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A NOTE ON INTEGRAL REPRESENTATION OF SOME
GENERALIZED ZETA FUNCTIONS AND ITS CONSEQUENCES
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(Communicated by J. Pecari¢)

Abstract. The main focus of the present note is to establish new integral representation for the
Hurwitz-Lerch zeta and the multi-parameter Hurwitz-Lerch zeta functions. In particular, new
integral expression of the polylogarithm function and the Fox-Wright function are derived. In
addition, closed integral form expression of the moment generating function of a zeta distribution
is established. As application, we derive the complete monotonicity properties of two classes of
function related to the Hurwitz-Lerch zeta and the polylogarithm function. Moreover, some
inequalities involving these two functions are proved.

1. Introduction

The Hurwitz-Lerch zeta function ®(z,s,a) is defined by [17, p. 121]

n

- <
q)(Z,S,Cl)—n:ZOm (1)

(a€ C\Zy;s € Cwhen |z < 1; R(s) > 1 when |z| = 1),

where C is the set of complex numbers, R is the set of real numbers, R™ is the set of
positive real numbers, Z is the set of integers and

Zy :={0,—1,-2,-3,...}.

The Hurwitz-Lerch zeta function contains some special functions such as the Riemann
zeta function {(s), the Hurwitz zeta function {(s,a), the polylogarithmic function (or
de Jonquiere’s function) Lis(z), the Lipschitz-Lerch zeta function L(€,a,s) and the
Lerch zeta function /5(£) defined by (see for example [2, p. 27-31])

)= 3 350 (89> 1), @
=1
C(s,a) ::gm, (%(s)>1,a€(C\Za), 3)
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Lise) = 3. &, (%(s) > 0: 2 € C when|g| < 1) @
n=1
oo e2in7‘r§ R . .
L( 7a7s)_n70(n—|—a)" R(s)>1L EeR; 0<ax ). Q)
and -
o e N
ls(é>=n§0m, (R(s) > 1; E€R). (6)

It is well known that the Hurwitz-Lerch zeta function (1) possesses the following
integral representation

1 oo ts—le—at
d)(z,s,a) = m‘/o l—ize_tdt (7)
(R(a) >0, R(s) >0, when |z] < 1; R(s) >1when|z|=1).

Recently, a more general family of Hurwitz-Lerch zeta functions was investigated
by Goyal and Laddha [4, p. 100, Eq. (1.5)]

©0 n

“(z,8,a) Z o) (®)

(teC,aeC\Zy; seCwhen |z < L; C.K(s—‘t')>1when|z\=1).

Here, and for the remainder of this paper, (7). denotes the Pochhammer symbol de-
fined, in terms of the gamma function, that is
1 (k=0,T€C\{0})

(o= LR _
T(t+1)...(t+n—1) (k=neN, 1€C),
being understood conventionally that (0)y := 1 and assumed tacitly that the above
Gamma quotient exists.
Garg et al. [5, p. 313, Eq. (1.7)], considered a further generalization of the
Hurwitz-Lerch zeta functions ®(z,s,a) and ®%(z,s,a) defined in the following form

i (Au(l)n 2" 9)

() Z,8,a) =
7L7,u~,V( ) o n!(v)n (n+a)s

(A,u € Csa,veC\Zy,s € Cwhen |z < 1;R(s+v—A—p)>1when|z=1).

Various integral representations and two-sided bounding inequalities for @, , , (z,s,a)

can be found in the works by Garg et al. [5] and Jankov et al. [6], respectively.
An extension of the above-defined function was investigated by Srivastava et al.
[16, p. 491, Eq. (1. 20)] as

0,0,k L - (A)pn(”)o'n 7"
@y (2:5.a) .—Zb Ve ra) (10)
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(k,u €Cia,veC\Zy;p,0,keR"  k—p—0>—1whens,zeC;
Kk—p—0o=—lands € Cwhenlz| < & :=k"pPo %
K—p—oc=—land R(s+v—A—pu)>1when |z :5()).

In 2011, Srivastava et al. [16, p. 503, Eq. (6.2)] investigate a new unification

of the extended Hurwitz-Lerch zeta function (I)izc (z,8,a), so-called multi-parameter

Hurwitz-Lerch zeta function:

Ajspjs s sPp3 O 5eens
O (2 s.a) = @f PO (3 s )
11
_ (T Twy) inﬁzlr(ajJrkpj) & (11)
() ) & T T+ koy) Kk +a)

(PaeNod €C(j=1,..pkap €C\Z5 (j=1,....9);

pJaGkER+(J:1a7p’k:177q)’
Ay > —1 when 5,z € C;
A; =—1 and s € Cwhen |z] < V7,

1
A;=—1 and R(E) > 3 when |z| < V*),

where
J=1 j=1
and
q p
Ay = Z Oj— Z Pjs
j=1 j=1
and

q P
E=st D =22 %
=1 j=1

In this sequel, definite integral expressions are derived for the Hurwitz-Lerch zeta
function (or the renormalization constant of the generalized Hurwitz zeta distrubition
(see, e. g., for [10])) and for a class of function related to the multi-parameter Hurwitz-
Lerch zeta function. Its important corollaries, closed-form definite integral expression
for the the polylogarithm function, the moment generating function of zeta distribution
and the Fox-Wright functions are established.

In this note, the main tool we refer to is the Cahen formula for the Laplace integral
form of Dirichlet series [1, 1 1]. Accordingly, the Dirichlet series

Dals) =, are ™ R(s) > 0,
k=1
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having positive monotone increasing divergent to infinity sequence (by)>;, possesses
a Laplace representation [1, p. 97]

o oo b~ ()]
Da(s) = s/ e 2 apdx = s/ e 2 ay dx, (12)
0 kibp<x 0 k=1

where the restriction to the set of positive integers of the function b: R, — R, forms
the coefficient sequence b|y = (by) associated with Z,(s), b~! denotes the (unique)
inverse of the function b, and [x] denotes the integer part of a real x, also see [14, 15].
Recently, Pogany [12, 13], by using the Cahen formula (12), has established a closed-
form definite integral expressions for the COM-Poisson constant and of Le Roy-type
hypergeometric function.

For the present study, we consider the following definition:

DEFINITION 1. A real valued function f, defined on an interval I, is called com-
pletely monotone on [, if f has derivatives of all orders and satisfies

(=1)"f"(x) >0, n €Ny, andx €. (13)

The celebrated Bernstein Characterization Theorem gives a necessary and suffi-
cient condition that the function f should be completely monotonic

£ = [ e (), x>0, (14)
0
where ((¢) is non-decreasing and the integral converges.

DEFINITION 2. [10, Definition 2.2] (Generalized Hurwitz zeta distribution) The
generalized Hurwitz zeta random variable X; is defined by

Fk+a)™*

P(X; = —slog(k+a)) = D)

, k€ Ng, s>0,
where ®(z,s,a) stands for the renormalization constant, and we call the distribution of
X; a generalized Hurwitz zeta distribution with parameter s.

DEFINITION 3. The moment generating function of a zeta distribution is defined
by
Lis(e') .
E(s) '
where the zeta distribution is defined for positive integers k& > 1, and its probability
mass function is given by

M(t;s) = E(¢*) = <0, (15)

_ k*.&'

o

—
[

Z

when s > 1 is the parameter.
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2. Integral form of the Hurwitz-Lerch zeta function

Here, using Cahen’s formula (12), a single definite integral expression is estab-
lished for the Hurwitz-Lerch zeta function ®(z,s,a) defined in (1).

THEOREM 1. The following integral representation

1 z SZ [ e —a
d)(z,s,a)ZE—Fl—_Z-l-Z_l e 2 =g, (16)

holds true for all 0 < z <1 and a > 0, while [x] denotes the integer part of a real x.
Furthermore the function

(z—D®(zs,a) 1-z 1
s P(z,5,a) := - T s

)

is completely monotonic and log-convex on (0,00) forall 0 <z <1 and a > 0.

Proof. Rewriting the Hurwitz—Lerch zeta function into
Z s, a sz —slog( k+a (17)

It turns out that it a classical Dirichlet series. Having in mind that b(x) = log(x+a) is
increasing and invertible on (0, o) forall a > 0. Keeping (12) and (17) in mind, we get

1 & ]
q)(Z,S,Cl) - ; —+ 2 Zkef'\log(k‘ﬂl)

1 Sl k
— —S8X E d
at + s/() ¢ ca

k:log(k+a)<x
o k(x
S oY dan (18)
a 0 k=1

1 Sz i
= — —sx 1_ () d
as+l—z/0 ( &)
I S e N
ad 1—-z z—1J ’

oo

where
k(x) =[e"—a].

Moreover, by virtue of the integral representation (16) we conclude
Y(z,s,a) = / el —al gy (19)
0

Being simultaneously the spectral function z/¢ =4 positive, all prerequisites of the
Bernstein Characterization Theorem for the complete monotone functions are fulfilled,
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that is, the function s — ¥(z,s,a) is completely monotone in the above mentioned
range of the parameters involved. Moreover, since every completely monotonic func-
tion is log-convex, see [18, p. 167], we deduce that the function s — ¥(z,s,a) is
log-convex. This completes the proof of Theorem 1.

REMARK 1. Substituting t = ¢* — a in (16) and (19) we have

1 z sz [ b
() = — dt 20
(Z,S,Ll) a“‘+1—z+z—1 a (t—|—a)“‘+1 ) ( )

oo 1]
Z
\P(Z,S,a) = [,a Wdl (21)

COROLLARY 1. The following inequalities hold true:
a. For s >0 and 0 < z,a < 1, we have

1 b4
q)-aa g_ . 22
(z,8,a) as+l—z (22)

b. For s >0 and 0 < z,a < 1, we have

-1  —Ei(log(z))
b g <
(z5,4) 7%log(z) Faan

; (23)

where Ei(x) is the exponential integral function defined by

Ei(x) = _/m .
1
c. For s >0 and 0 < z,a < 1, we have
¥(z,5,a)¥(z,5+2,a) =¥ (z,s+ 1,a). (24)
d. Let s,t >0 0 < z,a <1, we have

#—1  —Ei(log(z)
7#log(z) 1

W(z.s.a)¥(eta) < ( )w<z,s+r,a>. 25)

Proof. For getting the inequality (22), just observe that the function ¥(z,s,a) is
non-negative for all s,a > 0 and 0 < z < 1 and consequently (22) holds true. As to the
inequality (23), we apply the integral representation (21) we have

Y(z,s,a) < /m Z

———dt
l1—a Z(l + a)s+l

(26)
I 7 o E !
2 Ula de—/l m‘”} = - (hth).



INTEGRAL EXPRESSIONS OF GENERALIZED ZETA FUNCTIONS AND ITS CONSEQUENCES 241

Here

1—/1 z dt</l g — =1 27)
Y ia G HaptTT gt 7% log(z)’

In addition, we have

1—/de1</midz (28)
2= 1 (l—l—a)S'H = 1 t4+a
In view of the following formula [3, Eq. (6), p. 134]
o =Pt
/ T —di = —¢Ei(~(a+b)p), (R(p) > 0. rgla+b) <m).  (@29)
b

we find that

_ —Filog(2))

h<—3 (30)

Now applying (27) and (30) to (26) we get the inequality (23). Now, focus to the
Turén type inequality (24). Since s — ¥(z,s,a) is log-convex on (0,e0) for a > 0 and
0 < z < 1, it follows that for all s1,s, > 0,7 € [0,1] we have

W(z,t51+ (1 —1)s2,a) < (P(z,51,a)) (q’(z,sz,a))l_t.

Choosing s; =s,5p =s+2 and t = % the above inequality reduces to the Turdn in-
equalty (24). Next, we derive the inequality (25). We set

_ -1  —Ei(log(z))
fa(Z) = z“log(z) + atl .

By means of Theorem 1 and (23), it is clear that the function s — W¥(z,s,a)/f.(z)
maps (0,e0) into (0,1) and it is completely monotonic on (0,e0). On the other hand,
according to Kimberling [7] if a function f, defined on (0,eo), is continuous and com-
pletely monotonic and maps (0,e<) into (0, 1), then log f is super-additive, that is for
all x,y > 0 we have

F)fy) < flx+y).

Therefore we conclude the asserted inequality (25).
On setting a = 1 in (16) (or in (20)), we get the following new integral representation
for the polylogarithm function as follows:

COROLLARY 2. The polylogarithm function Lis(z) defined in (4) possesses the
following integral representation

T G
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where s > 0 and 0 < z < 1. Furthermore, the function

z—1)Lis(z 1—z 1
G L) 1=z, 1
SZ ST S

s—Wi(z,s) =

is completely monotonic on (0,e0) forall 0 < z < 1.

REMARK 2. Since the function Wi (z,s) is non-negative forall s >0 and 0 < z <
1, we deduce that the following inequality holds true:
2

On letting z=¢"",# > 0 in (31), using (15) we get the following closed integral
form expression of the moment generating function of a zeta distribution, as follows:

COROLLARY 3. The following integral formulas

—t

e e
e dx

- se”! R —t[e*]
26 T 0—e k) e 1>c:<s>/o ¢

e’ e se2 o oIl
L) i (1—e7)C(s) - (e — l)é_,’(s)/o (E+ 1)s+ld§’

hold true for all t > 0.

M(t;s) =

3. The integral expression of the multi-parameter Hurwitz-Lerch zeta function

Our main result in this section is asserted by the following theorem.

THEOREM 2. Let

(xhpi) = (A»P%(Hh@) = (”76) for 1 < i < P, and (xprrl?perl) = (27 l)
If A < U and p < ©, then the following integral representation holds true

qN)(/lij;PH)( )= q)(lppj:l’ﬂ)(z’ 1,1)

(1j.05:p) = T (uj.05:p)
) pal? (1) /”e_pxz[(A({f))*l(eX)}dx (33)
(L—2)P(A)  (z—1)TP(A) Jo ’

where z € (0,1) and (ASLP. f))’l stands for the inverse of the function

_ I'(u+ox)

(p,0)
M O = T

Au
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Proof. Tt turns out that

(Aj.pjip+1) _
(D(yj,oj;p) ( 1, l) =0

. hnd (u+
Lp,... Pso'lw'acq)(z7 17 l) — ?ig‘;t) Z _pk)g( (1+PX)))Zk7 (34)
' k=0

N

is a classical Dirichlet series. Keeping in mind that b(x) = logT'(1t + ox) —log'(A +
px) is strictly increasing on (0,e0) forall A < u and p < ¢ and consequently b(x) is

invertible. Indeed, using the fact that the digamma function x — y(x) = E_/((;‘)) is strictly

increases on (0,0), we get
b'(x) = oy(u +ox) —py(L+px)

> (o —p)y(A+px)
> 0.

This implies that the function b(x) is strictly increasing on (0,c0) for each A < y and
p < 6. Now, by combining (34) and (12) we thus get

T () 5

‘P 00
_ l+pr (“)/ e P¥ 2 dex
0 k:log(T'(u+ok)—logT(A+pk))<x
Prp(#)/w ) k
+ (%) Jo e kglz dx

pzl"l’(;,t) . X j(x
7(1—2)1“1’(1)/ e PX(1—z/™)dx

2P (u) pelP (M) (7 e x
(1 9rr() T G-I / e IWdx,

(1,pssP301.0,04)
SR I C

where

The proof of Theorem 2 is complete.
On taking p =1 in (33), from (10) we compute the following result as follows:

COROLLARY 4. If U <V and o < K then the following relation

1,0,k - zF(v) ZF(V) . (A((f;x))’l(ex)
Pl 1)_1+(l—Z)F(M)+(Z—l)F(u)/() ¢ Z[ ' ]dx’ (35

holds true for all 0 < z < 1.

On setting 0 = kK = 1 in (35), we get the following result as follows:

COROLLARY 5. If u < v, then the function @, y(z,1,1) defined in (9), admits
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the following integral formula:

_ a(v) V) 7 )
Ownte) =t i g f e

where z € (0,1).

The Fox-Wright function ,'¥,[.] with p numerator parameters aj,...,a, and ¢
denominator parameters by, ...,by, is defined by [19, p. 4, Eq. (2.4)]

p\{;q[(alvAl)»“'7(ap7Ap) ‘Z] _ p\Pq[(amAp) |Z]

(blaBl)a"'7(bq?BQ) (bquq)
P
ll"[ll"(al—i—kAl) Zk (36)
= 2 Nk
k20 T T'(by + kBy)
=1

(ai,bjEC, and Ai,Bj€R+ (i:l7...,p7j=1,...,q)).

The convergence conditions and convergence radius of the series at the right-hand side
of (36) we get from the known asymptotic of the Euler Gamma-function. The defining
series in (36) converges in the whole complex z-plane when

q P
A=Y Bj—>A;>—1.
j=1 i=1

If A= —1, then the series in (36) converges for |z| < p, and |z| = p under the condition
R(u) > 4, where

P 4 B q p P—q
p = HAi ! HBj ,HZEbj—Zak+T.
i=1 j=1 j=1 k=1
Setting in the definition (36)
Aj=...=A,=1 and B;=...=B,=1,

we get the relatively more familiar generalized hypergeometric function ,F[.] given
by

P
IT(a)k
F, ap’z =y = <
» ’i[bq } k>°lljll(bz)kk! -
L'(b1)---T(by) (ap,1)
['(ay) ~~F(aZ)qu[(bZ’1) ’Z]
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Hence, by means of the definition (36) and (33) we deduce that the Fox-Wright
function ,1'¥p[z] possesses the following integral representation.

COROLLARY 6. Let 0 < b < a and 0 <A < B, then following integral formula

(L), (@A), _TPa) = pz /°" —pr [ @]
p+1‘Pq[ (b.B) 2] = l"l’(b)+ 1—z+(z—1) e dx, (38)

holds true for all 0 < z < 1.

REMARK 3. For further some integral representation of the Fox-Wright function,
we refer [8, 9].

If we set A= B =1 in (38), in view of (37), we get the following result.

COROLLARY 7. If 0 < a < b, then the following integral formula holds true:

La,-a P (b) pzl?(b)
pfy 53] = TTr@ -

X /oc eipxz[(Az(zlj)l))il(ex)} d.x,
0

(39)

where 0 < z < 1.
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