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TRIGONOMETRIC APPROXIMATION OF
FUNCTIONS IN SEMINORMED SPACES

WLODZIMIERZ LENSKI, UADAY SINGH™ AND BOGDAN SZAL

(Communicated by J. Pecari¢)

Abstract. In this paper, we study the approximation properties of 2m-periodic functions in a
seminormed space. We use a general matrix method of summability, and the moduli of continuity
in the seminormed space as a measure of approximation. Our results generalize and improve
some of the previous results available in the literature.

1. Introduction

Let C and LP (1 < p < o) denote the spaces of 27 -periodic real valued contin-
uous functions and p—th power Lebesgue integrable functions, respectively, equipped
with the following norms

1A lle = 1FOlle = _max | f(r) ]

—<I<T

and

1Al = 1Ol = {/7:r [ f@) [P dt};) :

For a seminorm P, we define the following seminormed spaces:
(LP,P)={f €LV :P(f) <eo},

(C.P)={feC:P(f) <=}

with the property that f(-+h) € (L?,P) or f(-+h) € (C,P) forany h € R, respectively.
In this paper we will consider the seminorm P satisfying, for all f,g € (L?,P) (or
f,g € (C,P)), the following conditions:
1. forany h e R

P(f(-+h)=P(f()), (D
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2.if |f(x)] < |g(x)| for every x € [—m, 7], then

P(f)<P(g). 2)

For f € L' we will consider the trigonometric Fourier series

oo

Sl 57 [ a3 |

sin vx
T

COosVx
4

T T
/ f(t)cosvedt + / f(t)sin vtdt}
—T -
with the partial sums Sy [f].
We will also need some notations on methods of summability of the series S[f] .
IfA:= (anﬁk) O<n o <oo is an infinite matrix of real numbers such that a,, ; > 0 for all
k,n=0,1,2,..., 0r Ag := (dnk) o, 1. 15 an infinite matrix of real numbers such that
ani>0fork=0,1,2,...,nand a,; =0 when k=n+1,n+2,..., with lim,, ... a, ;=
0 forevery k and Y;” ja, =1 for every n, then

zmmw:g%mmw (n=0,1,2,...)

or

ummm:é%mmw>m=mzmx

define the respective matrix means of S[f].

It is well-known that in Fourier analysis, various interesting results are established
by assuming monotonicity of the entries of a matrix A. One of the methods of obtaining
generalizations of these results was the use of the so-called bounded variation concept.
There have been defined many classes of bounded variation sequences (see for example
[51, [12]-[16]). We will also use one of them in this paper. Namely, following Leindler
[6] we define the class of Head Bounded Variations Sequences

m—1
HBVS := {(ck) C[0,00) 1 Y, |ex — chr1| = O(cm) forallm e N}.
k=0

For f € (L?,P)(or f € (C,P)), we denote the best approximation by
E,(f)p= i;lf{P(f— T,)}, n=0,1,2,...,

where the infimum is taken over all trigonometric polynomials

T,(x) = Z cpe™

k=—n

of the degree at most 7.
The modulus of continuity of f € (L”,P) (or f € (C,P)) with respect to P is
defined by the following formula:
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Qf(8)p = sup P(f(-+h)=f()).

0<h<é

With such modulus of continuity, we can define the following class of functions:
Lipp (@) = {f € (L”,P)(or f € (C,P)) : Qf (§)p = O (@ (5)), 6 =0},

where  is a function of modulus of continuity type on the interval [0,27], i.e., a non-
decreasing continuous function having the following properties: @ (0) =0, @ (6; + &)
<0(0)+w(d) forany 0< 8 <6 <0+ 6 <2n.

We know that the following Jackson-type inequality (see [17, Theorems 1, 2, p.

159]) holds:
1
E(f)r =0<Qf (n+1>P> n=01.2....,

for f € (L?,P) (or f € (C,P)).

With these definitions, it is pertinent to study the problem of approximation in the
seminormed spaces defined above. Our results presented in this paper generalize and
improve the results of A. Guven [2], B. Szal [11, Theorem 5 (v)] and R. N, Mohapatra,
B. Szal [10, Theorem 5 (vi)] using seminorms instead of special kind of the Orlicz
norms and considering more general matrix means.

2. Main results

In the beginning we present a general result dealing with the degree of approxima-
tion in terms of the best approximation and the modulus of continuity.

THEOREM 1. Let f € (LP,P) with 1 < p < e, where seminorm P satisfies (1)
and (2) or the following condition

P <If Ol - 3)
If entries of the matrix A satisfy the conditions
c B An k o A k+1 _ 1 )
2 (k4D ‘(k+1)ﬁ (k+2)P 0<n+1 ! @
for some B =0 and
N (k+1)a =0 (n+1), (5)
k=0
then
P(T,4lf1-f)=0 (En(f)P + an,kEk(f)p> ; (6)
k=0

forn=0,1,2,...
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Let GM be a class of all sequences (c;) of real numbers such that there exist
constants M >0 and A > 1 for which

2n—1 [An]
2 lex — e | < 2
k=n =[n/A]

forall n € N (see [8]).
If (k+1)"Pa, ) € GM with respect to k for some 8 > 0 and

°°ak_ 1
2;k+1_0<n+1> ™

forall n=0,1,2,..., then for some My > 0

oo 25T

had Ap i Ay ft 1 An i Ay ft 1
k+1)P : (k+1) L
kgl( ) (k+1)F  (k+2)P Z()kzz ’(k+1>ﬁ (k+2)B

- 22°]
<M 2S+1ﬁ an:k
Zé( ) oy Rk +1)P
> Ay k 1
< MM k_o .
02%k+1 <n+1>

Thus (4) is satisfied. Using this and Theorem 1 we can formulate the following corol-
lary:

COROLLARY 1. Let f € (LP,P) with 1 < p < oo, where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix A satisfy conditions ((k—+ 1)~ ﬁanﬁk) € GM
with respect to k for some B =0, (5) and (7), then (6) holds.

In case of the triangular means defined by matrices Ag, we have the following
remark:

REMARK 1. We can observe that all lower triangular matrices satisfy (5). Indeed

n

2(k+1)an7k22(k+1)ank (n+1) Zank—n—Fl
k=0 k=0 k=0

Moreover, using the monotonicity of E,(f)p with respect to n, we get

S kel f)p > En(f)p S g = E
k=0 k=0

Using Theorem 1 and Remark 1 we get the following corollary:
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COROLLARY 2. Let f € (LP,P) with 1 < p < oo, where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix Aq satisfy condition (4) for some B > 0, then

P(Typ lf1—f) =0 (ian,kEk(f)P>, (8)
k=0

forn=0,1,2,...

Suppose that Ay and ((k+1)"Pa, ;) € HBVS with respect to k for some 8 >0
and (n+ 1)a,, = O(1). Then

M s

k lﬁ An k o A 41
(k+1) ‘(k+1)ﬁ (k+2)P

k=

n—

an k An k+1
k+1)P s
gg)( ) ‘(k+1)ﬁ (k+2)B

]

+ann

>~

An k Ap k+1
(k+1)B  (k+2)B

< (n+1)ﬁ0 (W) +ann=0(an,n)=0<ni1>-

Thus (4) is satisfied. Using this and Theorem 1 we can formulate the following corol-
lary:

< l’l+ +an,n

COROLLARY 3. Let f € (LP,P) with 1 < p < e, where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix Ay satisfy conditions ((k+ 1)~ ﬁamk) € HBVS
with respect to k for some B >0 and (n+1)a, , = O(1), then (8) holds.

Next we consider some special cases and approximate f € Lipp (o).

THEOREM 2. Let f € Lipp (®), where the seminorm P satisfy (1) and (2) or (3).
If entries of the matrix A satisfy conditions (4) for some B > 0 and (5), then

O (o(-17)), when 8 >0,

1 9)
T kzow(k—)> , when B =0,
forn=0,1,2,...

In the similar way as in the proof of Theorem 2 using Corollary 1, 2 and 3 we
obtain the following corollaries:

COROLLARY 4. Let f € Lipp () with 1 < p <o, where the seminorm P satisfy

(1) and (2) or (3). If entries of the matrix A satisfy conditions ((k + l)_ﬁan.’k) € GM
with respect to k for some B >0, (5) and (7), then

P(TmA[f]—f):O(w (nj—l)) (10)
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forn=0,1,2,...

COROLLARY 5. Let f € Lipp () with 1 < p <o, where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix Ag satisfy condition (4) for some B > 0, then
0] (w(ﬁ)) , when B >0,
P(TmA[.ﬂ_f): n 1
O\ ann X w(k+_l) , when B =0,
k=0

forn=0,1,2,...

COROLLARY 6. Let f € Lipp(w), where the seminorm P satisfy (1) and (2) or
(3). If entries of the matrix Ay satisfy conditions ((k+ 1)_/3 any) € HBVS for some
B = 0 with respect to k and (n+ 1)a, , = O(1), then (9) holds.

Finally, we have the following examples and remarks.
EXAMPLE 1. One can easily verify that @,y = e " X7, (jfl)! ,
2,..., satisfies the conditions (4) for any § > 0 with respect to k and (5).

where n,k=0,1,

EXAMPLE 2. Let a,; = % for k<n and a, ; =0 for k> n, where n,k =

0,1,2,.... We can easily show that this sequence satisfies the conditions (4) for any
B>1and (n+1)a,, = O0(1).

REMARK 2. Theorem I and Corollaries 1-3 will also be true for f € (C,P) be-
cause (C,P) C (LP,P) for 1 < p < eo.

REMARK 3. Let the seminorm P satisfy (2) or (3). If f € Lipp (w) with o (5) =
0%, where o € (0, 1], then from Corollary 6 the results of [1], [2], [7], [10, Theorem 5
(vi)] and [1 1, Theorem 5 (v)] follow at once in the more general and improved forms.
The similar results can also be seen in papers [3] and [4].

3. Lemmas

We need the following lemmas for the proofs of our theorems.

LEMMA 1. (see [17, Theorem 1, p. 58]) Let g be a continuous function of two
variables, 2 - periodic on [—r, 7] x [—m,x]. If g(-,t) € (C,P) forevery t € [—m, ]
and (1) holds, then

" g(-,t)dr € (C,P)

-7

P( / ’;g<-7r>dt) < [ Platayar

and
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LEMMA 2. (cf. [17, Corollary 1, p. 59]) Let f € (LP,P) with 1 < p < o and
K € (C,P). If the seminorm P satisfies the condition (1) and (3), then

_ﬂ FC+0)K (t)dr € (LP,P)

and

P([ seroriwa) <pin [ kol

-7

Proof. If f,K € (C,P), then using Lemma 1 we have

p( " f(~+t)K(t)dt> < [“PUt+nr@)ar

=[”P<f<~+r>>\K<r>|dr
= [ puenik@lar=pi) [ k@lar an

We know that the set of continuous functions is dense in the space L” for 1 < p < oo
(see [9]). Therefore, for every f € (LP,P) with 1 < p < o, there exists a sequence
(fa) of continuous functions such that || f, — f||;» — 0 as n — co. Hence for every
fe(P,P)with1<p<eo

=/_Zﬂ(x+t)l<(t)dz= _ifn(l‘)[((t—x)dte " HOK (6 —x)dt = ()

—TT

uniformly with respect to x as n — oo, since by the Holder inequality

Is|<7=

()~ (] < max K (9 [ 1y 0) = £0)]dr < 22~ max K 9] = fl-
Next, applying (3) we get for 1 < p <o
5im [P ()~ P(f)] < lim P(f, — f) < lim || £y~ ]}, =O0.

Therefore, P is continuous and thus using (11), we obtain

P( _if(-—H)K(t)dt) = P(g) = lim P(g,)

n—o0

n—00

<timp(s) [ KOl =p() [ K@)

-7

= limP< an(-—H)K(t)dt)
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Using (3) and the Minkowski inequality

P( jrf(-—i—t)K(t)dt) < H jrf(-—i—t)K(t)dt

Lp

< [ I+l K @l
=W Olls [ KOldr <20l max K (9)] <

Thus .
fe+0)K(t)dt € (L7,P)

—TT

and this ends our proof.

LEMMA 3. Let f € (L?,P) with 1 < p < and K € L'. If a seminorm P satisfies
(1) and (2), then

ﬂf(-+t)K(t)dte (LP,P)

—TT

and

P([ serorwa) <rin [ kol

Proof. Using (2) we can easily show that P(f) = P(|f|). Therefore, applying
again (2) and absolute homogeneity of the seminorm P, we obtain

P(/if(-—kt)K(t)dt) gP(/if(-th)K(t)dt)
-r ([ wona [ )
_/ dm(W/;V('H)K(I)Idt).

Using the Jensen inequality, we obtain

1 T
P (g e+ ok @lar) < o [ PO+ 0) K 0l

= i | PO K@)l

= PO =P(f)

and our result follows.
Next we present some estimate of the kernel.
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LEMMA 4. If B >0 and 0 <t < 7, then

psin ZHL| (et 1)P
> (k1) — == 5
far sin § t
sin (2145 sin ’lzl)t
Proof. Using the Abel transformation and Y T = e T
we have
n (k1)
sin
Y (k+1)P =2
0 2sin 5
nel K gip UL n gin 2D
< k1P = (k+2)7] 2 1) 2
k=0[( 17— (k+2) E(‘) 2sin§ ++l) E(‘) 2sin 5
n—1 sin2 (k+1)t sin2 (n+1)t
< ’k+lﬁ—k+2’3’72+ n+1)P 2
,Zg)( y=( ) Zsinzé ( ) Zsinzé
7.[2 n—
< Z‘(k+l)ﬁ—(k+2)ﬁ)+(n+l)ﬁ
7l
x B 2 1)
-5 [z(n+1) —1} < t—z(n—|—1)

and this ends our proof.
Application of Lemma 4 gives next more general estimate.

LEMMA 5. If (4) for some B > 0 and (5) hold, then
1
/ Z%k( + 2c0svt>
T
(k)

Proof. Since % + Z]f,:l cos Vvt = Slzsinzi (see [18)),
2

/_n kzoank< +2cosw> /,,

Using the Abel transformation, Lemma 4 and (4), we have

dt=0(1).

sin (2k+l)t

dt.

Zank

k=0

5 M 1P sin (2k-2‘rl)t
S (k+1)B 2sin %
k (2141)

\ An k An k+1 g SIn =
- YR
kgf)[(k—kl)ﬁ (k+2)ﬁLzo( D n g

x (k+1)P 1
<n2k§6 (k+ 1B (k+2)B| 12 _0<t2(n+1))'

An k Ap k+1

97
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Thus, by the assumption (5), we have

oo (1L B
</onﬂ,goa"”“Zk—;r1“’”’ = ( n-l—l)
< z (+1)+&< ” ) 1 =0(1)

oo 2k+ 1)t

/0” 2 a, ksm

k=0 2si

2%t
sm( ;)’

Ank—F~ -1

dt

n+1 +1 +1

and our estimate follows.
We yet need an approximation result.

LEMMA 6. Suppose f € (LP,P) with 1 < p < o, where seminorm P satisfies (1)

and (2) or (3), and let T,, be a trigonometric polynomial of the degree at most n, such
that P(f —T,) = O(E,(f)p). If (4) for some B > 0 and (5) hold, then

P (i an Sk lf — Tn}> =O0(Ea(f)p).
k=0

Proof. Ttis clear that

1

b1 1 k
Sk[f =Tl (x) = _/n[f_T"] (x+1) <§+ D cosvt) dt

TJ- v=1
and therefore,

1

Sansslf Tl =2 [Tl T e (

Hence, by Lemma 2 or Lemma 3, we have

P(iamkSk[f—Tn]) gl ﬂP(f—Tn) iank<l+2’cosvt> dt
k=0 nJ-rn k=0 2

and further,

- L] |
P(};)amksk[f—TnO ZO(En(f)P)E/ gaank (54— Ecosvt> dr.

Since by Lemma 5

N =

k
+ 2 cos vt) dt.
v=1

dt=0(1),

—TT

kzoank ( + 2 cosvt)

whence
P (Z an Sk f — TA) = O(E.(f)p)
k=0

and our proof is ended.
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4. Proofs of main results

4.1. Proof of Theorem 1

Foreachn=0,1,2,..., let T, be atrigonometric polynomial such that P(f —T,,) =
O (E,(f)p) (which exists by [17, Theorem 1, p. 36]), then

Toalf Eanka_ 2 an i Tn +Zanka+ 2 an i Ty — f)

k=n+1 k=n+1

k=n+1 k=n-+1

an i ASkIf] = Ti} + i an.’k{Sk[f]—T,,}>

k=n+1

<P (TmA [f] - Z akak - i akan) +P (Zan I+ 2 ay. kT f)
k=0
P

k=n-+1

P( ankSkf T]) +P<Zan7k(f_Tk)> +P< i amk(f_Tn)>
k=0

k=n+1

>
(na,,kf T+ Y, an(f— T>>
)
Z

=P an kS [f — Tn]) + i an kO (Ex(f)r) + i an kO (En(f)P),
=0 k=0

k=n+1

Sif (x) — Ti (x), for k < n,
Self = Tal (x) = {S];f(x)—TI;(x)7 fgran.

We note that by Lemma 6,

P (2 an Sk [f — TrJ) = O (Eu(f)p)
k=0
and thus our result follows.

4.2. Proof of Theorem 2

The subadditivity of @ implies @ (n6) <nw (), whence ®(A6) < (A +1)w(J)
and therefore g‘?) L2 ( 1) since

0(8) = w(ﬁi&) < (%4—1) o(8)

:(Z gi>w(6)<<§? g?>w(51) 22@(51)
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where n € Ny, A >0 and 0 < 6; < &. Hence, using the Abel transformation and (4)
with >0,

S

(1)

L
k+1

M=
8

=~

e
7N
¥~
N—
Il
M=
T|s
— |

/N
[\®]
—~
=
+
-
N—
g
P A
S
_l’_
-
N—— ~— 0
=~
s
»
_|_
A
N~—
=
L
~—
=
Q
]
—_
~—
=

(=}

»

o
M= 3
Pl
F|8
—_ bl

(

An k Ap k+1
(k+1DF  (k+2)F |~

1 - an k An k+1
- k+1)P kT
n—|—1)kz()( +1) l(k+1)ﬁ (k+2)B

2(l+1)ﬁ

M s

k

oS

VAN

&)
/;\

+
| =
N—

=

+

e
el

but with B =0

2ankw<k+l><2‘|a"" a""“}z <l+1>+a""zo (T)
< <Z4|ank_ank+1}+k2;q(ank An k+1 )é (%)

B 1
B l +1
Thus our result, by Theorem 1 and the Jackson-type inequality, follows.
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