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ON A MERCER LIKE INEQUALITY INVOLVING

GENERALIZED CSISZÁR f –DIVERGENCES

MAREK NIEZGODA

(Communicated by M. Praljak)

Abstract. In this note, an upper bound for values of a convex function f is shown for some
specific arguments of the function. Thus a Mercer like inequality involving generalized Csiszár
f -divergences is obtained. Special cases of the result are studied.

1. Introduction

We begin with the following result due to A. McD. Mercer [10].

THEOREM A. [10, Theorem 1.2] Let f be a real convex function on an interval
[a1,a2] , a1 < a2 , such that

a1 � xk � a2 for k ∈ {1, . . . ,N} . (1)

Then

f

(
a1 +a2−

N

∑
i=1

tkxk

)
� f (a1)+ f (a2)−

N

∑
i=1

tk f (xk), (2)

where
N
∑

k=1
tk = 1 with tk > 0 .

Throughout the notation R+ = [0,∞) and R++ = (0,∞) is used. Elements of the
Euclidean space R

n are thought of as row n -vectors.
Given a convex function f : R++ → R and two n -tuples p = (p1, p2, . . . , pn) ∈

R
n
++ and q = (q1,q2, . . . ,qn) ∈ R

n
++ , the quantity

Cf (p,q) =
n

∑
j=1

p j f

(
q j

p j

)
(3)

is called Csiszár f -divergence (see [1, 2, 3]).
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The following Csiszár-Körner inequality [2] holds:

n

∑
j=1

p j f

(
∑n

j=1 q j

∑n
j=1 p j

)
� Cf (p,q) . (4)

For properties of f -divergence, see [3, 4, 7, 13].
For example, we now give definitions of some f -divergences (relative entropies)

induced by the convex functions − logt , t logt , − tu−1
u and − [1−v+vtu]1/u−1

v for t > 0,
as follows

S(p,q) = −
n

∑
i=1

pi log
qi

pi
(relative entropy), (5)

S1(p,q) =
n

∑
i=1

pi

(
qi

pi

)
log

(
qi

pi

)
= S(q,p), (6)

Tu(p,q) = −
n

∑
i=1

pi

(
qi
pi

)u−1

u
, u ∈ (0,1], (Tsallis relative entropy), (7)

and

Tv,u(p,q) = −
n

∑
i=1

pi

[
1− v+ v

(
qi
pi

)u]1/u
−1

v
(parametrized Tsallis relative entropy),

(8)
where v,u ∈ (0,1] (see [5, 6, 12, 16]).

For a convex function f : R++ → R and for three n -tuples p = (p1, p2, . . . , pn) ∈
R

n
++ , q = (q1,q2, . . . ,qn)∈R

n
++ and c = (c1,c2, . . . ,cn)∈R

n
+ , the generalized Csiszár

f -divergence of p and q with respect to c is defined by

Cf (p,q;c) =
n

∑
j=1

c j p j f

(
q j

p j

)
(9)

(see [8]).
We say that an n×m real matrix R = (r ji) is nonnegative (entrywise), written as

R � 0, if r ji � 0 for all j ∈ {1, . . . ,n} and i ∈ {1, . . . ,m} .
In what follows, we use the symbol RT to denote the transpose of a matrix R .

THEOREM B. [8] Let f : R++ → R be a convex function on R++ . Let p =
(p1, p2, . . . , pn) ∈ R

n
++ , q = (q1,q2, . . . ,qn) ∈ R

n
++ and d = (d1,d2, . . . ,dm) ∈ R

m
+ .

Let R be an n×m nonnegative (entrywise) matrix. Denote

p̃ = pR , q̃ = qR and c = dRT . (10)

Assume p̃ ∈ R
m
++ .

Then
Cf (p̃, q̃;d) � Cf (p,q;c) . (11)
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It is interesting that inequality (11) is a generalization of the Csiszár-Körner in-
equality (4). Namely, it can be observed from (10) that if m = n and R is the matrix of

ones and d = 1
m(1,1, . . . ,1)∈R

m
+ , then c = (1,1, . . . ,1)∈R

n
+ , p̃ =

(
n
∑
j=1

p j, . . . ,
n
∑
j=1

p j

)

∈ R
m
++ , q̃ =

(
n
∑
j=1

q j, . . . ,
n
∑
j=1

q j

)
∈ R

m
++ . So, in this situation, (11) reduces to (4) by

(3) and (9).
The aim of the present note is to develop the above framework in order to establish

an upper bound for some values of a convex function f by using generalized Csiszár
f -divergences. In doing so, we apply a transform of a matrix with nonnegative entries
to obtain a column stochastic matrix. In result, we are permitted to employ Theorem B,
which together with Jensen inequality gives the desired estimate of values of a convex
function (see Theorem 1). Next, we consider some specializations of Theorem 1 in
Corollaries 1-3. Also, we show an application for p-majorization (see Corollary 4).

2. Mercer type inequality for generalized Csiszár f -divergences

For any l -tuples a = (a1, . . . ,al) ∈ R
l
++ and b = (b1, . . . ,bl) ∈ R

l
+ , we denote

a ◦b = (a1b1, . . . ,albl) ,
b
a

=
(

b1

a1
, . . . ,

bl

al

)
and

1
a

=
(

1
a1

, . . . ,
1
al

)
.

An n×m real matrix R = (r ji) is said to be column stochastic if r ji � 0 for

j ∈ {1, . . . ,n} and i ∈ {1, . . . ,m} , and all column sums of R are ones, i.e.,
n
∑
j=1

r ji = 1

for i ∈ {1, . . . ,m} .
An n×m real matrix R = (r ji) is said to be row stochastic if r ji � 0 for j ∈

{1, . . . ,n} and i ∈ {1, . . . ,m} , and all row sums of R are ones, i.e.,
m
∑
i=1

r ji = 1 for

j ∈ {1, . . . ,n} .
An m×m real matrix R is called doubly stochastic if R is both column stochastic

and row stochastic.
We say that an m-tuple y ∈ R

m is majorized by an m-tuple x ∈ R
m , written as

y ≺ x , if y = xR for some doubly stochastic matrix R (see [9, p. 33]).

LEMMA 1. Let p = (p1, p2, . . . , pn)∈R
n
++ , q = (q1,q2, . . . ,qn)∈R

n
++ p̃ = (p̃1, p̃2,

. . . , p̃m) ∈ R
m
++ and q̃ = (q̃1, q̃2, . . . , q̃m) ∈ R

m
++ .

Let R = (r ji) be an n×m matrix with nonnegative entries. Let S = (s ji) be the
n×m matrix such that s ji = r ji

p j
p̃i

for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n} .

(i) If q̃ = qR then
q̃
p̃

=
q
p

S.

(ii) If p̃ = pR then S is column stochastic.



106 M. NIEZGODA

(iii) If 1
p = 1

p̃RT then S is row stochastic.

Proof. (i). Since q̃ = qR , the following identity holds

q̃i

p̃i
=

q1

p1
r1i

p1

p̃i
+ . . .+

qn

pn
rni

pn

p̃i
=

q1

p1
s1i + . . .+

qn

pn
sni for i ∈ {1, . . . ,m} . (12)

So, we find that

q̃
p̃

=
(

q̃1

p̃1
, . . . ,

q̃m

p̃m

)
=
(

q1

p1
, . . . ,

qn

pn

)⎛⎜⎝ r11
p1
p̃1

. . . r1m
p1
p̃m

...
. . .

...
rn1

pn
p̃1

. . . rnm
pn
p̃m

⎞⎟⎠

=
(

q1

p1
, . . . ,

qn

pn

)⎛⎜⎝ s11 . . . s1m
...

. . .
...

sn1 . . . snm

⎞⎟⎠=
q
p

S.

(ii). In light of the equality p̃ = pR , it is not hard to check that

s1i + . . .+ sni = r1i
p1

p̃i
+ . . .+ rni

pn

p̃i
=

n
∑
j=1

p jr ji

n
∑
j=1

p jr ji

= 1 for i ∈ {1, . . . ,m} . (13)

For this reason the matrix S = (s ji) is column stochastic.
(iii). Assume 1

p = 1
p̃RT . Hence 1

p j
= 1

p̃1
r j1 + . . .+ 1

p̃m
r jm for j ∈ {1, . . . ,n} .

In conseqence, we get

s j1+ . . .+s jm = r j1
p j

p̃1
+ . . .+r jm

p j

p̃m
= p j

(
1
p̃1

r j1 + . . .+
1
p̃m

r jm

)
= 1 for j ∈ {1, . . . ,n} .

(14)
That is, the matrix S = (s ji) is row stochastic. �

THEOREM 1. Let f : R++ →R be a convex function on R++ . Let p = (p1, p2, . . . ,
pn) ∈ R

n
++ , q = (q1,q2, . . . ,qn) ∈ R

n
++ , d = (d1,d2, . . . ,dm) ∈ R

m
+ , dm > 0 , pk =

(p(k)
1 , p(k)

2 , . . . , p(k)
m )∈R

m
++ , qk = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m )∈R
m
++ , ck = (c(k)

1 ,c(k)
2 , . . . ,c(k)

n )∈
R

n
+ , k ∈ {1, . . . ,N} .

Let Rk =
(
r(k)

ji

)
, k∈ {1, . . . ,N} , be an n×m nonnegative (entrywise) matrix such

that
pk = pRk , qk = qRk and ck = dRT

k for k ∈ {1, . . . ,N} . (15)

Then, for any tk � 0 , k ∈ {1, . . . ,N} , with
N
∑

k=1
tk = 1 , the following inequality

holds:

f

(
N

∑
k=1

tk
n

∑
j=1

λ (k)
j

q j

p j
−

N

∑
k=1

tk
m−1

∑
i=1

q(k)
i

p(k)
i

)
�

N

∑
k=1

tk

dmp(k)
m

(
Cf (p,q;ck)−Cf (p̂k, q̂k; d̂)

)
,

(16)
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where λ (k)
j is the j th row sum of the matrix Sk =

(
s(k)ji

)
with

s(k)ji = r(k)
ji

p j

p(k)
i

for j ∈ {1, . . . ,n} and i ∈ {1, . . . ,m} , (17)

and p̂k = (p(k)
1 , p(k)

2 , . . . , p(k)
m−1)∈R

m−1
++ , q̂k = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m−1)∈R
m−1
++ , d̂ = (d1,d2,

. . . ,dm−1) ∈ R
m−1
+ .

Proof. It follows from Jensen’s inequality that

f

(
N

∑
k=1

tk
q(k)

m

p(k)
m

)
�

N

∑
k=1

tk f

(
q(k)

m

p(k)
m

)
. (18)

It is easily seen from Lemma 1, part (i), and from (15) that

qk

pk
=

q
p

Sk for k ∈ {1, . . . ,N} . (19)

On account of Lemma 1, part (ii), and (15), the matrix Sk is column stochastic.
Applying (15)–(16) leads to

m

∑
i=1

q(k)
i

p(k)
i

=
n

∑
j=1

λ (k)
j

q j

p j
for k ∈ {1, . . . ,N} . (20)

In fact, because of the equalities λ (k)
j =

m
∑
i=1

s(k)ji =
m
∑
i=1

r(k)
ji

p j

p
(k)
i

for j ∈ {1, . . . ,n} , qk =

qRk and q(k)
i =

n
∑
j=1

r(k)
ji q j for i ∈ {1, . . . ,m} , we can write

n

∑
j=1

λ (k)
j

q j

p j
=

n

∑
j=1

(
m

∑
i=1

r(k)
ji

p j

p(k)
i

)
q j

p j
=

m

∑
i=1

n

∑
j=1

r(k)
ji

q j

p(k)
i

=
m

∑
i=1

1

p(k)
i

n

∑
j=1

r(k)
ji q j =

m

∑
i=1

q(k)
i

p(k)
i

.

Therefore (20) yields

0 <
q(k)

m

p(k)
m

=
n

∑
j=1

λ (k)
j

q j

p j
−

m−1

∑
i=1

q(k)
i

p(k)
i

for k ∈ {1, . . . ,N} , (21)

whence

f

(
N

∑
k=1

tk
q(k)

m

p(k)
m

)
= f

(
N

∑
k=1

tk
n

∑
j=1

λ (k)
j

q j

p j
−

N

∑
k=1

tk
m−1

∑
i=1

q(k)
i

p(k)
i

)
. (22)

By (18), (21) and (22) we get

f

(
N

∑
k=1

tk
n

∑
j=1

λ (k)
j

q j

p j
−

N

∑
k=1

tk
m−1

∑
i=1

q(k)
i

p(k)
i

)
�

N

∑
k=1

tk f

(
n

∑
j=1

λ (k)
j

q j

p j
−

m−1

∑
i=1

q(k)
i

p(k)
i

)
. (23)
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On the other hand, by virtue of Theorem B, for any k ∈ {1, . . . ,N} , we have

Cf (pk,qk;d) � Cf (p,q;ck) , (24)

that is,
m

∑
i=1

dip
(k)
i f

(
q(k)

i

p(k)
i

)
�

n

∑
j=1

c(k)
j p j f

(
q j

p j

)
. (25)

Hence, for any k ∈ {1, . . . ,N} ,

f

(
q(k)

m

p(k)
m

)
� 1

dmp(k)
m

(
n

∑
j=1

c(k)
j p j f

(
q j

p j

)
−

m−1

∑
i=1

dip
(k)
i f

(
q(k)

i

p(k)
i

))
, (26)

and further,

N

∑
k=1

tk f

(
q(k)

m

p(k)
m

)
�

N

∑
k=1

tk

dmp(k)
m

(
n

∑
j=1

c(k)
j p j f

(
q j

p j

)
−

m−1

∑
i=1

dip
(k)
i f

(
q(k)

i

p(k)
i

))
. (27)

By combining (21) and (27) we obtain

N

∑
k=1

tk f

(
n

∑
j=1

λ (k)
j

q j

p j
−

m−1

∑
i=1

q(k)
i

p(k)
i

)
(28)

�
N

∑
k=1

tk

dmp(k)
m

(
n

∑
j=1

c(k)
j p j f

(
q j

p j

)
−

m−1

∑
i=1

dip
(k)
i f

(
q(k)

i

p(k)
i

))
.

Simultaneously, by (9) we have

Cf (p,q;ck) =
n

∑
j=1

c(k)
j p j f

(
q j

p j

)
and Cf

(
p̂k, q̂k; d̂

)
=

m−1

∑
i=1

dip
(k)
i f

(
q(k)

i

p(k)
i

)
.

Now, we deduce from (23) and (28) that

f

(
N

∑
k=1

tk
n

∑
j=1

λ (k)
j

q j

p j
−

N

∑
k=1

tk
m−1

∑
i=1

q(k)
i

p(k)
i

)
�

N

∑
k=1

tk

dmp(k)
m

(
Cf (p,q;ck)−Cf

(
p̂k, q̂k; d̂

))
,

(29)
completing the proof. �

REMARK 1. It is easy to verify by (21) that in the case N = 1, k = 1, tk = t1 = 1,
inequality (16) takes the form

Cf (p1,q1;d) � Cf (p,q;c1) . (30)

In other words, inequality (16) includes (30), as a special case.

We now investigate some special cases of Theorem 1.



ON A MERCER LIKE INEQUALITY 109

COROLLARY 1. Let f : R++ →R be a convex function on R++ . Let q = (q1,q2,

. . . ,qn) ∈ R
n
++ , d = (d1,d2, . . . ,dm) ∈ R

m
+ , dm > 0 , qk = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m ) ∈ R
m
++ ,

ck = (c(k)
1 ,c(k)

2 , . . . ,c(k)
n ) ∈ R

n
+ , k ∈ {1, . . . ,N} .

Let Rk =
(
r(k)

ji

)
, k ∈ {1, . . . ,N} , be an n×m column stochastic matrix such that

qk = qRk and ck = dRT
k for k ∈ {1, . . . ,N} . (31)

Then, for any tk � 0 , k ∈ {1, . . . ,N} , with
N
∑

k=1
tk = 1 , the following inequality

holds:

f

(
N

∑
k=1

tk

(
n

∑
j=1

λ (k)
j q j −

m−1

∑
i=1

q(k)
i

))
�

N

∑
k=1

tk
dm

(
n

∑
j=1

c(k)
j f (q j)−

m−1

∑
i=1

di f
(
q(k)

i

))
, (32)

where λ (k)
j is the j th row sum of the matrix Rk .

Proof. We consider the vectors p = (1,1, . . . ,1)∈R
n and pk = (1,1, . . . ,1)∈R

m .
Since Rk is column stochastic, it follows that

pk = pRk for k ∈ {1, . . . ,N} .

We introduce the matrix Sk =
(
s(k)ji

)
with s(k)ji = r(k)

ji
p j

p
(k)
i

for j ∈ {1, . . . ,n} and i∈
{1, . . . ,m} . Therefore we have Sk = Rk and Sk is column stochastic for k∈ {1, . . . ,N} .

So, we are allowed to apply Theorem 1. By inequality (16) we obtain

f

(
N

∑
k=1

tk

(
n

∑
j=1

λ (k)
j

q j

p j
−

m−1

∑
i=1

q(k)
i

p(k)
i

))

�
N

∑
k=1

tk

dmp(k)
m

(
n

∑
j=1

c(k)
j p j f

(
q j

p j

)
−

m−1

∑
i=1

dip
(k)
i f

(
q(k)

i

p(k)
i

))
. (33)

Since p j = 1 and p(k)
i = 1 for j ∈ {1, . . . ,n} and i ∈ {1, . . .m} , (33) reduces to

inequality (32), as claimed. �

COROLLARY 2. Let f : R++ →R be a convex function on R++ . Let q = (q1,q2,

. . . ,qn) ∈ R
n
++ , qk = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m ) ∈ R
m
++ , k ∈ {1, . . . ,N} .

Let Rk =
(
r(k)

ji

)
, k ∈ {1, . . . ,N} , be an n×m column stochastic matrix such that

qk = qRk for k ∈ {1, . . . ,N} . (34)

Then, for any tk � 0 , k ∈ {1, . . . ,N} , with
N
∑

k=1
tk = 1 , the following inequality

holds:

f

(
N

∑
k=1

tk

(
n

∑
j=1

λ (k)
j q j −

m−1

∑
i=1

q(k)
i

))
�

N

∑
k=1

tk

(
n

∑
j=1

λ (k)
j f (q j)−

m−1

∑
i=1

f
(
q(k)

i

))
, (35)
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where λ (k)
j is the j th row sum of the matrix Rk .

Proof. We take d = (1,1, . . . ,1) ∈ R
m and ck = dRT

k for k ∈ {1, . . . ,N} . Hence

ck = λk , where λk = (λ (k)
1 ,λ (k)

2 , . . . ,λ (k)
n ) is the vector of row sums of the matrix Rk .

So, we have c(k)
j = λ (k)

j for j ∈ {1, . . . ,n} . Thus all assumptions of Corollary 1 are
fulfilled.

In this situation inequality (32) takes the form (35), as wanted. �

REMARK 2. Similar results to (35) can be found in [14].

In the rest of this section we assume that m = n .

COROLLARY 3. Let f : R++ →R be a convex function on R++ . Let q = (q1,q2,

. . . ,qm) ∈ R
m
++ , qk = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m ) ∈ R
m
++ , k ∈ {1, . . . ,N} .

Assume that
qk ≺ q for k ∈ {1, . . . ,N} . (36)

Then, for any tk � 0 , k ∈ {1, . . . ,N} , with
N
∑

k=1
tk = 1 , the following inequality

holds:

f

(
m

∑
j=1

q j −
N

∑
k=1

tk
m−1

∑
i=1

q(k)
i

)
�

m

∑
j=1

f (q j)−
N

∑
k=1

tk
m−1

∑
i=1

f
(
q(k)

i

)
. (37)

Proof. Due to (36) there exists an m×m doubly stochastic matrix Rk such that

qk = qRk for k ∈ {1, . . . ,N} . (38)

It follows from the double stochasticity of the matrix Rk that

λk = (1,1, . . . ,1) ∈ R
m for k ∈ {1, . . . ,N} ,

i.e., λ (k)
j = 1 is the j th row sum of the matrix Rk for j ∈ {1, . . . ,m} .

For this reason inequality (35) becomes the following

f

(
N

∑
k=1

tk

(
m

∑
j=1

q j −
m−1

∑
i=1

q(k)
i

))
�

N

∑
k=1

tk

(
m

∑
j=1

f (q j)−
m−1

∑
i=1

f
(
q(k)

i

))
, (39)

which easily implies (37). �
By setting m = 2, we conclude from (37) that

f

(
q1 +q2−

N

∑
k=1

tkq
(k)
1

)
� f (q1)+ f (q2)−

N

∑
k=1

tk f (q(k)
1 ).

This is the classical Mercer inequality (see Theorem A).
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REMARK 3. Corollary 3 is equivalent to Theorem 2.1 in [11]. Because Corol-
lary 3 follows from Corollary 2, the latter extends this theorem from doubly stochastic
matrices in [11] to column stochastic matrices in the present paper.

Let p = (p1, p2, . . . , pm)∈R
m
++ be a given m-tuple. Following [9, Definition B.1.,

p. 585], we say that an m×m matrix R = (r ji) is p-stochastic, if

(i) r ji � 0 for j, i ∈ {1, . . . ,m} ,

(ii) p = pR ,

(iii) e = eRT , where e = (1,1, . . . ,1) ∈ R
m .

We say that an m-tuple q̃ ∈ R
m is p-majorized by an m-tuple q ∈ R

m , written as
q̃ ≺p q , if q̃ = qR for some p-stochastic matrix R (see [9, Definition B.2., p. 585]).

In the special case when p = e , the p-stochastic matrices are exactly doubly
stochastic matrices, and, in consequence, the relation of e-majorization ≺e becomes
the standard majorization ≺ on R

m [9].
It is interesting that the relation q̃≺p q holds if and only if the following inequality

m

∑
i=1

piψ
(

q̃i

pi

)
�

m

∑
j=1

p jψ
(

q j

p j

)
(40)

is satisfied for all real convex (continuous) functions ψ on R+ , where q = (q1,q2,
. . . ,qm) ∈ R

m
++ and q̃ = (q̃1, q̃2, . . . , q̃m) ∈ R

m
++ (see [15, Proposition 4.2] and [9,

Proposition B.4., pp. 586–587]).
With the aid of the above conditions (i), (ii) and (iii), observe that the statement

(40) is of the form (11) (see Theorem B for details).
We finish this section by providing an application of Theorem 1 for p-majorization.

COROLLARY 4. Let f : R++ →R be a convex function on R++ . Let p = (p1, p2,

. . . , pm) ∈ R
m
++ be fixed. Let q = (q1,q2, . . . ,qm) ∈ R

m
++ , qk = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m ) ∈
R

m
++ for k ∈ {1, . . . ,N} .

Assume that
qk ≺p q for k ∈ {1, . . . ,N} . (41)

Then, for any tk � 0 , k ∈ {1, . . . ,N} , with
N
∑

k=1
tk = 1 , the following inequality

holds

f

(
N

∑
k=1

tk
m

∑
j=1

λ (k)
j

q j

p j
−

N

∑
k=1

tk
m−1

∑
i=1

q(k)
i

pi

)
� 1

pm
Cf (p,q)−

N

∑
k=1

tk
pm

Cf (p̂, q̂k), (42)

where λ (k)
j is the j th row sum of the matrix Sk =

(
s(k)ji

)
with s(k)ji = r(k)

ji
p j
pi

for i, j ∈
{1, . . . ,m} , and p̂ = (p1, p2, . . . , pm−1) ∈ R

m−1
++ and q̂k = (q(k)

1 ,q(k)
2 , . . . ,q(k)

m−1) ∈ R
m−1
++

for k ∈ {1, . . . ,N} .
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Proof. We deduce from (41) that there exists a p-stochastic matrix Rk such that

qk = qRk , p = pRk and e = eRT
k for k ∈ {1, . . . ,N} . (43)

For k ∈ {1, . . . ,N} with m = n , we introduce pk = p , ck = d = e = (1,1, . . . ,1) ∈
R

m , and pk = (p(k)
1 , p(k)

2 , . . . , p(k)
m ) ∈ R

m
++ , d = (d1,d2, . . . ,dm) ∈ R

m
+ , ck = (c(k)

1 ,c(k)
2 ,

. . . ,c(k)
m )∈R

m
+ . Hence, p(k)

i = pi for i∈{1, . . . ,m} , and c(k)
j = d j = 1 for j ∈{1, . . . ,m} .

From this we get p̂k = (p(k)
1 , p(k)

2 , . . . , p(k)
m−1) ∈ R

m−1
++ , d̂ = (d1,d2, . . . ,dm−1) ∈

R
m−1
+ , d̂ = ê = (1,1, . . . ,1) ∈ R

m−1 . Moreover, Cf (p,q;ck) and Cf (p̂k, q̂k; d̂) become
Cf (p,q) and Cf (p̂, q̂k) , respectively. Furthermore, (43) ensures that

qk = qRk , pk = pRk and ck = dRT
k for k ∈ {1, . . . ,N} .

So, we can utilize inequality (16) in Theorem 1 to obtain (42). This completes the
proof. �

REMARK 4. The results of the present paper can be demonstrated for convex
functions on R+ = [0,∞) and for q ∈ R

n
+ . However, this extended approach does not

include the standard divergences (entropies) generated by the minus logarithm function,
etc., (see (5)–(8)).
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