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TWO–WEIGHTED INEQUALITIES FOR THE FRACTIONAL

INTEGRAL ASSOCIATED TO THE SCHRÖDINGER OPERATOR
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Abstract. In this article we prove that the fractional integral operator associated to the Schrödinger
second order differential operator L −α/2 = (−Δ + V )−α/2 maps with continuity weak Lebesgue

space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβ
L (w) , thus improving regu-

larity under appropriate conditions on the pair of weights (v,w) and the parameters p , α and

β . We also prove the continuous mapping from BMOβ
L (v) to BMOγ

L (w) for adequate pair of
weights. Our results improve those known for the same weight in both sides of the inequality and
they also enlarge the families of weights known for the classical fractional integral associated to
the Laplacian operator L = −Δ .
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1. Introduction

Regularity estimates of solutions of second order differential operators are central
in the study of partial differential equations. Sometimes these results are closely related
to regularity estimates for negative powers of those operators. Keeping in mind this fact
in this paper we focus our attention on estimates on Campanato-Hölder type spaces of
fractional integrals -negative powers- of the Schrödinger differential operator

L = −Δ +V,

on R
d with d � 3, where the potential V � 0 belongs to a reverse Hölder class RHq ,

for some exponent q > d
2 , as defined in (1.4). For a deeper insight in this direction see

[14, 24, 25].
At this point we must recall that the Hölder-α continuous space of functions

f such that ‖ f‖C α = supx�=y
| f (x)− f (y)|

|x−y|α < ∞ , 0 < α � 1, can be identified with the

Campanato space BMOα defined by the seminorm ‖ f‖BMOα = supB
1

|B|1+α/λ

∫
B | f (x)−

fB|dx , where the supremum is taken over all the balls B ∈ R
d and fB is the mean value

of f on B , see for example [38, 22, 26]. In the Schrödinger setting analogous result
was obtained in [2] by identifying a Campanato-type space BMOα

L with certain type
Hölder-α continuous space, see next section. This identification will be the key tool to
interpret the information given by our results in terms of regularity.

Let us recall that negative powers of the Schrödinger operator can be expressed in
terms of the heat diffusion semigroup generated by L , e−tL , as

Iα f (x) = L −α/2 f (x) =
∫ ∞

0
e−tL f (x)tα/2 dt

t
, α > 0. (1.1)
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The above operator is also named (Schrödinger) fractional integral operator of order
α . When V = 0 then L = −Δ is the Laplacian operator and we have the classical
fractional integral Iα .

For each t > 0 the operator e−tL is an integral operator with kernel kt(x,y) having
a better behaviour far away from the diagonal {(x,x), x ∈ R

d} than the heat diffusion
kernel 1

(4πt)d/2 e−|x−y|2/4t associated to −Δ , see Lemma 2.1 below and [12], [13] and

[23]. It follows from this property that Iα f is finite a.e. for f ∈ Lp with p � 1.
When applied on Lp -spaces the value p = d/α constitutes a breaking-point for

the classical fractional integral Iα . More clearly, for p < d/α it satisfies a (p,q)-norm
inequality with 1

q = 1
p − α

d , see [18, 19, 37, 21], but for p � d/α Iα instead shows
regularity properties of the form

1

|B|1+ α
d − 1

p

∫
B
|Iα f (x)− cB, f |dx � C‖ f‖p (1.2)

for f ∈ Lp , any ball B and some constant cB, f . In other words Iα f belongs to the
Campanato space BMOβ with β = α

d − 1
p , see for example [38, 22, 29]. In particular,

when p = d/α the arrival space is BMO0 = BMO , the well known space of bounded
mean oscillation functions of John and Nirenberg.

The Schrödinger fractional integral Iα behaves similarly to Iα when p < d/α in
the sense that it also maps Lp in Lq with 1

q = 1
p − α

d but for p = d/α the behavior of

Iα is better since it maps Ld/α into a space, denoted BMOL , which is in fact smaller
than the classical BMO-space, see [10]. Finally for p > d/α the operator Iα maps

with continuity Lp into a Campanato-type space BMOβ
L , see [2, 3, 24]. This space is

shown to be the dual of the Hp -space introduced in [11] and [13], as it can be easily
checked from the atomic decomposition given there. For definition and properties of
weighted Hp -spaces see [1].

Going back again to the classical setting, Harboure, Viviani and Salinas in [17]
obtained a more general estimate than (1.2) with Iα defined on a weak weighted Lp -
space. That is

1

v(B)|B| α
d − 1

p

∫
B
|Iα f (x)− cB, f |dx � C

[
f
v

]
p

(1.3)

for an adequate class of weights H(α, p) .
We recall that the weak weighted Lp,∞(v) , p > 1, is the space of measurable

functions f such that [ f
v ]p = (supt>0 t p|{x : | f (x)|

v(x) > t}|) 1
p < ∞ where v is a measurable

non-negative function and that the expression on the left side of (1.3) represents a semi-
norm in a weighted BMOα−d/p(v) , see also [35] and references therein.

The class of weights H(α, p) introduced in [17] was later used in [2] to derive for
the Schrödinger fractional integral Iα estimates, one of which is of the type of (1.3),
that show the continuity of the operator from Lp,∞(v) into a weighted Campanato-type

space BMOβ
L (v) . However, since the kernel of Iα behaves away from the diagonal

better than the kernel of the classical fractional integral, it is natural to wonder if there
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exists a wider class of weights than those used in [2] from which the same continuity
result can be deduced.

The first kind of estimates in the present paper gives a positive answer to this
question. Moreover, it deals with the two-weight version of the boundedness results
obtained in [2].

Our two-weighted results involve hypothesis based on a “power bump” property.
This type of conditions already appeared in several papers dealing with two-weighted
inequalities, see for instance [32, 15]. Even a weaker “log bump” condition also ap-
peared, for example, in [7, 8, 27, 9] and references therein. For two-weighted inequal-
ities for classical potential operators see for instance [5, 31, 30, 6, 34, 33, 28], and for
the Schrödinger fractional integral and maximal operators associated see [20].

The purpose of those hypothesis is to get simpler conditions on the weights by
avoiding extra assumptions or conditions involving the operators under consideration.

In order to introduce our main results we turn our attention to the Schrödinger
operator L = −Δ +V . We say that the function V belongs to a reverse Hölder class
of order q denoted by RHq for some q > d

2 if

( 1
|B|
∫

B
V (y)q dy

) 1
q � C

|B|
∫

B
V (y)dy (1.4)

for any ball B ⊂ R
d . In the sequel we denote q0 = sup{q : V ∈ RHq} and δ0 =

min(1,2− d
q0

) .
A “critical radii” function associated to V is defined by

ρ(x) = sup
{

r > 0 :
1

rd−2

∫
B(x,r)

V � 1
}
, x ∈ R

d . (1.5)

Such function is finite for all x ∈ R
d and plays an important role in the description of

the spaces and, hence, in the inequalities related to regularity of the operators acting on
or arriving at these spaces associated to L , see [10, 12, 13, 36].

We also denote by L1
loc the set of locally integrable functions of R

d . By a weight
we mean a locally integrable function w> 0 a.e. and along this work we denote w(E) =∫
E w(x)dx for any measurable subset E ∈ R

d .
Given η � 1, a weight w belongs to the class Dη , w ∈ Dη , if there exists a

constant C such that w(tB) � Ctdη w(B) for any ball B ⊂ R
d and t � 1. It is easy

to see that a weight w belongs to D = ∪η�1Dη if and only if it satisfies the doubling
condition

w(2B) � Cw(B) for any ball B (1.6)

and some constant C .
The classes of weights defined in this work are naturally associated to the decay of

the kernel of Iα and the function “critical radius” ρ related. There is some connection
between these classes and a two-weighted version of the classes Aρ ,θ

p , introduced in [4]
in relation with Lp -norm inequalities for several operators. As usual p′ denotes the
Hölder’s conjugate exponent of p .
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DEFINITION 1.1. Given 1 < p � ∞ , δ and λ real numbers and N0 � 0, the pair
of weights (v,w) belongs to S (p,δ ,λ ,N0) if there exist C > 0 such that

( vp′(θB)

|θB|1− p′λ
d

) 1
p′ � C

(
1+

θR
ρ(x)

)N0 w(B)

|B|1− δ
d

for all θ � 1, any ball B = B(x,R) and θB = B(x,θR) . The above inequality can be
rephrased as (

vp′(θB)
) 1

p′ � C
(
1+

θR
ρ(x)

)N0
θ

d
p′ −λ w(B)

|B| 1
p− δ−λ

d

.

The class S (1,δ ,λ ,N0) is defined by

sup
θB

v � C
(
1+

θR
ρ(x)

)N0
θ−λ w(B)

|B|1− δ−λ
d

. (1.7)

We also define S (p,δ ,λ )=
⋃

N0�0 S (p,δ ,λ ,N0) . If (v,v) belongs to S (p,δ ,λ )
we simply say that v ∈ S (p,δ ,λ ) . Our first result is

THEOREM 1.1. Let 1 < p < ∞ , α > 0 and α − d
p −λ < δ0 . If w is doubling (see

(1.6)), (v,w) ∈ S ((p′r)′,δ ,λ ) for some r > 1 and λ − δ � α − d
p then there exists a

positive constant C such that for all f ∈ Lp,∞(v)

1
w(B)

∫
B
|Iα f (x)− cB|dx � CRα− d

p+δ−λ
[ f
v

]
p
, R < ρ(xB) (1.8)

for any (subcritical) ball B = B(xB,R) , and some positive constant cB and

1
w(B)

∫
B
|Iα f (x)|dx � Cρ(xB)α− d

p+δ−λ
[ f
v

]
p

(1.9)

for any critical ball B = B(xB,ρ(xB)) .

In the one-weighted situation, the following corollary of Theorem 1.1 improves
the result in [2] since the inequalities therein are deduced for a wider class of weights.

COROLLARY 1.1. Let 1 < p < ∞ , d
p � α and α − d

p −λ < δ0 . If v is doubling
and belongs to S (p,λ ,λ ) then there exists a constant C such that for all f ∈ Lp,∞(v)

1
v(B)

∫
B
|Iα f (x)− cB|dx � CRα− d

p

[ f
v

]
p
, (1.10)

for B = B(xB,R) with R < ρ(xB) , and some positive constant cB , and

1
v(B)

∫
B
|Iα f (x)|dx � Cρ(xB)α− d

p

[ f
v

]
p

(1.11)

for any critical ball B = B(xB,ρ(xB)) .
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Inequalities (1.8) and (1.9) indicate that the arrival space for Iα is the follow-
ing weighted Campanato-type space associated to the Schrödinger operator which was
introduced in [2].

DEFINITION 1.2. Given a weight w and β � 0 the space BMOβ
L (w) is the set of

functions f in L1
loc satisfying for any ball B = B(x,r) , with x ∈ R

d and r > 0,

1
w(B)

∫
B
| f − fB| � C |B| β

d , with fB =
1
|B|
∫

B
f , (1.12)

and
1

w(B)

∫
B
| f | � C |B| β

d , if r � ρ(x). (1.13)

Since (1.13) implies (1.12) for r � ρ(x) then it is enough to consider (1.12) only
for radius r < ρ(x) . The constants in (1.12) and (1.13) are independent of the choice
of B but may depend on f . A norm (up to an identification of functions differing by a
constant) in the space BMOβ

L (w) is given by the infima of the constants C satisfying
(1.12) and (1.13). As in the classical case, the mean value fB in (1.12) may be replaced
by any positive constant cB depending only on the ball.

In view of the above definition we are able to rephrase Theorem 1.1 and Corollary
1.1 in terms of a continuous mapping. That is,

Iα : Lp,∞(v) → BMO
α− d

p +δ−λ
L (w)

and

Iα : Lp,∞(v) → BMO
α− d

p
L (v),

with continuity.
In our next theorem we obtain pointwise regularity estimates for Iα f when-

ever f ∈ BMOβ
L (v) with β small. Those kind of inequalities characterize weighted

Campanato-type spaces of order smaller than 1. Let us consider the function Wβ de-
fined by

Wβ (x,r) =
∫

B(x,r)

w(z)
|z− x|d−β dz (1.14)

for x ∈ R
d , r > 0, β > 0 and w ∈ L1

loc .

THEOREM 1.2. Let α > 0 , β � 0 , β > λ , β − λ + α < δ0 and δ and λ be
real numbers. If 0 < β + α + δ − λ < 1 , w is a doubling weight (see ((1.6))) and

(v,w) ∈ S (∞,δ ,λ ) then there exists a constant C such that for all f ∈ BMOβ
L (v)

|Iα f (x)−Iα f (y)| � C‖ f‖
BMOβ

L (v)
(Wβ+α+δ−λ (x, |x− y|)+Wβ+α+δ−λ(y, |x− y|))

(1.15)
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if |x− y|< ρ(x) and

1
w(B(x,ρ(x)))

∫
B(x,ρ(x))

|Iα f (x)|dx � C‖ f‖
BMOβ

L (v)
ρ(x)β+α+δ−λ (1.16)

for all x ∈ R
d and r > 0 .

In the case v = w and δ −λ = 0 in Theorem 1.2 we recover Theorem 2 in [2].
Notice that the function Wβ (x,r) defined in (1.14) is finite for all r > 0 for almost

every x∈R
d . It also is increasing as a function of r for any fixed x and if w is doubling

(see (1.6)) then Wβ is also doubling in the same sense.
The function Wβ was first considered in [17] and later also used in [2] to define a

Lipschitz-Hölder-type space associated to L . That is, Λβ
L (w) is the set of functions

f such that

| f (x)− f (y)| � C
(
Wβ (x, |x− y|)+ Wβ (y, |x− y|)

)
(1.17)

and
| f (x)| � CWβ (x,ρ(x)). (1.18)

for almost all x and y in R
d . A (quasi) norm is defined on Λβ

L (w) by taking the
maximum of the two infima of the constants satisfying (1.17) and (1.18) respectively.

PROPOSITION 1.1. ([2]) If 0 < β < 1 and w satisfies the doubling condition

(1.6) then Λβ
L (w) = BMOβ

L (w) and their norms are equivalent.

REMARK 1.1. When proving Proposition 1.1, the authors showed that (1.13) jointly
with (1.17) imply (1.18). That is if f satisfy (1.13) and (1.17) simultaneously then
f ∈ Λβ

L (w) . The fact that w is doubling is essential to obtain the identification between
Lipschitz-Hölder and Campanato type spaces in Proposition 1.1. Hence Theorem 1.2
can be rephrased by saying that

Iα : BMOβ
L (v) → Λβ+α+δ−λ

L (w) = BMOβ+α+δ−λ
L (w)

is continuous, under the hypothesis of that theorem. In the one-weight situation, we
obtain

Iα : BMOβ
L (v) → Λβ+α

L (v) = BMOβ+α
L (v).

This article is organized as follows. In Section 2 we give the preliminary defi-
nitions and results. In Section 3 we study properties of the class of weights given in
Definition 1.1 and show some examples. Section 4 and Section 5 are devoted to the
main lemmas and the proofs of Theorems 1.1 and 1.2 respectively.

Throughout this work, we denote by C a constant that may change from one oc-
currence to other.
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2. Preliminaries

Some important properties of the critical ratii ρ given in (1.5) are shown in the
following propositions.

PROPOSITION 2.1. ([36]) There exist C and j0 � 1 such that

C−1ρ(x)
(
1+

|x− y|
ρ(x)

)− j0 � ρ(y) � Cρ(x)
(
1+

|x− y|
ρ(x)

) j0
j0+1

for all x,y ∈ R
d .

PROPOSITION 2.2. ([11]) There exists a sequence of points {xk}∞
k=1 in R

d , so
that the family Bk = B(xk,ρ(xk)) , k � 1 , satisfies

1. ∪kBk = R
d .

2. There exists N such that for all k ∈ N , card{ j : 4Bj ∩4Bk �= /0} � N .

The doubling condition on w is a crucial point in the proof given by the authors in
[2] of the following proposition.

PROPOSITION 2.3. ([2]) Given β � 0 , w ∈ D (see (1.6)) and {xk}∞
k=1 a se-

quence as in Proposition 2.2, a function f belongs to BMOβ
L (w) if, and only if, f

satisfies (1.12) for any ball B, and∫
B(xk,ρ(xk))

| f | � Cw(B(xk,ρ(xk)))ρ(xk)β for all k � 1. (2.1)

The previous result allows us to provide the following characterization of the space
BMOβ

L (w) that in the sequel will be used as it definition.

COROLLARY 2.1. ([2]) Let β � 0 and w ∈ D (see (1.6)). A function f belongs

to BMOβ
L (w) if, and only if, for some constant C

1
w(B)

∫
B
| f − fB| � CRβ , if B = B(x,r) and r < ρ(x) (2.2)

and
1

w(B(x,ρ(x)))

∫
B(x,ρ(x))

| f | � Cρ(x)β . (2.3)

If w ≡ 1 the atomic decomposition given in [11] and [13] shows that BMOβ
L ,

β � 0, is the dual space of the Hp -space defined in those works. In this setting, the
BMOL space, β = 0, was defined in [10] as a natural substitute of L∞ in the context
of the semigroup generated by the operator L .
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In the case that w is not doubling then inequality (2.1) implies the condition∫
B
| f | � Cw(cB) |B| β

d , if r � ρ(x), (2.4)

for the geometric constant c = c0 in Proposition 2.1 and some C > 0. Therefore, if w

is not doubling a different space should be defined, BMOβ
c,L (w) , c a positive number,

as the one satisfying (2.4) and∫
B
| f − fB| � Cw(cB) |B| β

d , if r < ρ(x), (2.5)

for some constant C . Clearly, BMOβ
1,L (w) = BMOβ

L (w) . Thus, a different version of
Corollary 2.1 can be obtained as follows,

COROLLARY 2.2. Let β � 0 and w a weight. If f belongs to BMOβ
c,L (w) then

for some constant C it satisfies∫
B
| f − fB| � Cw(cB)Rβ if B = B(x,r) and r < ρ(x), (2.6)

and ∫
B(x,ρ(x))

| f | � Cw(B(x,cρ(x)))ρ(x)β for all x ∈ R
d . (2.7)

Reciprocally, if f satisfies inequalities (2.6) and (2.7) then f belongs to BMOβ
c̃,L (w)

where c̃ � c.

Hence, by Corollary 2.2 if w is not doubling it is still possible to obtain a weaker

version of Theorem 1.1 and Corollary 1.1, with BMO
α− d

p+δ−λ
c,L (w) as arrival space.

In the remaining part of this section some useful lemmas related to the kernel Kα
of Iα will be stated and given the references to their proofs. That kernel is given by
the formula

Kα(x,y) =
∫ ∞

0
kt(x,y)tα/2 dt

t
,

where kt is the kernel of the operator e−tL (t > 0) .

LEMMA 2.1. ([23]) Given N > 0 there exists a constant C = CN such that for
all x and y in R

d ,

kt(x,y) � Ct−
d
2 e−

|x−y|2
Ct

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N
.

As consequence of the above inequality it follows that

Kα(x,y) � C
|x− y|d−α (2.8)

for all x and y in R
d .
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LEMMA 2.2. ([13]) Given N > 0 and 0 < ν < δ0 , there exists a constant C =CN

such that

|kt(x,y)− kt(x0,y)| � C
( |x− x0|√

t

)ν
t−

d
2 e−

|x−y|2
Ct

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

for all x , y and x0 in R
d with |x− x0| <

√
t .

We recall that a function ψ is said to be rapidly decaying (see [12]) if for each
N > 0 there exists a constant CN such that |ψ(x)| � CN(1 + |x|)−N . Its dilation is

defined by ψt(x) = 1

t
d
2

ψ
(

x√
t

)
for t > 0.

Some estimates on the function qt(x,y) = kt(x,y)− k̃t(x,y), where k̃t is the kernel
of the classical heat operator e−tΔ , will be useful later.

LEMMA 2.3. ([12]) There exist a rapidly decaying no negative function ψ , 0 <
ν < 2− d

q0
and C > 0 such that for x,y ∈ R

d and t > 0

|qt(x,y)| � C
( √

t
ρ(x)

)ν
ψt(x− y).

LEMMA 2.4. ([12]) For all 0 < ν < δ0 there exists a rapidly decaying function

ψ and a constant C > 0 such that |qt(x,y+h)−qt (x,y)| �
( |h|

ρ(x)

)ν
ψt(x− y) for x , y

in R
d , t > 0 and |h| < min(Cρ(y), |x−y|

4 ) .

3. Properties and examples of the class of weights

LEMMA 3.1. The classes S (p,δ ,λ ) are increasing in p for 1 � p � ∞ and δ
and λ real numbers. That is, S (p,δ ,λ ) ⊆ S (τ p,δ ,λ ) ⊆ S (∞,δ ,λ ) for all τ > 1
and 1 � p < ∞ .

Proof. Let B = B(x,t) . By Hölder’s inequality and Definition 1.1 there exists
C > 0 and N0 � 0 such that, if p > 1,

(v(τ p)′(θB)
|θB|

) 1
(τ p)′ �

(vp′(θB)
|θB|

) 1
p′ � C

(
1+

θ t
ρ(x)

)N0
θ−λ w(B)

|B|1− δ−λ
d

.

For p = 1 the proof follows in the same way by replacing the second term above by
supθB v . That is,

(vτ ′(θB)
|θB|

) 1
τ ′ � C sup

θB
v � C

(
1+

θ t
ρ(x)

)N0
θ−λ w(B)

|B|1− δ−λ
d

.

for 1 � p < ∞ . Analogously, S (p,δ ,λ ) ⊆ S (∞,δ ,λ ) . �
In order to show a more precise relationship between the class of weights defined

in Definition 1.1 and the classes introduced in [17] and [34] we prove the next lemma.
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LEMMA 3.2. Given 1 < p < ∞ , λ , δ real numbers and N0 � 0 , if (v,w) ∈
S (p,δ ,λ ,N0) and ξ + d

p + λ > 0 then there exists a constant C > 0 such that

|B|1+ ξ
d

(∫
Rd−B

vp′(y)
|x− y|(d+ξ )p′

(
1+

|x− y|
ρ(x)

)−Np′
dy
) 1

p′ � C
w(B)

|B| 1
p− γ

d

, (3.1)

and

(
vp′(B)

) 1
p′
(
1+

|B| 1
d

ρ(x)

)−N
� C

w(B)

|B| 1
p− γ

d

, (3.2)

where γ = δ − λ , and N � N0 and both inequalities hold for any ball B = B(x,R) .
Reciprocally, if (3.1) and (3.2) hold for some ξ and γ real numbers and N � 0 then
(v,w) ∈ S (p,γ − d

p − ξ ,− d
p − ξ ,N) .

Proof. Inequality (3.2) is a direct application of Definition 1.1 when θ = 1. On
the other hand, given a ball B of radius t , by a dyadic decomposition and Definition
1.1 we get

(∫
Rd−B

vp′(y)
|x− y|(d+ξ )p′

(
1+

|x− y|
ρ(x)

)−Np′
dy
) 1

p′

� C
( ∞

∑
k=0

1

(2kt)(d+ξ )p′ v
p′(B(x,2kt))

(
1+

2kt
ρ(x)

)−Np′) 1
p′

� C
1

|B|1+ ξ
d

( ∞

∑
k=0

2−k(d+ξ )p′ 2k(d−λ p′)
) 1

p′ w(B)

|B| 1
p− δ−λ

d

� C
w(B)

|B|1+ 1
p + ξ

d − δ−λ
d

( ∞

∑
k=0

2−k(ξ+ d
p +λ )p′

) 1
p′

� C
w(B)

|B|1+ 1
p + ξ

d − δ−λ
d

if ξ + d
p + λ > 0.

Reciprocally, (3.1) and (3.2) jointly are equivalent to the inequality

|B|1+ ξ
d

(∫
Rd

vp′(y)
[
|x− y|(d+ξ )p′

(
1+

|x− y|
ρ(x)

)Np′
+ |B|(1+ ξ

d )p′
(
1+

|B| 1
d

ρ(x)

)Np′]−1
dy
) 1

p′

� C
w(B)

|B| 1
p− γ

d

.
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Moreover, we easily get that

|B|1+ ξ
d

(∫
Rd

vp′(y)
[
|x− y|(d+ξ )p′

(
1+

|x− y|
ρ(x)

)Np′
+ |B|(1+ ξ

d )p′
(
1+

|B| 1
d

ρ(x)

)Np′]−1
dy
) 1

p′

� B|1+ ξ
d

(vp′(θB))
1
p′

|θB|1+ ξ
d

(
1+ θR

ρ(x)

)N .

Then

|B|1+ ξ
d

(vp′(θB))
1
p′

|θB|1+ ξ
d

(
1+ θR

ρ(x)

)N � C
w(B)

|B| 1
p− γ

d

.

That is, (vp′(θB))
1
p′ � Cθ d+ξ

(
1 + θR

ρ(x)

)N w(B)

|B|
1
p−

γ
d
. Now setting d

p′ − λ = d + ξ and

δ −λ = γ , we obtain that (v,w) ∈ S (p,δ ,λ ,N) with δ = γ − d
p − ξ and λ = − d

p −
ξ . �

The above lemma allows us to compare the family of weights defined in this work
with other known classes. For example, taking N0 = 0, α = δ −λ , −( d

p +λ ) < 1−α
and p fixed in our class we obtain the set of weights H(p,α,2α − d

p −d) in [34] and
if, in addition, we set δ −λ = 0 and consider the family of one weights v = w then we
obtain the class in [17].

3.1. The case δ = λ

This special case of classes of weights displays significant features that will be
described in this section. Let us first define an extension of the class Aρ ,θ

p introduced
in [4] to a family of pair of weights in the following way. The pair (w,v) belongs to
Aρ ,N

p , N � 0, if there exists a constant C such that

(w(B))
1
p

(
v−

1
p−1 (B)

) 1
p′ � C|B|

(
1+

r
ρ(x)

)N

for every ball B = B(x,r) and 1 < p < ∞ . In the case p = 1 the pair (w,v) satisfies
inequality

w(B) � C|B| inf
B

v

(
1+

r
ρ(x)

)N

.

PROPOSITION 3.1. Let 1 < q < ∞ . If (wq′ ,vq′)∈Aρ ,N
1 then (w,v)∈S (q,0,0, N

q′ ) .
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Proof. Given θ � 1 and B = B(x,r) , statement (wq′ ,vq′) ∈ Aρ ,N
1 implies that

(wq′(θB))
1
q′
(

1+
θ r

ρ(x)

)− N
q′

� C|θB|
1
q′ inf

θB
v � Cθ

d
q′ |B|

1
q′ inf

B
v

� Cθ
d
q′ |B|

1
q′ v(B)

|B| � Cθ
d
q′ v(B)

|B| 1
q

,

which is the desired inequality. �

PROPOSITION 3.2. Let 1 < q < ∞ . If w∈Dη and (vq′ ,wq′)∈ Aρ ,N
q′+1 then (v,w)∈

S (q,−η ,−η ,N(1+ 1
q′ )) .

Proof. The hypothesis (vq′ ,wq′) ∈ Aρ ,N
q′+1 implies that

vq′(θB)
(
w−1(θB)

)q′ � C|θB|q′+1
(

1+
θ r

ρ(xθB)

)N(q′+1)

.

Then Hölder’s inequality, the doubling condition and the fact |θB| � |B| show that

(vq′(θB))
1
q′
(

1+
θ r

ρ(xθB)

)−N(1+ 1
q′ )

� C|θB|
1
q′ |θB|

w−1(θB)

� C|θB|
1
q′ w(θB)

|θB|
� Cθ

d
q′ +η w(B)

|B| 1
q

which proves that (v,w) ∈ S (q,−η ,−η ,N(1+ 1
q′ )) . �

The one weight case v ∈ S (p,λ ,λ ) satisfies special properties. The case N0 = 0
was defined in [2] in connection with the Schrödinger operator and in [17] related to the
Laplacian operator. One of the features of this class of weights is a Reverse-Hölder-type
inequality. Thereafter, we will be able to recover the results in [2] for N0 = 0.

DEFINITION 3.1. Given 1 � p < ∞ a weight v satisfies the Reverse-Hölder type
inequality of order p , and say v ∈ RHp(ρ) if there exist C > 0 and N0 � 0 such that
for any ball B = B(x,R) ,

(vp(B)
|B|

) 1
p � C

(
1+

R
ρ(x)

)N0 v(B)
|B| . (3.3)

We say that v ∈ RH∞(ρ) , if there exist C > 0 and N0 � 0 such that for any ball B =
B(x,R) ,

sup
B

v � C
(
1+

R
ρ(x)

)N0 v(B)
|B| . (3.4)
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LEMMA 3.3. Let 1 � p � ∞ and λ be a real number. If v ∈ S (p,λ ,λ ) then

1. v ∈ RHp′(ρ) .

2. v is L -doubling, that is, there exist η1 > 0 , C > 0 and N0 big enough, such
that

v(θB) � Cθ η1

(
1+

R
ρ(x)

)N0
v(B)

for any ball B = B(x,R) .

3. vp′ (if p′ < ∞) or supv (if p′ = ∞) are L -doubling, that is, there exist η2 > 0 ,
C > 0 and N0 big enough, such that

vp′(θB) � Cθ η2

(
1+

R
ρ(x)

)N0 p′
vp′(B) if p′ < ∞ (3.5)

or

sup
θB

v � Cθ η2

(
1+

R
ρ(x)

)N0
sup
B

v if p′ = ∞

for any ball B = B(x,R) .

Reciprocally, if v ∈ RHp′(ρ) and it is L -doubling then there exists a real number λ
such that v ∈ S (p,λ ,λ ) .

Proof. The first item is an immediate consequence of Definition 1.1 in the case
δ = λ and θ = 1. For the second and third item we apply first Hölder’s inequality, the
Definition 1.1 for some N0 � 0 and δ = λ and, again, Hölder’s inequality, to get

v(θB)
|θB| �

(
vp′(θB)
|θB|

) 1
p′

� Cθ−λ+N0

(
1+

R
ρ(x)

)N0 v(B)
|B|

�Cθ−λ+N0

(
1+

R
ρ(x)

)N0

(
vp′(B)
|B|

) 1
p′

.

Hence, taking on one side the first and third term and, on the other, the second and
fourth term, we obtain

v(θB) � Cθ d−λ+N0

(
1+

R
ρ(x)

)N0
v(B) (3.6)

and

vp′(θB) � Cθ ( d
p′ −λ+N0)p′

(
1+

R
ρ(x)

)N0 p′
vp′(B) if p′ < ∞.

On the other hand taking supv in (3.6) it follows the case p′ = ∞ .
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Reciprocally, if v ∈ RHp′(ρ) and it is L -doubling then there exists a constant C
and a real number η such that(vp′(θB)

|θB|
) 1

p′ � C
(
1+

θR
ρ(x)

)N0 v(θB)
|θB|

� C
(
1+

θR
ρ(x)

)N0
θ η−d

(
1+

R
ρ(x)

)N1 v(B)
|B|

� C
(
1+

θR
ρ(x)

)N0+N1
θ η−d v(B)

|B| .

That is, (
vp′(θB)

) 1
p′ � Cθ

d
p′ +η−d

(
1+

θR
ρ(x)

)N0+N1 v(B)

|B| 1
p

which implies that v ∈ S (p,d − η ,d − η) . Analogously, if v ∈ RH∞(ρ) and v is
L -doubling then v ∈ S (∞,d−η ,d−η) . �

The next lemma is the fundamental key for proving in the one–weight setting that
the class S (p,λ ,λ ) is open to the left in p .

LEMMA 3.4. Let 1 < q � ∞ and λ be a real number. If v ∈ S (q,λ ,λ ) then
there exist τ0 > 1 and K0 � 0 such that(vτq′(B)

|B|
) 1

τq′ � C
(
1+

R
ρ(x)

)K0
(vq′(B)

|B|
) 1

q′

for 1 � τ � τ0 and any ball B = B(x,r) .

Proof. By Lemma 3.3 and Definition 3.3 we get
(vq′(B)

|B|
) 1

q′ �C
v(B)
|B| for any ball

B = B(x,R) such that R � ρ(x) . In this situation, the proof in [16], page 268, shows
that there is τ0 > 1 and a constant C1 such that if 1 � τ � τ0 then(vτq′(B)

|B|
) 1

τq′ � C1

(vq′(B)
|B|

) 1
q′

. (3.7)

On the other hand, in the case R � ρ(x) let us denote F = { j : Bj ∩ B �= /0} with
Bj = B(x j,ρ(x j)) and {x j} j∈N the sequence in Proposition 2.2. Using Proposition 2.1,
if j ∈ F and R � ρ(x) then

ρ(x j) � Cρ(x)
(
1+

R
ρ(x)

) j0
j0+1 � Cρ(x)

(
1+

R
ρ(x)

)
� CR

(
1+

R
ρ(x)

)

and, thus,
⋃

j∈F Bj ⊂ cB, with c = 4C
(
1+ R

ρ(x)

)
. By Proposition 2.1, if j ∈ F then

Cρ(x j) � ρ(x)
(
1+

|x j − x|
ρ(x)

)− j0 � ρ(x)
(
1+

cR
ρ(x)

)− j0

� 1

C̃
ρ(x)

(
1+

R
ρ(x)

)− j0(
1+

R
ρ(x)

)− j0 � 1

C̃
ρ(x)

(
1+

R
ρ(x)

)−2 j0
. (3.8)
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Hence, by (3.7), (3.8) and (3.5), we obtain

( 1
|B|v

τq′(B)
) 1

τq′ �
( 1
|B| ∑

j∈F

vτq′(Bj)
) 1

τq′ � C
( 1
|B| ∑

j∈F

vq′(Bj)τ

|Bj|τ−1

) 1
τq′

� C
( 1

|B| ρ(x)d(τ−1)

(
1+

R
ρ(x)

)2 j0d(τ−1)
∑
j∈F

vq′(Bj)τ
) 1

τq′

� C
( 1

|B|Rd(τ−1)

(
1+

R
ρ(x)

)(2 j0+1)d(τ)) 1
τq′
(

∑
j∈F

vq′(Bj)τ
) 1

τq′

� C
(
1+

R
ρ(x)

)3 j0
d
q′
( 1
|B| ∑

j∈F

vq′(Bj)
) 1

q′

� C
(
1+

R
ρ(x)

)3 j0
d
q′
( 1
|B|
∫

cB
( ∑

j∈F

χBj)v
q′
) 1

q′

� C
(
1+

R
ρ(x)

)3 j0
d
q′
( 1
|B|v

q′(cB)
) 1

q′

� C
(
1+

R
ρ(x)

)3 j0
d
q′ +N0

cη2

( 1
|B|v

q′(B)
) 1

q′

� C
(
1+

R
ρ(x)

)K0
( 1
|B|v

q′(B)
) 1

q′
,

with K0 = 3 j0
d
q′ +N0 + η2, and N0 and η2 the exponents in (3.5). �

We are now able to prove the openness result we mentioned before. This result is
central in the proof of lemmas and theorems in the one-weight situation.

LEMMA 3.5. Let 1 < p < ∞ and λ be a real number. If v ∈ S (p,λ ,λ ) then
there exists 1 < p0 < p such that v ∈ S (q,λ ,λ ) for p0 < q � p.

Proof. Let us choose τ0 is as in Lemma 3.4 and set p0 = (τ0p′)′ < p . Note that
if p0 < q � p then q = (τ p′)′ for some 1 � τ � τ0 . Now using Lemma 3.4 and that
v ∈ S (p,λ ,λ ) it follows that

(vq′(θB)
|θB|

) 1
q′ � C

(
1+

θR
ρ(x)

)K0
(vp′ (θB)

|θB|
) 1

p′ �C
(
1+

θR
ρ(x)

)K0+N0
θ−λ v(B)

|B|
for every θ � 1. �

In the remaining part of this section we show some examples of pairs of weights
which belong to the classes defined in this work.

EXAMPLE 3.1. Let us consider the pairs of potential weights (|x|−ε , |x|−β ) and
let us analize the values of ε and β that allow this pair to belongs to the class of weights
defined in this work. Assuming, for example, that ρ = 1 then the pair v(x) = |x|−ε and
w(x) = |x|−β belongs to the class S (p,δ ,λ ,N0) , 1 < p < ∞ , if and only if β � ε < d

p′ ,
δ � min(0,β ) and N0 � λ − δ + β − ε � 0.
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In fact, condition ε < d
p′ is equivalent to the local integrability of v(x) = |x|−ε .

Moreover,

(vp′(B(x,r))
|B(x,r)|

) 1
p′ ≈

{ |x|−ε if |x| � 2r
r−ε if |x| < 2r.

(3.9)

We want to prove inequality

(vp′(B(x,θ t))
|B(x,θ t)|

) 1
p′
(
1+ θ t

)−N0 � C
w(B(x,t))

|B(x,t)|1− δ−λ
d

(3.10)

for all θ � 1 but, by (3.9), it is equivalent to the following three inequalities

|x|β−ε � Cθ λ tδ−λ
(
1+ θ t

)N0
if θ t <

|x|
2

,

|x|β � Cθ ε+λ tε+δ−λ
(
1+ θ t

)N0
if t <

|x|
2

� θ t

1 � Cθ ε+λ tε−β+δ−λ
(
1+ θ t

)N0
if

|x|
2

� t.

However, a careful analysis of the behavior of θ , t and |x| on each region leads to the
above inequalities only if δ −λ � β − ε � 0, δ � min(0,β ) and N0 � β − ε −δ +λ .
Reciprocally, these conditions are sufficient to prove the above inequalities.

4. Technical Lemmas and proof of Theorem 1.1

The next lemma gives an estimate for the mean value of order q < p on any ball for
functions in Lp,∞(v) and it is a fundamental inequality used in the remaining lemmas
of this section.

LEMMA 4.1. Given 1 < q < p < ∞ and a weight v, there exists a constant C
such that (∫

B

( | f (x)|
v(x)

)q
dx
) 1

q � C|B| 1
q− 1

p

[ f
v

]
p

for any ball B and f ∈ Lp,∞(v) .

Proof. If q < p then for a =
[ f
v ]p

|B| 1
p

we get the statement as follow

∫
B

( | f (x)|
v(x)

)q
dx = q

(∫ a

0
+
∫ ∞

a

)
tq−1|B∩

{ | f |
v

> t
}
|dt

� |B|aq +q
[ f
v

]p

p

∫ ∞

a
tq−p−1dt � |B|aq +

q
p−q

[ f
v

]p

p
aq−p. �
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REMARK 4.1. Condition q < p is crucial to get the statement in Lemma 4.1 since
it ensures integrability of the distribution function. Therefore in the foregoing lemmas
it will be required that (v,w) ∈ S (q,δ ,λ ) for some q < p when v �= w or δ �= λ .
Nevertheless, in the case v = w and δ = λ by Lemma 3.5 it will be enough to require
that v ∈S (p,λ ,λ ) since in this case it follows that v ∈ S (q,λ ,λ ) for all q < p close
enough to p . Hence, in the one-weight situation Lemma 4.1 will still apply.

LEMMA 4.2. Given 1 < q < p < ∞ and λ and δ real numbers if (v,w)∈S (q,δ ,λ )
then there exist a positive constant C and N0 � 0 such that for all f ∈ Lp,∞(v)

∫
θB

| f (x)|dx � Cθ
d
p′ −λ

(
1+

θR
ρ(x)

)N0 w(B)

|B| 1
p− δ−λ

d

[ f
v

]
p

for all θ � 1 and every ball B = B(xB,R) . If v = w ∈ S (p,λ ,λ ) , i.e. δ = λ , then the
above inequality also holds.

Proof. By Hölder’s inequality and Lemma 4.1, if (v,w) ∈ S (q,δ ,λ ) for some
q < p or v = w ∈ S (p,λ ,λ ) and q < p , close enough to p then, for some C > 0 and
N0 � 0,

∫
θB

| f (x)| dx �
(∫

θB
vq′(x)dx

) 1
q′
(∫

θB

( | f (x)|
v(x)

)q
dx
) 1

q

� C
(
1+

θR
ρ(xB)

)N0
θ

d
q′ −λ w(B)

|B| 1
q− δ−λ

d

(
|θB| 1

q− 1
p

[ f
v

]
p

)

� Cθ
d
p′ −λ w(B)

|B| 1
p− δ−λ

d

(
1+

θR
ρ(xB)

)N0
[ f
v

]
p
. �

To prove Theorem 1.1 we need estimates for the fractional integral of the local
and global parts of a function f ∈ Lp,∞(v) . The following two lemmas give us those
estimates.

LEMMA 4.3. Given 1 < q < p < ∞ , λ and δ real numbers and α > 0 , if (v,w)∈
S (q,δ ,λ ) then there exists N0 � 0 and C such that for all f ∈ Lp,∞(v)

1
w(B)

∫
B
Iα(| f |χ2B)(x)dx � C

(
1+

R
ρ(xB)

)N0 |B| α
d − 1

p+ δ−λ
d

[ f
v

]
p

for any ball B = B(xB,R) . If v = w∈S (p,λ ,λ ) , i.e. δ = λ , then the above inequality
also holds.
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Proof. By (2.8), Fubini’s Theorem, α > 0 and Lemma 4.2 applied to θ = 2 there
exists N0 � 0 such that

1
w(B)

∫
B
Iα(| f |χ2B)(x)dx =

1
w(B)

∫
B

∫
2B

Kα(x,y)| f (y)|dy dx

� C
1

w(B)

∫
B

∫
2B

| f (y)|
|x− y|d−α dy dx

� C
1

w(B)

∫
2B
| f (y)|

∫
B(y,2R)

1
|x− y|d−α dx dy

� C
|B| α

d

w(B)

∫
2B
| f (y)|dy

� C
(
1+

R
ρ(xB)

)N0 |B| α
d − 1

p+ δ−λ
d

[ f
v

]
p
. �

LEMMA 4.4. Given 1 < q < p < ∞ and λ and δ real numbers, if (v,w) ∈
S (q,δ ,λ ) then there exist positive constants C and N0 � 0 such that for all f ∈
Lp,∞(v)

∫
Rd\2B

| f (y)|
|x− y|d+m

(
1+

|x− y|
ρ(x)

)−N
dy � C

w(B)

|B|1+ 1
p + m+λ−δ

d

[ f
v

]
p

for any constant m such that m + λ + d
p > 0 , N � N0 and any ball B = B(xB,R) .

Moreover, if v = w ∈ S (p,λ ,λ ) , i.e. δ = λ , then the above inequality also holds.

Proof. Using a dyadic decomposition and Lemma 4.2 there exist N0 � 0 such that
if N � N0 and, also, m+ λ + d

p > 0 then

∫
Rd\2B

| f (y)|
|x− y|d+m

(
1+

|x− y|
ρ(x)

)−N
dy

� C
∞

∑
k=1

(2kR)−(d+m)
(
1+

2kR
ρ(x)

)−N ∫
2k+1B

f (y)dy

� C
∞

∑
k=0

(2kR)−(d+m)
(
1+

2kR
ρ(x)

)−(N−N0)
2

k( d
p′ −λ ) w(B)

|B| 1
p− δ−λ

d

[ f
v

]
p

� C|B|− d+m
d

∞

∑
k=0

2−k(m+λ+ d
p ) w(B)

|B| 1
p− δ−λ

d

[ f
v

]
p

� C
w(B)

|B|1+ 1
p + m+λ−δ

d

[ f
v

]
p
. �

The next auxiliary lemma is a key tool to prove Theorem 1.1.
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LEMMA 4.5. 1. Given s,ρ and β positive numbers and N � 0 there exists a
constant C such that

∫ ∞

0

t−
β
2

(1+
√

t
ρ )N

e−
s2
t

dt
t

� C
1

sβ (1+ s
ρ )N

.

2. Given s > σ , ρ > 0 , β a real number, N � 0 and M > β +N there is a constant C
such that ∫ σ2

0

t−
β
2

(1+
√

t
ρ )N

e−
s2
t

dt
t

� C
(σ

s

)M−N−β 1

sβ (1+ s
ρ )N

.

Proof. (1) By the change of variable u = s2
t we get

∫ ∞

0

t−
β
2

(1+
√

t
ρ )N

e−
s2
t

dt
t

=
1

sβ

∫ ∞

0

u
β
2

(1+ s
ρ
√

u )N e−u du
u

.

If s
ρ < 1 then 1 + s

ρ � 2 and hence
u

β
2

(1+ s
ρ
√

u)N � u
β
2 � 2N u

β
2

(1+ s
ρ )N . On the other

hand, if s
ρ > 1 then 1+ s

ρ � 2 s
ρ and thus

u
β
2

(1+ s
ρ
√

u )N � u
β+N

2

( s
ρ )N � 2N u

β+N
2

(1+ s
ρ )N . There-

fore

∫ ∞

0

t−
β
2

(1+
√

t
ρ )N

e−
s2
t

dt
t

� 2N

sβ (1+ s
ρ )N

∫ ∞

0
(u

β
2 +u

β+N
2 )e−u du

u
� CN

1

sβ (1+ s
ρ )N

.

(2) By the same change of variable as above, the fact that supt>1 tM/2e−t �CM for any
M > 0 and some CM > 0, and following the steps in the above proof, it follows that

∫ σ2

0

t−
β
2

(1+
√

t
ρ )N

e−
s2
t

dt
t

=
1

sβ

∫ ∞

( s
σ )2

u
β
2

(1+ s
ρ
√

u )N e−u du
u

� C
1

sβ (1+ s
ρ )N

∫ ∞

( s
σ )2

(u
β−M

2 +u
β+N−M

2 )
du
u

� C
1

sβ (1+ s
ρ )N

(
(

s
σ

)β−M +(
s
σ

)β+N−M
)

� C
1

sβ (1+ s
ρ )N

( s
σ

)β+N−M

� C
σM−N−β

sM−N(1+ s
ρ )N . �
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4.1. Proof of Theorem 1.1

Let (v,w) ∈ S (q,δ ,λ ) for some and q < p or v = w ∈ S (p,λ ,λ ) , i.e. δ = λ
and split f = f1 + f2 , with f1 = f χ2B and first assume that R = ρ(xB) . Thus

1
w(B)

∫
B
|Iα f (x)|dx � 1

w(B)

∫
B
|Iα f1(x)|dx+

1
w(B)

∫
B
|Iα f2(x)|dx � I1 +I2.

By Lemma 4.3

I1 =
1

w(B)

∫
B
|Iα f1(x)|dx � C|B| α

d − 1
p + δ−λ

d

[ f
v

]
p
. (4.1)

To estimate I2 we display

|Iα f2(x)| = |
∫ ∞

0
e−tL f2(x) t

α
2

dt
t
| �

∫ ∞

0

∫
(2B)c

kt(x,y) | f (y)| dy t
α
2

dt
t

.

Notice that if x ∈ B and y ∈ R
d \ 2B then 2R � |x− y| � 2|xB − y| . Moreover, by

Lemma 2.1,

ρ(x) � Cρ(xB)
(
1+

|x− xB|
ρ(xB)

) k0
k0+1 � Cρ(xB). (4.2)

Hence, by Lemmas 2.1 and 4.5 given N > 0 and M > 0, to be chosen later, there is a
constant C such that

|Iα f2(x)| � C
∫

(2B)c

∫ ∞

0
t

α−d
2

(
1+

√
t

ρ(x)

)−(N+M)
e−

|x−y|2
t

dt
t
| f (y)|dy

� C
∫

(2B)c

| f (y)|
|x− y|d−α

(
1+

|x− y|
ρ(x)

)−(N+M)
dy

� C
∫

(2B)c

| f (y)|
|xB − y|d−α

(
1+

|xB − y|
ρ(xB)

)−(N+M)
dy

� Cρ(xB)M
∫

(2B)c

| f (y)|
|xB − y|d−α+M

(
1+

|xB − y|
ρ(xB)

)−N
dy.

By Lemma 4.4, taking R = ρ(xB) , N � N0 and choosing M such that M−α +λ + d
p >

0 we get

|Iα f2(x)| � Cρ(xB)M w(B)

|B|1+ M−α+λ−δ
d + 1

p

[ f
v

]
p
� C

w(B)

|B|1− α+δ−λ
d + 1

p

[ f
v

]
p
.

Then

I2 =
1

w(B)

∫
B
|Iα f2(x)|dx � C|B| α

d − 1
p+ δ−λ

d

[ f
v

]
p
. (4.3)

Estimates (4.1) and (4.3) give the proof of (1.9).
To prove (1.8), we consider R < ρ(xB) , define cB =

∫ ∞
R2 e−tL f2(xB)t

α
2 dt

t and split

1
w(B)

∫
B
|Iα f (x)− cB|dx � 1

w(B)

∫
B
|Iα f1(x)|dx+

1
w(B)

∫
B
|Iα f2(x)− cB|dx.



TWO-WEIGHTED INEQUALITIES 1247

As in (4.1) for α > 0 it follows that

1
w(B)

∫
B
|Iα f1(x)|dx � C|B| α

d − 1
p + δ−λ

d

[ f
v

]
p
.

On the other hand, for x ∈ B , we have

|Iα f2(x)− cB| �
∫ R2

0
|e−tL f2(x)|t α

2
dt
t

+
∫ ∞

R2
|e−tL f2(x)− e−tL f2(xB)|t α

2
dt
t

= J1(x)+ J2(x).

If |x− xB| < R � ρ(xB) then, as in (4.2), ρ(x) � Cρ(xB) . Hence we apply Lemma
2.1, Lemma 4.5 with β = d −α , s = |x− y| , σ = R , M + d in place of M , and N
positive such that M > N +d−α , and use that if |x− xB| < R and |y− xB| � 2R then
|y− x|> R , to get

J1(x) =
∫ R2

0
|e−tL f2(x)| t α

2
dt
t

�
∫ R2

0

(∫
(2B)c

t−
d
2

(
1+

√
t

ρ(x)

)−N
e−

|x−y|2
t | f (y)|dy

)
t

α
2

dt
t

� C
∫

(2B)c

(∫ R2

0
t

α−d
2

(
1+

√
t

ρ(x)

)−N
e−

|x−y|2
t

dt
t

)
| f (y)|dy

� CRα+M−N
∫

(2B)c

| f (y)|
|x− y|d+M−N

(
1+

|x− y|
ρ(x)

)−N
dy.

By Lemma 4.4 if M−N + λ + d
p > 0 and N � N0 for some N0 big enough then

J1(x) � C|B| α
d + M−N

d
w(B)

|B|1+ M−N
d + 1

p− δ−λ
d

[ f
v

]
p
� C

w(B)

|B|1− α+δ−λ
d + 1

p

[ f
v

]
p

(4.4)

where we chose M > max(N +d−α,N−λ − d
p) and N � N0 .

On the other hand, we use Lemma 2.2 and Lemma 4.5 to get for any ν < δ0 a
constant C such that if x ∈ B then

J2(x) =
∫ ∞

R2
|e−tL f2(x)− e−tL f2(xB)| t α

2
dt
t

=
∫ ∞

R2

∫
(2B)c

|kt(x,y)− kt(xB,y)| | f (y)|dy t
α
2

dt
t

� C|x− xB|ν
∫ ∞

R2

(∫
(2B)c

t
α−d−ν

2

(1+
√

t
ρ(x) )

N
e−

|x−y|2
t | f (y)|dy

) dt
t

� CRν
∫

(2B)c

(∫ ∞

R2

t
α−d−ν

2(
1+

√
t

ρ(x)

)N e−
|x−y|2

t
dt
t

)
| f (y)|dy

� CRν
∫

(2B)c

| f (y)|
|xB − y|d+ν−α

(
1+

|xB − y|
ρ(xB)

)−N
dy.
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Proceeding as in (4.4), since we can choose ν such that α −λ − d
p < ν < δ0 and apply

Lemma 4.4, we get

J2(x) � CRν w(B)

|B| d+ν−α−δ+λ
d + 1

p

[ f
v

]
p
= C

w(B)

|B| d−α−δ+λ
d + 1

p

[ f
v

]
p
. (4.5)

By integrating (4.4) and (4.5) on B we get (1.8).
The proof in the case v = w ∈ S (p,λ ,λ ) follows from Lemma 3.5, Remark 4.1

and the above reasoning. �

5. Technical lemmas and proof of Theorem 1.2

In BMOβ
L (v) the average control is only on balls with radii greater than ρ at their

centers (Corollary 2.1). However, for lower radii some kind of estimate can be proved.
The following is a variation of Lemma 6 in [2].

LEMMA 5.1. Let β ,λ ,δ and N0 real numbers such that β > λ and β ,N0 � 0 .

If (v,w) ∈ S (∞,δ ,λ ,N0) then there exist C > 0 such that for any f ∈ BMOβ
L (v) and

k ∈ N∪{0}
∫

2kB
| f | � C‖ f‖

BMOβ
L (v)

|B| β−λ+δ
d w(B)

×

⎧⎪⎨
⎪⎩

2k(d+β−λ+N0)
(

R
ρ(xB)

)N0
if k > j0

2kd
(

ρ(xB)
R

)β−λ
if k � j0

(5.1)

for any ball B = B(xB,R) with R � ρ(xB) and j0 ∈ N∪{0} such that 2 j0R � ρ(xB) <
2 j0+1R.

Proof. Using Definitions 1.13 and 1.1 we consider two cases. If k � j0 +1, then
for some C > 0, N0 � 0 and any f ∈ BMOβ

L (v) ,

∫
2kB

| f | � C‖ f‖
BMOβ

L (v)
|2kB| β

d v(2kB)

� C‖ f‖
BMOβ

L (v)
|2kB| β−λ+d

d

(
1+

2kR
ρ(xB)

)N0 w(B)

|B|1− δ
d

� C‖ f‖
BMOβ

L (v)
2k(β−λ+d+N0)

( R
ρ(xB)

)N0 |B| β−λ+δ
d w(B).

If k � j0 and β −λ > 0 by a dyadic decomposition and the previous inequality, then

there exists a constant C such that for f ∈ BMOβ
L (v)
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1
|2kB|

∫
2kB

| f | � C
j0+1

∑
j=k

1
|2 jB|

∫
2 jB

| f (z)− f2 jB|dz+
1

|2 j0+1B|
∫

2 j0+1B
| f (z)|dz

� C‖ f‖
BMOβ

L (v)

{ j0+1

∑
j=k

|2 jB| β
d

v(2 jB)
|2 jB| +2 j0(β−λ+N0)

( R
ρ(xB)

)N0 |B| β−λ+δ
d

w(B)
|B|

}

� C‖ f‖
BMOβ

L (v)

{ j0+1

∑
j=k

2 j(β−λ )
(
1+

2 jR
ρ(xB)

)N0
+
(ρ(xB)

R

)β−λ} |B| β−λ+δ
d

w(B)
|B|

� C‖ f‖
BMOβ

L (v)

{ j0+1

∑
j=k

2 j(β−λ ) +
(ρ(xB)

R

)β−λ} |B| β−λ+δ
d

w(B)
|B|

� C‖ f‖
BMOβ

L (v)

(ρ(xB)
R

)β−λ |B| β−λ+δ
d

w(B)
|B| ,

that is, ∫
2kB

| f | � C‖ f‖
BMOβ

L (v)
2kd
(ρ(xB)

R

)β−λ |B| β−λ+δ
d w(B). �

LEMMA 5.2. Given β � 0 , β > λ with λ , δ and α real numbers and N0 � 0 ,
let us assume that (v,w) ∈ S (∞,δ ,λ ,N0) .

1. If M > N0 +β −λ +α then for some constant C =CM and any ball B = B(xB,R)
with R � ρ(xB) ,

∫
|xB−y|�2ρ(xB)

| f (y)|
|xB − y|d+M−α dy � C‖ f‖

BMOβ
L (v)

Rδ−d

ρ(xB)−β+λ+M−α w(B). (5.2)

2. If M > α then for some constant C = CM and any ball B = B(xB,R) with R �
ρ(xB) ,

∫
2R�|xB−y|<2ρ(xB)

| f (y)|
|xB − y|d+M−α dy � C‖ f‖

BMOβ
L (v)

Rδ−d−M+α

ρ(xB)−β+λ w(B) (5.3)

for all f ∈ BMOβ
L (v) .

Proof. Let j0 ∈ N∪{0} such that 2 j0R � ρ(xB) < 2 j0+1R . By a dyadic decom-
posing and the first item in Lemma 5.1, if M > β − λ + α + N0 then there exists a
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constant C such that

∫
|xB−y|�2ρ(xB)

| f (y)|
|xB − y|d+M−α dy �

∞

∑
k= j0

1
(2kR)d+M−α

∫
2k+1B

f (y)dy

� C‖ f‖
BMOβ

L (v)

∞

∑
k= j0

2−k(−β−α+λ+M−N0)
( R

ρ(xB)

)N0
Rβ−λ+δ−d−M+αw(B)

� C‖ f‖
BMOβ

L (v)
2− j0(−β−α+λ+M−N0)

( R
ρ(xB)

)N0
Rβ−λ+δ−d−M+αw(B)

� C‖ f‖
BMOβ

L (v)

( R
ρ(xB)

)−β−α+λ+M
Rβ−λ+δ−d−M+αw(B).

On the other hand, if M > α we get

∫
2R�|xB−y|<2ρ(xB)

| f (y)|
|xB − y|d+M−α dy �

j0

∑
k=0

1
(2kR)d+M−α

∫
2k+1B

f (y)dy

� C‖ f‖
BMOβ

L (v)

j0

∑
k=0

1

2k(M−α)

(ρ(xB)
R

)β−λ
Rβ−λ+δ−d−M+αw(B)

� C‖ f‖
BMOβ

L (v)

(ρ(xB)
R

)β−λ
Rβ−λ+δ−d−M+αw(B). �

In the following two lemmas we study certain kind of integrability for the oscilla-
tions of f .

LEMMA 5.3. Let β � 0 , λ and δ ∈ R , α � 0 and β > λ .

1. If (v,w) ∈ S (∞,δ ,λ ,N0), and M > β + α −λ +N0 then, for some C > 0 ,

∫
|xB−y|�2ρ(xB)

| f (y)− fB|
|xB − y|d+M−α dy � C‖ f‖

BMOβ
L (v)

Rδ−d

ρ(xB)−β+λ+M−α w(B) (5.4)

for any ball B := B(xB,R) with R � ρ(xB) and f ∈ BMOβ
L (v) .

2. If (v,w) ∈ S (∞,δ ,λ ), and M > β −λ + α then, for some C > 0

∫
2R<|xB−y|�2ρ(xB)

| f (y)− fB|
|y− xB|d+M−α dy � C‖ f‖

BMOβ
L (v)

w(B)
R−β+λ−δ+M−α+d

(5.5)

for any ball B := B(xB,R) with R � ρ(xB) and f ∈ BMOβ
L (v) .

Proof. Let j0 ∈ N∪{0} such that 2 j0R � ρ(xB) < 2 j0+1R . Using a dyadic de-
composition, Lemma 5.1 and Definition 1.1, and choosing M such that M > N0 + β −
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λ + α > α we get∫
|xB−y|>2ρ(xB)

| f (y)− fB|
|xB − y|d+M−α dy � C

∞

∑
j= j0+1

1
(2 jR)d+M−α

∫
2 j+1B

| f (y)− fB|dy

� C
∞

∑
j= j0+1

1
(2 jR)d+M−α

{∫
2 j+1B

| f (y)|dy+ | fB|(2 jR)d
}

� C‖ f‖
BMOβ

L (v)

w(B)
Rd+M−α−β−δ+λ

×
∞

∑
j= j0+1

2− j(d+M−α)
{

2 j(d+β−λ+N0)
( R

ρ(xB)

)N0
+2 jd

(ρ(xB)
R

)β−λ}

� C‖ f‖
BMOβ

L (v)

w(B)
Rd+M−α−β−δ+λ

×
{( R

ρ(xB)

)N0
∞

∑
j= j0+1

2 j(β−λ−M+α+N0) +
(ρ(xB)

R

)β−λ ∞

∑
j= j0+1

2− j(M−α)
}

� C‖ f‖
BMOβ

L (v)

( R
ρ(xB)

)−β+λ+M−α w(B)
Rd+M−α−β−δ+λ .

On the other hand, by Definition 1.1 and (2.2) if M > β −λ +α > α it follows that for
some C > 0,∫

2R<|xB−y|�2ρ(xB)

| f (y)− fB|
|xB − y|d+M−α dy � C

j0

∑
j=1

1
(2 jR)d+M−α

∫
2 j+1B

| f (y)− fB|dy

�
j0

∑
j=1

1
(2 jR)M−α

{ 1
(2 j+1R)d

∫
2 j+1B

| f (y)− f2 j+1B|dy+
j

∑
k=0

| f2k+1B − f2kB|
}

�C
j0

∑
j=1

1
(2 jR)M−α

j+1

∑
k=0

1
(2kR)d

∫
2kB

| f (y)− f2kB|dy

�C‖ f‖
BMOβ

L (v)

j0

∑
j=1

1
(2 jR)M−α

j+1

∑
k=1

(2kR)β v(2kB)
(2kR)d

�C‖ f‖
BMOβ

L (v)

j0

∑
j=1

1

2 j(M−α)

j+1

∑
k=1

2kβ 2−kλ
(
1+

2kR
ρ(xB)

)N0 w(B)
Rd−β+λ−δ+M−α

�C‖ f‖
BMOβ

L (v)

j0+1

∑
k=1

2k(β−λ )
j0+1

∑
j=k−1

1

2 j(M−α)
w(B)

Rd−β+λ−δ+M−α

�C‖ f‖
BMOβ

L (v)

j0+1

∑
k=1

2k(β−λ−M+α) w(B)
Rd−β+λ−δ+M−α

�‖ f‖
BMOβ

L (v)

w(B)
Rd−β+λ−δ+M−α . �

Since by Proposition 1.1 the pointwise regularity conditions (1.17) and (2.3) char-
acterize a Campanato-type space then the proof of Theorem 1.2 will follow from the
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verification of those two conditions and using Remark 1.1.

LEMMA 5.4. Let β � 0 , β > λ and δ ∈ R . If (v,w) ∈ S (∞,δ ,λ ) and α > 0

then there exists a constant C such that for all f ∈ BMOβ
L (v) ,

1
w(B(xB,ρ(xB)))

∫
B(xB,ρ(xB))

|Iα f (x)|dx � C‖ f‖
BMOβ

L (v)
ρ(xB)β−λ+δ+α (5.6)

for any xB ∈ R
d .

Proof. Let us denote ρ := ρ(xB),B := B(xB,ρ) and split, f = f1 + f2 with f1 =
f χ2B . Hence by inequality (2.8), Lemma 5.1 and the fact that α > 0 it follows that

1
w(B)

∫
B
|Iα f1(x)|dx � 1

w(B)

∫
B

∫
2B

| f (y)|
|x− y|d−α dydx � Cρα 1

w(B)

∫
2B
| f (y)|dy

� Cρβ−λ+δ+α‖ f‖
BMOβ

L (v)
. (5.7)

On the other hand, if x ∈ B and y ∈ (2B)c then |x− y| � |xB − y|/2 � ρ and, by (4.2),
ρ(x) � Cρ . Hence, by Lemma 2.1, given N > 0 there is a constant C such that

|kt(x,y)| � C
e−

|x−y|2
t

t
d
2

(
1+

√
t

ρ(x)

)N � CρN e−
|x−y|2

t

t
d+N

2

. (5.8)

Thus, if N > α −d , using the change of variable s = |x−y|2
t , we get

|Iα f2(x)| �
∫ ∞

0
t

α
2 (
∫

(2B)c
|kt(x,y)| | f (y)| dy)

dt
t

� CρN
∫

(2B)c
| f (y)|

(∫ ∞

0

e−
|x−y|2

t

t
d+N−α

2

dt
t

)
dy

� CρN
∫ ∞

0
s

d+N−α
2 e−s ds

s

∫
(2B)c

| f (y)|
|x− y|d+N−α dy

� CρN
∫

(2B)c

| f (y)|
|xB − y|d+N−α dy.

Since (v,w) ∈ S (∞,δ ,λ ,N0) for some N0 � 0, using (5.2) and taking N > N0 + β −
λ + α , we obtain

|Iα f2(x)| � CρN w(B)
ρd−α−β−δ+λ+N

‖ f‖
BMOβ

L (v)
� Cρβ−λ+α+δ w(B)

ρd
‖ f‖

BMOβ
L (v)

.

Hence
1

w(B)

∫
B
|Iα f2(x)|dx � Cρβ−λ+α+δ‖ f‖

BMOβ
L (v)

. (5.9)

With (5.7) and (5.9) we get the proof of the lemma. �
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LEMMA 5.5. Let β � 0 , α > 0 , λ < β , α +β −λ < δ0 and α +β −λ +δ � d .
If w is a doubling weight and (v,w) ∈ S (∞,δ ,λ ) , then there exists a constant C such
that

|Iα f (x)−Iα f (y)| � C‖ f‖
BMOβ

L (v)
(Wβ−λ+α+δ(x, |x− y|)+Wβ−λ+α+δ(y, |x− y|))

for |x− y|< ρ(x) , f ∈ BMOβ
L (v) and W defined as in (1.14).

Proof. Set R = |x− y|< ρ(x) and denote B = B(x,R) . Then

|Iα f (x)−Iα f (y)| �
∫

Rd

∫ ∞

0
|kt(x,z)− kt(y,z)|t α

2
dt
t
| f (z)|dz

�
(∫ ρ(x)2

0
+
∫ ∞

ρ(x)2

)
t

α
2

∫
Rd

|kt(x,z)− kt(y,z)| | f (z)|dz
dt
t

= I + J.

By splitting J we get

J =
∫ ∞

ρ(x)2
t

α
2

(∫
|x−z|�4ρ(x)

+
∫
|x−z|>4ρ(x)

)
|kt(x,z)− kt(y,z)| | f (z)|dz

dt
t

= J1 + J2.

Let j0 ∈ N∪{0} such that 2 j0R � ρ(x) < 2 j0+1R . Since
√

t > ρ(x) > R = |x−y| then
by Lemma 2.2 and arguments similar to those used to obtain (5.8), given N > 0, ν < δ0

and L > 0 there exists a constant C = Cν,N,L such that

|kt(x,z)− kt(y,z)| � C
( R√

t

)ν
t−

d
2

(
1+

√
t

ρ(x)

)−N
e−

|x−z|2
t

� CRνρ(x)N ×
⎧⎨
⎩

t−
d+ν+N

2 if |x−z|2
t � 16

t−
d+ν+N−L

2

|x−z|L if |x−z|2
t > 16.

(5.10)

In the case |x−z|2
t � 16 choosing ν such that α +β −λ � ν < δ0 and N > 0 such that

N > d−α + ν , using (5.10) and Lemma 5.1, since α + β −λ + δ � d we can obtain

J1 � CRνρ(x)N
∫ ∞

ρ(x)2
t

α−d−ν−N
2

dt
t

∫
|x−z|<2 j0+3R

| f (z)|dz

� C‖ f‖
BMOβ

L (v)
Rν ρ(x)α−d−ν 2 j0(d+β−λ+N0)

( R
ρ(x)

)N0
Rβ−λ+δw(B)

� C‖ f‖
BMOβ

L (v)

( R
ρ(x)

)−β+λ+ν−α
Rβ−λ+α+δ−dw(B)

� C‖ f‖
BMOβ

L (v)
Rβ−λ+α+δ−dw(B) � C‖ f‖

BMOβ
L (v)

Wβ−λ+α+δ(x,R)

for some constants C > 0 and N0 � 0.

In the case |x−z|2
t > 16 setting N0 � 0 such that (v,w) ∈ S (∞,δ ,λ ,N0) , ν such

that β − λ + α < ν , choosing M1 > N0 + β − λ + α − ν , defining M = M1 + ν in
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(5.2), choosing N > M1 + ν and L = d −α + M1 + ν in (5.10) and finally assuming
that β −λ + α + δ � d there exists a constant C such that

J2 � C Rν ρ(x)N
∫ ∞

ρ(x)2
t

α−d−ν−N
2 t

d−α+ν+M1
2

dt
t

∫
|x−z|�4ρ(x)

| f (z)|
|x− z|d−α+ν+M1

dz

� C‖ f‖
BMOβ

L (v)
Rν ρ(x)N

∫ ∞

ρ(x)2
t
−N+M1

2
dt
t

( R
ρ(x)

)−β+λ−α+ν+M1 Rβ−λ+δw(B)
Rd−α+ν+M1

� C‖ f‖
BMOβ

L (v)

( R
ρ(x)

)−β+λ+ν−α
Rβ−λ+α+δ−dw(B)

� C‖ f‖
BMOβ

L (v)
Wβ−λ+α+δ(x,R).

To deal with I we split

I �
∫ ρ(x)2

0
t

α
2

∫
Rd

(
|qt(x,z)−qt(y,z)|+ |k̃t(x,z)− k̃t(y,z)|

)
| f (z)|dz

dt
t

= I1 + I2,

where k̃ is the kernel of the classical heat operator e−tΔ and qt = kt − k̃t . For the first
term above we get that

I1 �
∫ ρ(x)2

0
t

α
2

∫
Rd

(
χ{|x−z|>4R}|qt(x,z)−qt(y,z)|

+ χ{|x−z|�4R}|qt(x,z)|+ χ{|x−z|�4R}|qt(y,z)|
)
| f (z)|dz

dt
t

=I1,1 + I1,2 + I1,3.

By Lemma 2.4, in the case t < ρ(x)2 and any N > 0 there exists C (independent of t )

|qt(x,z)−qt(y,z)| � C
( R

ρ(x)

)ν 1

t
d
2 (1+ |x−z|√

t
)d+N

� C
( R

ρ(x)

)ν t
N
2

|x− z|d+N ,

where R = |x− y|< Cρ(x) and |x− z|> 4R .
To estimate I1,1 we split {z : |x− z| > 4R} = {z : 4R < |x− z| � 4ρ(x)} ∪ {z :

|x− z| > 4ρ(x)} , define in the above inequality N = ξ with 0 < ξ < ν − (α + β −λ )
for the first domain and N = N2 > N0 + β −λ for the second and use Lemma 5.2 and
condition α + β −λ + δ � d to get, for some constant C ,

I1,1 � C
( R

ρ(x)

)ν(∫ ρ(x)2

0
t

α+ξ
2

dt
t

∫
{4R<|x−z|�4ρ(x)}

| f (z)|
|x− z|d+ξ dz

+
∫ ρ(x)2

0
t

α+N2
2

dt
t

∫
{|x−z|>4ρ(x)}

| f (z)|
|x− z|d+N2

dz
)

� C‖ f‖
BMOβ

L (v)

((ρ(x)
R

)ξ+β−λ+α−ν
+
( R

ρ(x)

)−β+λ+ν−α)Rβ−λ+α+δw(B)
Rd

� C‖ f‖
BMOβ

L (v)
Rβ−λ+α+δ−dw(B)

� C‖ f‖
BMOβ

L (v)
Wβ−λ+α+δ(x,R). (5.11)
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On the other hand, by Lemma 2.3, for
√

t < ρ we get

|qt(x,z)| � CM

( √
t

ρ(x)

)ν
t−

d
2

(
1+

|x− z|√
t

)−M
.

If
√

t < R/4 then we set an integer nt � 2 such that 2nt
√

t � R < 2nt+1√t , use a dyadic
decomposition and the above inequality to get

I1,2 � C
(∫ R2

16

0

( √
t

ρ(x)

)ν
t

α−d
2

×
(∫

|x−z|<4
√

t
| f (z)|dz+

nt

∑
j=2

∫
2 j
√

t�|x−z|<2 j+1
√

t

( √
t

|x− z|
)M| f (z)|dz

)dt
t

+
∫ ρ(x)2

16

R2
16

( √
t

ρ(x)

)ν
t

α−d
2

dt
t

∫
|x−z|�2R

| f (z)|dz
)

= H1 +H2.

Now, since β −λ > 0 then we are able to apply Lemma 5.1, that w is doubling, α +
β −λ + δ � d , β −λ < β −λ + α < ν and choose M > d to obtain

H1 �C‖ f‖
BMOβ

L (v)

∫ R2
16

0

( √
t

ρ(x)

)ν
t

α−d
2

×
(
4d
(ρ(x)√

t

)β−λ
t

β−λ+δ
2 w(B(x,4

√
t))+

nt

∑
j=2

2− jM
∫
|x−z|<2 j+1

√
t
| f (z)|dz

)dt
t

� C‖ f‖
BMOβ

L (v)

∫ R2
16

0

( √
t

ρ(x)

)ν
t

β−λ+α+δ−d
2

×
(ρ(x)√

t

)β−λ(
1+

nt

∑
j=2

2− jM+ jd
)

w(B(x,4
√

t))
dt
t

� C‖ f‖
BMOβ

L (v)

∫ R2
16

0

( √
t

ρ(x)

)ν−β+λ dt
t

Wβ−λ+α+δ(x,R)

� C‖ f‖
BMOβ

L (v)
Wβ−λ+α+δ(x,R).

Analogously, since β −λ + α + δ � d and β −λ < β −λ + α < ν � d then

H2 � C‖ f‖
BMOβ

L (v)

∫ ρ(x)2
16

R2
16

( √
t

ρ(x)

)ν
t

α−d
2

dt
t

2d
(ρ(x)

R

)β−λ
Rδ+β−λ w(B(x,4R))

� C‖ f‖
BMOβ

L (v)

∫ ρ(x)2
16

R2
16

( √
t

ρ(x)

)ν+α−d dt
t

(ρ(x)
R

)β−λ+α−d
Rβ−λ+δ+α−d w(B(x,R))

� C‖ f‖
BMOβ

L (v)

∫ ρ(x)2
16

R2
16

( √
t

ρ(x)

)β−λ+α−d( √
t

ρ(x)

)ν−β+λ dt
t

×
(ρ(x)

R

)β−λ+α−d
Wβ−λ+α+δ(x,R)
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� C‖ f‖
BMOβ

L (v)

∫ ρ(x)2
16

0

( √
t

ρ(x)

)ν−β+λ dt
t

Wβ−λ+α+δ(x,R)

� C‖ f‖
BMOβ

L (v)
Wβ−λ+α+δ(x,R).

Hence

I1,2 � C‖ f‖
BMOβ

L (v)
Wβ−λ+α+δ(x,R). (5.12)

Since I1,3 is similar to I1,2 we also obtain

I1,3 � C‖ f‖
BMOβ

L (v)
Wβ−λ+α+δ(x,R). (5.13)

Inequalities (5.11), (5.12) and (5.13) give the seek estimate of I1 .
On the other hand, since

∫
Rd (k̃t(x,z)− k̃t(y,z))dz = 0 then

I2 �
∫ ρ(x)2

0
t

α
2

∫
Rd

|k̃t(x,z)− k̃t(y,z)| | f (z)− fB|dz
dt
t

�
∫ ρ(x)2

0
t

α
2

(∫
|x−z|>2R

|k̃t(x,z)− k̃t(y,z)| | f (z)− fB|dz

+
∫
|x−z|�2R

|k̃t(x,z)| | f (z)− fB|dz+
∫
|x−z|�2R

|k̃t(y,z)| | f (z)− fB|dz
)dt

t

=I2,1 + I2,2 + I2,3.

It is not difficult to see that |k̃t(x,z)− k̃t(y,z)|�Ce−
|x−z|2

ct t−
d
2−1|x−y||x−z| for |x−z|>

2|x−y| and α < β −λ +α < δ0 � 1 then, choosing M > N0−λ +α +β −1 and using
(5.5) and (5.4) in Lemma 5.3, it follows that

I2,1 � CR
∫
|x−z|>2R

|x− z|| f (z)− fB|
∫ ρ(x)2

0
t

α−d−2
2 e−

|x−z|2
ct

dt
t

dz

� CR
∫
|x−z|>2R

| f (z)− fB|
|x− z|d+1−α

∫ ∞

|x−z|2
cρ(x)2

s
d+2−α

2 e−s ds
s

dz

� CR
(∫

2R<|x−z|�2ρ(x)

| f (z)− fB|
|x− z|d+1−α dz

(∫ ∞

0
s

d+2−α
2 e−s ds

s

)

+
∫
|x−z|>2ρ(x)

| f (z)− fB|
|x− z|d+1−α

∫ ∞

|x−z|2
cρ(x)2

s
d+2−α−M

2 e−
s
c
ds
s

dz
)

� CR
(∫

2R<|x−z|�2ρ(x)

| f (z)− fB|
|x− z|d+1−α dz+ ρ(x)M

∫
|x−z|>2ρ(x)

| f (z)− fB|
|x− z|d−α+1+M dz

)

� C‖ f‖
BMOβ

L (v)

w(B)
Rd−β−δ+λ−α � C‖ f‖

BMOβ
L (v)

Wβ−λ+α+δ(x,R).
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For I2,2 we use that (v,w) ∈ S (∞,δ ,λ ) and that w is doubling to get

I2,2 � C
∫
|x−z|�2R

| f (z)− fB|
∫ ρ(x)2

0
t

α−d
2 e−

|x−z|2
ct

dt
t

dz

� C
∫
|x−z|�2R

| f (z)− fB|
|x− z|d−α

(∫ ∞

|x−z|2
cρ(x)2

s
−α+d

2 e−s ds
s

)
dz

� C
∫
|x−z|�2R

| f (z)− fB|
|x− z|d−α dz � C

∞

∑
j=0

(2− jR)α−d
∫
|x−z|<2− j+1R

| f (z)− fB|dz

� C‖ f‖
BMOβ

L (v)

∞

∑
j=0

(2− jR)β+α−dv(2− j+1B)

� C‖ f‖
BMOβ

L (v)

∞

∑
j=0

(2− jR)β−λ+α+δ−dw(2− j+1B)

� C‖ f‖
BMOβ

L (v)

∞

∑
j=1

(2− jR)β−λ+α+δ−dw(2− j+1B\ 2− jB)

� C‖ f‖
BMOβ

L (v)

∫
|x−z|�2R

w(z)
|x− z|d−β+λ−α−δ dz = C‖ f‖

BMOβ
L (v)

Wβ−λ+α+δ(x,R).

The estimate for I2,3 is obtained in the same way. �

5.1. Proof of Theorem 1.2

Since β −λ + α + δ < 1 and w is doubling then to prove this Theorem it will
be enough to use the pointwise characterization of the space BMOα+β−λ+δ

L (w) pro-
vided by Proposition 1.1. But then Lemma 5.4 and Lemma 5.5 give the two desired
inequalities for Iα f .

The authors are deeply grateful to the referee for his interesting suggestions to
make this paper more clear and complete.
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[10] J. DZIUBÁNSKI, G. GARRIGÓS, T. MARTÍNEZ, J. TORREA AND J. ZIENKIEWICZ, BMO spaces
related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249
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potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana, 15 (2): 279–296, 1999.
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[31] C. PÉREZ, Two weighted inequalities for potential and fractional type maximal operators, Indiana

Math. J., 43: 663–683, 1994.
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