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ON CONSTANTS IN COCONVEX

APPROXIMATION OF PERIODIC FUNCTIONS

GERMAN DZYUBENKO

Abstract. Let 2π -periodic function f ∈ C change its convexity finitely even many times, in
the period. We are interested in estimating the degree of approximation of f by trigonometric
polynomials which are coconvex with it, namely, polynomials that change their convexity exactly
at the points where f does. We list established Jackson-type estimates of such approximation
where the constants involved depend on the location of the points of change of convexity and
show that this dependence is essential by constructing a counterexample.
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