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Abstract. The main focus of the present note is to establish new integral representation for the
Hurwitz-Lerch zeta and the multi-parameter Hurwitz-Lerch zeta functions. In particular, new
integral expression of the polylogarithm function and the Fox-Wright function are derived. In
addition, closed integral form expression of the moment generating function of a zeta distribution
is established. As application, we derive the complete monotonicity properties of two classes of
function related to the Hurwitz-Lerch zeta and the polylogarithm function. Moreover, some
inequalities involving these two functions are proved.

1. Introduction

The Hurwitz-Lerch zeta function Φ(z,s,a) is defined by [17, p. 121]

Φ(z,s,a) =
∞

∑
n=0

zn

(n+a)s (1)

(
a ∈ C\Z

−
0 ;s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1

)
,

where C is the set of complex numbers, R is the set of real numbers, R+ is the set of
positive real numbers, Z is the set of integers and

Z
−
0 := {0,−1,−2,−3, . . .} .

The Hurwitz-Lerch zeta function contains some special functions such as the Riemann
zeta function ζ (s), the Hurwitz zeta function ζ (s,a), the polylogarithmic function (or
de Jonquière’s function) Lis(z) , the Lipschitz-Lerch zeta function L(ξ ,a,s) and the
Lerch zeta function ls(ξ ) defined by (see for example [2, p. 27–31])

ζ (s) :=
∞

∑
k=1

1
ks , (ℜ(s) > 1), (2)

ζ (s,a) :=
∞

∑
k=0

1
(k+a)s ,

(
ℜ(s) > 1, a ∈ C\Z

−
0

)
, (3)
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Lis(z) :=
∞

∑
n=1

zn

ns , (ℜ(s) > 0; z ∈ C when |z| < 1) (4)

L(ξ ,a,s) =
∞

∑
n=0

e2inπξ

(n+a)s , (ℜ(s) > 1; ξ ∈ R; 0 < a � 1) . (5)

and

ls(ξ ) =
∞

∑
n=0

e2inπξ

(n+1)s , (ℜ(s) > 1; ξ ∈ R) . (6)

It is well known that the Hurwitz-Lerch zeta function (1) possesses the following
integral representation

Φ(z,s,a) =
1

Γ(s)

∫ ∞

0

ts−1e−at

1− ze−t dt (7)

(ℜ(a) > 0, ℜ(s) > 0, when |z| < 1; ℜ(s) > 1 when |z| = 1) .

Recently, a more general family of Hurwitz-Lerch zeta functions was investigated
by Goyal and Laddha [4, p. 100, Eq. (1.5)]

Φ∗
τ(z,s,a) :=

∞

∑
n=0

(τ)n

n!
zn

(n+a)s , (8)

(
τ ∈ C, a ∈ C\Z

−
0 ; s ∈ C when |z| < 1; ℜ(s− τ) > 1 when |z| = 1

)
.

Here, and for the remainder of this paper, (τ)κ denotes the Pochhammer symbol de-
fined, in terms of the gamma function, that is

(τ)κ :=
Γ(τ + κ)

Γ(τ)
=

⎧⎨
⎩

1 (κ = 0,τ ∈ C\ {0})

τ(τ +1) . . .(τ +n−1) (κ = n ∈ N, τ ∈ C),

being understood conventionally that (0)0 := 1 and assumed tacitly that the above
Gamma quotient exists.

Garg et al. [5, p. 313, Eq. (1.7)], considered a further generalization of the
Hurwitz-Lerch zeta functions Φ(z,s,a) and Φ∗

τ(z,s,a) defined in the following form

Φλ ,μ,ν(z,s,a) :=
∞

∑
n=0

(λ )n(μ)n

n!(ν)n

zn

(n+a)s (9)

(
λ ,μ ∈ C;a,ν ∈ C\Z

−
0 ,s ∈ C when |z| < 1;ℜ(s+ ν −λ − μ) > 1 when |z| = 1

)
.

Various integral representations and two-sided bounding inequalities for Φλ ,μ,ν(z,s,a)
can be found in the works by Garg et al. [5] and Jankov et al. [6], respectively.

An extension of the above-defined function was investigated by Srivastava et al.
[16, p. 491, Eq. (1. 20)] as

Φρ ,σ ,κ
λ ,μ,ν (z,s,a) :=

∞

∑
n=0

(λ )ρn(μ)σn

n!(ν)κn

zn

(n+a)s (10)
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λ ,μ ∈ C;a,ν ∈ C\Z

−
0 ;ρ ,σ ,κ ∈ R

+,κ −ρ −σ > −1 when s,z ∈ C;

κ −ρ −σ = −1 and s ∈ C when |z| < δ0 := κκρ−ρ σ−σ ;

κ −ρ −σ = −1 and ℜ(s+ ν −λ − μ) > 1 when |z| = δ0

)
.

In 2011, Srivastava et al. [16, p. 503, Eq. (6.2)] investigate a new unification
of the extended Hurwitz-Lerch zeta function Φρ ,σ ,κ

λ ,μ,ν (z,s,a), so-called multi-parameter
Hurwitz-Lerch zeta function:

Φ(λ j ,ρ j ;p)
(μ j ,σ j ;q)(z,s,a) = Φ(ρ1,...,ρp;σ1,...,σq)

λ1,...,λp;μ1,...,μq
(z,s,a)

=

(
∏q

j=1 Γ(μ j)

∏p
j=1 Γ(λ j)

)
∞

∑
k=0

∏p
j=1 Γ(λ j + kρ j)

∏q
j=1 Γ(μ j + kσ j)

zk

k!(k+a)s

(11)

(
p,q ∈ N0;λ j ∈ C ( j = 1, . . . , p);a,μ j ∈ C\Z

−
0 ( j = 1, . . . ,q);

ρ j,σk ∈ R
+( j = 1, . . . , p;k = 1, . . . ,q);

Δ1 > −1 when s,z ∈ C;

Δ1 = −1 and s ∈ C when |z| < ∇∗;

Δ1 = −1 and ℜ(Ξ) >
1
2

when |z| < ∇∗
)
,

where

∇∗ =

(
p

∏
j=1

ρ−ρ j
j

)
.

(
q

∏
j=1

σσ j
j

)
,

and

Δ1 =
q

∑
j=1

σ j −
p

∑
j=1

ρ j,

and

Ξ = s+
q

∑
j=1

μ j −
p

∑
j=1

λ j +
p−q

2
.

In this sequel, definite integral expressions are derived for the Hurwitz-Lerch zeta
function (or the renormalization constant of the generalized Hurwitz zeta distrubition
(see, e. g., for [10])) and for a class of function related to the multi-parameter Hurwitz-
Lerch zeta function. Its important corollaries, closed-form definite integral expression
for the the polylogarithm function, the moment generating function of zeta distribution
and the Fox-Wright functions are established.

In this note, the main tool we refer to is the Cahen formula for the Laplace integral
form of Dirichlet series [1, 11]. Accordingly, the Dirichlet series

Da(s) =
∞

∑
k=1

ake
−sbk , ℜ(s) > 0,
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having positive monotone increasing divergent to infinity sequence (bk)k�1 , possesses
a Laplace representation [1, p. 97]

Da(s) = s
∫ ∞

0
e−sx ∑

k:bk�x

ak dx = s
∫ ∞

0
e−sx

[b−1(x)]

∑
k=1

ak dx, (12)

where the restriction to the set of positive integers of the function b : R+ −→R+ forms
the coefficient sequence b|N = (bk) associated with Da(s), b−1 denotes the (unique)
inverse of the function b, and [x] denotes the integer part of a real x, also see [14, 15].
Recently, Pogány [12, 13], by using the Cahen formula (12), has established a closed-
form definite integral expressions for the COM-Poisson constant and of Le Roy-type
hypergeometric function.

For the present study, we consider the following definition:

DEFINITION 1. A real valued function f , defined on an interval I, is called com-
pletely monotone on I, if f has derivatives of all orders and satisfies

(−1)n f (n)(x) � 0, n ∈ N0, and x ∈ I. (13)

The celebrated Bernstein Characterization Theorem gives a necessary and suffi-
cient condition that the function f should be completely monotonic

f (x) =
∫ ∞

0
e−xtdμ(t), x > 0, (14)

where μ(t) is non-decreasing and the integral converges.

DEFINITION 2. [10, Definition 2.2] (Generalized Hurwitz zeta distribution) The
generalized Hurwitz zeta random variable Xs is defined by

P(Xs = −s log(k+a)) =
zk(k+a)−s

Φ(z,s,a)
, k ∈ N0, s > 0,

where Φ(z,s,a) stands for the renormalization constant, and we call the distribution of
Xs a generalized Hurwitz zeta distribution with parameter s.

DEFINITION 3. The moment generating function of a zeta distribution is defined
by

M(t;s) = E(etX ) =
Lis(et)
ζ (s)

,t < 0, (15)

where the zeta distribution is defined for positive integers k � 1, and its probability
mass function is given by

P(Xs = k) =
k−s

ζ (s)
,

when s > 1 is the parameter.
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2. Integral form of the Hurwitz-Lerch zeta function

Here, using Cahen’s formula (12), a single definite integral expression is estab-
lished for the Hurwitz-Lerch zeta function Φ(z,s,a) defined in (1).

THEOREM 1. The following integral representation

Φ(z,s,a) =
1
as +

z
1− z

+
sz

z−1

∫ ∞

0
e−sxz[e

x−a]dx, (16)

holds true for all 0 < z < 1 and a > 0, while [x] denotes the integer part of a real x.
Furthermore the function

s �→ Ψ(z,s,a) :=
(z−1)Φ(z,s,a)

sz
+

1− z
szas +

1
s
,

is completely monotonic and log-convex on (0,∞) for all 0 < z < 1 and a > 0.

Proof. Rewriting the Hurwitz–Lerch zeta function into

Φ(z,s,a) =
∞

∑
k=0

zke−s log(k+a). (17)

It turns out that it a classical Dirichlet series. Having in mind that b(x) ≡ log(x+a) is
increasing and invertible on (0,∞) for all a > 0. Keeping (12) and (17) in mind, we get

Φ(z,s,a) =
1
as +

∞

∑
k=1

zke−s log(k+a)

=
1
as + s

∫ ∞

0
e−sx ∑

k:log(k+a)�x

zkdx

=
1
as + s

∫ ∞

0
e−sx

k(x)

∑
k=1

zkdx

=
1
as +

sz
1− z

∫ ∞

0
e−sx(1− zk(x))dx

=
1
as +

z
1− z

+
sz

z−1

∫ ∞

0
e−sxzk(x)dx,

(18)

where
k(x) = [ex −a].

Moreover, by virtue of the integral representation (16) we conclude

Ψ(z,s,a) =
∫ ∞

0
e−sxz[e

x−a]dx. (19)

Being simultaneously the spectral function z[e
x−a] positive, all prerequisites of the

Bernstein Characterization Theorem for the complete monotone functions are fulfilled,
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that is, the function s �→ Ψ(z,s,a) is completely monotone in the above mentioned
range of the parameters involved. Moreover, since every completely monotonic func-
tion is log-convex, see [18, p. 167], we deduce that the function s �→ Ψ(z,s,a) is
log-convex. This completes the proof of Theorem 1.

REMARK 1. Substituting t = ex −a in (16) and (19) we have

Φ(z,s,a) =
1
as +

z
1− z

+
sz

z−1

∫ ∞

1−a

z[t]

(t +a)s+1 dt, (20)

Ψ(z,s,a) =
∫ ∞

1−a

z[t]

(t +a)s+1 dt. (21)

COROLLARY 1. The following inequalities hold true:
a. For s > 0 and 0 < z,a < 1, we have

Φ(z,s,a) � 1
as +

z
1− z

. (22)

b. For s > 0 and 0 < z,a < 1, we have

Ψ(z,s,a) � za −1
za log(z)

+
−Ei(log(z))

za+1 , (23)

where Ei(x) is the exponential integral function defined by

Ei(x) = −
∫ ∞

−x

e−t

t
dt.

c. For s > 0 and 0 < z,a < 1, we have

Ψ(z,s,a)Ψ(z,s+2,a) � Ψ2(z,s+1,a). (24)

d. Let s, t > 0 0 < z,a < 1, we have

Ψ(z,s,a)Ψ(z,t,a) �
(

za−1
za log(z)

+
−Ei(log(z)

za+1

)
Ψ(z,s+ t,a). (25)

Proof. For getting the inequality (22), just observe that the function Ψ(z,s,a) is
non-negative for all s,a > 0 and 0 < z < 1 and consequently (22) holds true. As to the
inequality (23), we apply the integral representation (21) we have

Ψ(z,s,a) �
∫ ∞

1−a

zt

z(t +a)s+1 dt

=
1
z

[∫ 1

1−a

zt

(t +a)s+1 dt +
∫ ∞

1

zt

(t +a)s+1 dt

]
=:

1
z

(I1 + I2) .
(26)
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Here

I1 =
∫ 1

1−a

zt

(t +a)s+1 dt �
∫ 1

1−a
ztdt =

za −1
za−1 log(z)

. (27)

In addition, we have

I2 =
∫ ∞

1

zt

(t +a)s+1 dt �
∫ ∞

1

zt

t +a
dt. (28)

In view of the following formula [3, Eq. (6), p. 134]

∫ ∞

b

e−pt

t +a
dt = −eapEi(−(a+b)p), (ℜ(p) > 0, |arg(a+b)|< π), (29)

we find that

I2 � −Ei(log(z))
za . (30)

Now applying (27) and (30) to (26) we get the inequality (23). Now, focus to the
Turán type inequality (24). Since s �→ Ψ(z,s,a) is log-convex on (0,∞) for a > 0 and
0 < z < 1, it follows that for all s1,s2 > 0,t ∈ [0,1] we have

Ψ(z, ts1 +(1− t)s2,a) � (Ψ(z,s1,a))t (Ψ(z,s2,a))1−t .

Choosing s1 = s,s2 = s + 2 and t = 1
2 the above inequality reduces to the Turán in-

equalty (24). Next, we derive the inequality (25). We set

fa(z) =
za −1

za log(z)
+

−Ei(log(z))
za+1 .

By means of Theorem 1 and (23), it is clear that the function s �→ Ψ(z,s,a)/ fa(z)
maps (0,∞) into (0,1) and it is completely monotonic on (0,∞). On the other hand,
according to Kimberling [7] if a function f , defined on (0,∞), is continuous and com-
pletely monotonic and maps (0,∞) into (0,1), then log f is super-additive, that is for
all x,y > 0 we have

f (x) f (y) � f (x+ y).

Therefore we conclude the asserted inequality (25).
On setting a = 1 in (16) (or in (20)), we get the following new integral representation
for the polylogarithm function as follows:

COROLLARY 2. The polylogarithm function Lis(z) defined in (4) possesses the
following integral representation

Lis(z) = z+
z2

1− z
+

sz
z−1

∫ ∞

0
e−sxz[e

x]dx

= z+
z2

1− z
+

sz2

z−1

∫ ∞

0

z[t]

(t +1)s+1 dt,

(31)
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where s > 0 and 0 < z < 1. Furthermore, the function

s �→ Ψ1(z,s) :=
(z−1)Lis(z)

sz2 +
1− z
sz

+
1
s
,

is completely monotonic on (0,∞) for all 0 < z < 1.

REMARK 2. Since the function Ψ1(z,s) is non-negative for all s > 0 and 0 < z <
1, we deduce that the following inequality holds true:

Lis(z) � z+
z2

1− z
. (32)

On letting z = e−t ,t > 0 in (31), using (15) we get the following closed integral
form expression of the moment generating function of a zeta distribution, as follows:

COROLLARY 3. The following integral formulas

M(t;s) =
e−t

ζ (s)
+

e−2t

(1− e−t)ζ (s)
+

se−t

(e−t −1)ζ (s)

∫ ∞

0
e−sxe−t[ex]dx

=
e−t

ζ (s)
+

e−2t

(1− e−t)ζ (s)
+

se−2t

(e−t −1)ζ (s)

∫ ∞

0

e−t[ξ ]

(ξ +1)s+1 dξ ,

hold true for all t > 0.

3. The integral expression of the multi-parameter Hurwitz-Lerch zeta function

Our main result in this section is asserted by the following theorem.

THEOREM 2. Let

(λi,ρi) = (λ ,ρ),(μi,σi) = (μ ,σ) for 1 � i � p, and (λp+1,ρp+1) = (2,1).

If λ < μ and ρ � σ , then the following integral representation holds true

Φ̃(λ j ,ρ j ;p+1)
(μ j ,σ j ;p) (z) := Φ(λ j ,ρ j ;p+1)

(μ j ,σ j ;p) (z,1,1)

= 1+
zΓp(μ)

(1− z)Γp(λ )
+

pzΓp(μ)
(z−1)Γp(λ )

∫ ∞

0
e−pxz

[
(Δ(ρ,σ)

λ ,μ )−1(ex)
]
dx,

(33)

where z ∈ (0,1) and (Δ(ρ ,σ)
λ ,μ )−1 stands for the inverse of the function

Δ(ρ ,σ)
λ ,μ (x) =

Γ(μ + σx)
Γ(λ + ρx)

.
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Proof. It turns out that

Φ(λ j ,ρ j ;p+1)
(μ j ,σ j ;p) (z,1,1) = Φ(1,ρ ,...,ρ ;σ1,...,σq)

2,λ ,...,λ ;μ,...,μ (z,1,1) =
Γp(μ)
Γp(λ )

∞

∑
k=0

e
−p log

(
Γ(μ+σx)
Γ(λ+ρx)

)
zk, (34)

is a classical Dirichlet series. Keeping in mind that b(x) = logΓ(μ + σx)− logΓ(λ +
ρx) is strictly increasing on (0,∞) for all λ < μ and ρ � σ and consequently b(x) is

invertible. Indeed, using the fact that the digamma function x �→ ψ(x) = Γ′(x)
Γ(x) is strictly

increases on (0,∞), we get

b′(x) = σψ(μ + σx)−ρψ(λ + ρx)
> (σ −ρ)ψ(λ + ρx)
� 0.

This implies that the function b(x) is strictly increasing on (0,∞) for each λ < μ and
ρ � σ . Now, by combining (34) and (12) we thus get

Φ(1,ρ ,...,ρ ;σ1,...,σq)
2,λ ,...,λ ;μ,...,μ (z,1,1) = 1+

Γp(μ)
Γp(λ )

∞

∑
k=1

e
−p log

(
Γ(μ+σx)
Γ(λ+ρx)

)
zk

= 1+
pΓp(μ)
Γp(λ )

∫ ∞

0
e−px ∑

k:log(Γ(μ+σk)−logΓ(λ+ρk))�x

zkdx

= 1+
pΓp(μ)
Γp(λ )

∫ ∞

0
e−px

j(x)

∑
k=1

zkdx

= 1+
pzΓp(μ)

(1− z)Γp(λ )

∫ ∞

0
e−px(1− z j(x))dx

= 1+
zΓp(μ)

(1− z)Γp(λ )
+

pzΓp(μ)
(z−1)Γp(λ )

∫ ∞

0
e−pxz j(x)dx,

where
j(x) =

[
(Δ(ρ ,σ)

λ ,μ )−1(ex)
]
.

The proof of Theorem 2 is complete.
On taking p = 1 in (33), from (10) we compute the following result as follows:

COROLLARY 4. If μ < ν and σ � κ then the following relation

Φ1,σ ,κ
2,μ,ν (z,1,1) = 1+

zΓ(ν)
(1− z)Γ(μ)

+
zΓ(ν)

(z−1)Γ(μ)

∫ ∞

0
e−xz

[
(Δ(σ ,κ)

μ ,ν )−1(ex)
]
dx, (35)

holds true for all 0 < z < 1.

On setting σ = κ = 1 in (35), we get the following result as follows:

COROLLARY 5. If μ < ν , then the function Φ2,μ,ν(z,1,1) defined in (9), admits
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the following integral formula:

Φ2,μ,ν(z,1,1) = 1+
zΓ(ν)

(1− z)Γ(μ)
+

zΓ(ν)
(z−1)Γ(μ)

∫ ∞

0
e−xz

[
(Δ1,1)

μ ,ν )−1(ex)
]
dx,

where z ∈ (0,1).

The Fox-Wright function pΨq[.] with p numerator parameters a1, . . . ,ap and q
denominator parameters b1, . . . ,bq, is defined by [19, p. 4, Eq. (2.4)]

pΨq

[ (a1,A1), · · · ,(ap,Ap)
(b1,B1), · · · ,(bq,Bq)

∣∣∣z]= pΨq

[ (ap,Ap)
(bq,Bq)

∣∣z]

= ∑
k�0

p
∏
l=1

Γ(al + kAl)

q

∏
l=1

Γ(bl + kBl)

zk

k!
,

(36)

(
ai,b j ∈C, and Ai,Bj ∈ R+ (i = 1, . . . , p, j = 1, . . . ,q)

)
.

The convergence conditions and convergence radius of the series at the right-hand side
of (36) we get from the known asymptotic of the Euler Gamma-function. The defining
series in (36) converges in the whole complex z-plane when

Δ =
q

∑
j=1

Bj −
p

∑
i=1

Ai > −1.

If Δ =−1, then the series in (36) converges for |z|< ρ , and |z|= ρ under the condition
ℜ(μ) > 1

2 , where

ρ =

(
p

∏
i=1

A−Ai
i

)(
q

∏
j=1

B
Bj
j

)
, μ =

q

∑
j=1

b j −
p

∑
k=1

ak +
p−q

2
.

Setting in the definition (36)

A1 = . . . = Ap = 1 and B1 = . . . = Bq = 1,

we get the relatively more familiar generalized hypergeometric function pFq[.] given
by

pFq

[ap

bq

∣∣z]= ∑
k�0

p
∏
l=1

(al)k

q

∏
l=1

(bl)k

zk

k!

=
Γ(b1) · · ·Γ(bq)
Γ(a1) · · ·Γ(ap)

pΨq

[ (ap,1)
(bq,1)

∣∣z].
(37)
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Hence, by means of the definition (36) and (33) we deduce that the Fox-Wright
function p+1Ψp[z] possesses the following integral representation.

COROLLARY 6. Let 0 < b < a and 0 < A � B, then following integral formula

p+1Ψq

[ (1,1),(a,A)
(b,B)

∣∣z]=
Γp(a)
Γp(b)

+
z

1− z
+

pz
(z−1)

∫ ∞

0
e−pxz

[
(Δ(A,B)

a,b )−1(ex)
]
dx, (38)

holds true for all 0 < z < 1.

REMARK 3. For further some integral representation of the Fox-Wright function,
we refer [8, 9].

If we set A = B = 1 in (38), in view of (37), we get the following result.

COROLLARY 7. If 0 < a < b, then the following integral formula holds true:

p+1Fp

[ 1,a, · · · ,a
b, · · · ,b

∣∣z]= 1+
zΓp(b)

(1− z)Γp(a)
+

pzΓp(b)
(z−1)Γp(a)

×
∫ ∞

0
e−pxz

[
(Δ(1,1)

a,b )−1(ex)
]
dx,

(39)

where 0 < z < 1.
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Université de Kairouan

Kairouan, Tunisia
e-mail: k.mehrez@yahoo.fr; mehrezkhaled23@yahoo.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


