdσ +2
∫

SN−1

1∫
0

ψψ ′ϕP;Rϕ ′
P;Rrdrdσ

=
∫

SN−1

1∫
0

|ψ |2∣∣ϕ ′
P;R

∣∣2rdrdσ+
∫

SN−1

1∫
0

|∂rψ |2|ϕP;R|2rdrdσ−
∫

SN−1

1∫
0

|ψ |2(ϕP;Rϕ ′
P;Rr
)′

drdσ .

Using Lemma 1 to treat the integration by parts, we obtain

2
∫

SN−1

1∫
0

ψψ ′ϕP;Rϕ ′
P;Rrdrdσ = −

∫
SN−1

1∫
0

|ψ |2 (ϕP;Rϕ ′
P;Rr
)′

drdσ .
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Hence, we can deduce that∫
B

|x|2−N
∣∣∣∣ x
|x| ·∇v

∣∣∣∣2 dx

=
∫

SN−1

1∫
0

|∂rψ |2 |ϕP;R|2 rdrdσ −
∫

SN−1

1∫
0

|ψ |2 (ϕP;Rϕ ′
P;R + ϕP;Rϕ ′′

P;Rr
)
drdσ

=
∫

SN−1

1∫
0

|∂rψ |2 |ϕP;R|2 rdrdσ −
∫

SN−1

1∫
0

|v|2
(ϕ ′

P;R + ϕ ′′
P;Rr

ϕP;R

)
drdσ

=
∫

SN−1

1∫
0

|∂rψ |2 |ϕP;R|2 rdrdσ +
∫

SN−1

1∫
0

r |v|2 Pdrdσ

=
∫
BR

P(|x|) |u|2 dx+
∫
B

∣∣∣∣∣ x
|x| ·∇

(
|x| N−2

2 u
ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx.

We now decompose u into spherical harmonics: u =
∞

∑
k=0

uk =
∞

∑
k=0

fk (r)φk (σ) . By

Lemma 3, we have that∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx

=
∫
BR

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx+

∞

∑
k=0

ck

∫
BR

| fk (|x|)|2
|x|2 dx

=
∫
BR

P(|x|) |u|2 dx+
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx+
∞

∑
k=0

ck

∫
BR

| fk (|x|)|2
|x|2 dx.

Noting that |x| N−2
2 u

ϕP;R(|x|) =
∞

∑
k=0

r
N−2

2
ϕP;R(r) fk (r)φk (σ) and using Lemma 3, we have

∫
BR

∣∣∣∣∣∇
(

|x|N−2
2 u

ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx

=
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x| N−2
2

∣∣∣∣∣
2

dx+
∞

∑
k=0

ck

∫
BR

∣∣∣∣∣ϕP;R(|x|)
|x|N−2

2

∣∣∣∣∣
2

∣∣∣∣ |x|N−2
2 fk(|x|)

ϕP;R(|x|)

∣∣∣∣2
|x|2 dx

=
∫
BR

∣∣∣∣∣ x
|x| ·∇

(
|x|N−2

2 u
ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x| N−2
2

∣∣∣∣∣
2

dx+
∞

∑
k=0

ck

∫
BR

| fk (|x|)|2
|x|2 dx.
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Hence ∫
BR

|∇u|2 dx−
(

N−2
2

)2 ∫
BR

|u|2
|x|2 dx

=
∫
BR

P(|x|) |u|2 dx+
∫
BR

∣∣∣∣∣∇
(

|x| N−2
2 u

ϕP;R(|x|)

)∣∣∣∣∣
2 ∣∣∣∣∣ϕP;R(|x|)

|x|N−2
2

∣∣∣∣∣
2

dx.

Now, if u = ϕP;R(|x|)
|x|N−2

2
, then we have

∫
BR

|u|2
|x|2 dx =

∣∣SN−1
∣∣ R∫

0

|ϕP;R(r)|2
r

dr.

By Lemma 1, ϕP;R is a positive decreasing function on (0,R) . Hence we have for some
ε ∈ (0,R) that

R∫
0

|ϕP;R(r)|2
r

dr �
ε∫

0

|ϕP;R(ε)|2
r

dr = ∞.

5. Proof of Theorem 3

Proof of Theorem 3. By using the polar coordinates (r,σ) =
(
|x| , x

|x|
)
∈ (0,R)×

SN−1 and integrations by parts, we have

∫
BR

W (|x|) |u|2 dx =
R∫

0

W (r) rN−1
∫

SN−1

|u(rσ)|2 dσdr

= −
R∫

0

W̃ (r)2
∫

SN−1

u(rσ)σ ·∇u(rσ)dσdr

= −2

R∫
0

W̃ (r)√
W (r)rN−1

∫
SN−1

√
W (r)u(rσ)σ ·∇u(rσ)rN−1dσdr

= −2
∫
BR

√
W (|x|)u(x)

W̃ (|x|)√
W (|x|) |x|N−1

(
x
|x| ·∇u(x)

)
dx.

We note here that when treating the integration by parts, the boundary term will vanish
as long as u ∈C∞

0 (BR \ {0}) or limr↓0W̃ (r) = 0.
Then, we get

2
∫
BR

W (|x|) |u|2 dx = −4
∫
BR

√
W (|x|)u(x)

W̃ (|x|)√
W (|x|) |x|N−1

(
x
|x| ·∇u(x)

)
dx
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and so

∫
BR

W (|x|) |u|2 dx

=−
∫
BR

W (|x|) |u|2 dx−2
∫
BR

√
W (|x|)u(x)2

W̃ (|x|)√
W (|x|) |x|N−1

(
x
|x| ·∇u(x)

)
dx

=−
∫
BR

∣∣∣∣∣√W (|x|)u(x)+2
W̃ (|x|)√

W (|x|) |x|N−1

(
x
|x| ·∇u(x)

)∣∣∣∣∣
2

dx

+4
∫
BR

W̃ 2 (x)

W (|x|) |x|2N−2

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣2 dx.

We note that

∫
BR

∣∣∣∣∣√W (|x|)u(x)+2
W̃ (|x|)√

W (|x|) |x|N−1

(
x
|x| ·∇u(x)

)∣∣∣∣∣
2

dx

=
∫
BR

∣∣∣∣∣∣∣∣
2

√∣∣∣W̃ (|x|)
∣∣∣√

W (|x|) |x|N−1

W̃ (|x|)∣∣∣W̃ (|x|)
∣∣∣
⎛⎜⎜⎝( x

|x| ·∇u(x)
)√∣∣∣W̃ (|x|)

∣∣∣+W (|x|) |x|N−1

2

√∣∣∣W̃ (|x|)
∣∣∣

W̃ (|x|)∣∣∣W̃ (|x|)
∣∣∣
⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
2

dx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣ x
|x| ·∇

(
u(x)

√∣∣∣W̃ (|x|)
∣∣∣)∣∣∣∣∣

2

dx.

We now decompose u into spherical harmonics: u =
∞

∑
k=0

uk =
∞

∑
k=0

fk (r)φk (σ) . By

Lemma 3, we have that

4
∫
BR

W̃ 2 (x)
W (|x|) |x|2N−2 |∇u|2 dx−

∫
BR

W (|x|) |u|2 dx

=4
∫
BR

W̃ 2(x)

W (|x|) |x|2N−2

∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
∫
BR

W (|x|) |u|2 dx+
∞

∑
k=0

ck4
∫
BR

W̃ 2(x)

W (|x|) |x|2N−2

| fk(|x|)|2
|x|2 dx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣ x
|x| ·∇

(
u(x)

√∣∣∣W̃ (|x|)
∣∣∣)∣∣∣∣∣

2

dx+
∞

∑
k=0

ck4
∫
BR

W̃ 2(x)
W (|x|) |x|2N−2

| fk(|x|)|2
|x|2 dx.
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Noting that u(x)
√∣∣∣W̃ (|x|)

∣∣∣= ∞

∑
k=0

√∣∣∣W̃ (r)
∣∣∣ fk (r)φk (σ) and using Lemma 3, we have

∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣∇
(

u(x)
√∣∣∣W̃ (|x|)

∣∣∣)∣∣∣∣∣
2

ϕ2
V,W ;Rdx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣ x
|x| ·∇

(
u(x)

√∣∣∣W̃ (|x|)
∣∣∣)∣∣∣∣∣

2

dx

+
∞

∑
k=0

ck

∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2 ϕ2

V,W ;R

∣∣∣∣√∣∣∣W̃ (|x|)
∣∣∣ fk (|x|)

∣∣∣∣2
|x|2 dx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣ x
|x| ·∇

(
u(x)

√∣∣∣W̃ (|x|)
∣∣∣)∣∣∣∣∣

2

dx

+
∞

∑
k=0

ck4
∫
BR

W̃ 2 (x)

W (|x|) |x|2N−2

| fk (|x|)|2
|x|2 dx.

Hence ∫
BR

4W̃ 2 (|x|)
W (|x|) |x|2N−2 |∇u(x)|2 dx−

∫
BR

W (|x|) |u|2 dx

=
∫
BR

4
∣∣∣W̃ (|x|)

∣∣∣
W (|x|) |x|2N−2

∣∣∣∣∣∇
(

u(x)
√∣∣∣W̃ (|x|)

∣∣∣)∣∣∣∣∣
2

dx.

6. Proof of Theorem 4

Proof of Theorem 4. By polar coordinate∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
∫
BR

W (|x|) |u|2 dx

=
∫

SN−1

R∫
0

V (r) |∂ru(rσ)|2 rN−1drdσ −
∫

SN−1

R∫
0

W (r) |u(rσ)|2 rN−1drdσ

Let u(x) = ϕV,W ;R (x)ψ (x) , then

R∫
0

V (r) |∂ru(rσ)|2 rN−1dr
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=
R∫

0

V (r)
∣∣ϕ ′

V,W ;R (r)ψ + ϕV,W ;R∂rψ (rσ)
∣∣2 rN−1dr

=
R∫

0

V (r)ϕ ′
V,W ;R (r)2 |ψ |2 rN−1dr+

R∫
0

V (r)ϕ2
V,W ;R |∂rψ (rσ)|2 rN−1dr

+2

R∫
0

V (r)ϕ ′
V,W ;RϕV,W ;Rψ∂rψrN−1dr.

Using Lemma 2 to treat the integrations by parts, we obtain

2

R∫
0

V (r)ϕ ′
V,W ;RϕV,W ;Rψ∂rψrN−1dr

=−
R∫

0

|ψ |2 ∂r
[
V (r)ϕ ′

V,W ;RϕV,W ;RrN−1]dr

=−
R∫

0

V (r)ϕ ′
V,W ;R (r)2 |ψ |2 rN−1dr−

R∫
0

|ψ |2V ′ (r)ϕ ′
V,W ;RϕV,W ;RrN−1dr

−
R∫

0

|ψ |2V (r)ϕV,W ;Rϕ ′′
V,W ;RrN−1dr− (N−1)

R∫
0

|ψ |2V (r)ϕ ′
V,W ;RϕV,W ;RrN−2dr

and

R∫
0

V (r) |∂ru(rσ)|2 rN−1dr

=
R∫

0

V (r)ϕ2
V,W ;R |∂rψ (rσ)|2 rN−1dr

−
R∫

0

[
Vϕ ′′

V,W ;R +
(N−1)

r
Vϕ ′

V,W ;R +V ′ (r)ϕ ′
V,W ;R

]
|ψ |2 ϕV,W ;RrN−1dr

=
R∫

0

V (r)ϕ2
V,W ;R |∂rψ (rσ)|2 rN−1dr+

R∫
0

W (r) |u|2 rN−1dr.

Hence, we have

∫
SN−1

R∫
0

V (r) |∂ru(rσ)|2 rN−1drdσ −
∫

SN−1

R∫
0

W (r) |u(rσ)|2 rN−1drdσ
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=
∫

SN−1

R∫
0

V (r)ϕ2
V,W ;R |∂rψ (rσ)|2 rN−1drdσ =

∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇

(
u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx.

We now decompose u into spherical harmonics: u =
∞

∑
k=0

uk =
∞

∑
k=0

fk (r)φk (σ) . By

Lemma 3, we have that∫
BR

V (|x|) |∇u|2 dx−
∫
BR

W (|x|) |u|2 dx

=
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣2 dx−
∫
BR

W (|x|) |u|2 dx+
∞

∑
k=0

ck

∫
BR

V (|x|) | fk (|x|)|2
|x|2 dx

=
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇

(
u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx+

∞

∑
k=0

ck

∫
BR

V (|x|) | fk (|x|)|2
|x|2 dx.

Noting that u
ϕV,W ;R

=
∞

∑
k=0

fk(r)
ϕV,W ;R(r)φk (σ) and using Lemma 3, we have

∫
BR

V (|x|)
∣∣∣∣∇( u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx

=
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇

(
u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx+

∞

∑
k=0

ck

∫
BR

V (|x|)ϕ2
V,W ;R

∣∣∣ fk(|x|)
ϕV,W ;R(|x|)

∣∣∣2
|x|2 dx

=
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇

(
u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx+

∞

∑
k=0

ck

∫
BR

V (|x|) | fk (|x|)|2
|x|2 dx.

Hence∫
BR

V (|x|) |∇u|2 dx−
∫
BR

W (|x|) |u|2 dx =
∫
BR

V (|x|)
∣∣∣∣∇( u

ϕV,W ;R

)∣∣∣∣2 ϕ2
V,W ;Rdx.
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