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CHARACTERIZATION OF APPROXIMATELY MONOTONE

AND APPROXIMATELY HÖLDER FUNCTIONS

ANGSHUMAN R. GOSWAMI AND ZSOLT PÁLES

Abstract. A real valued function f defined on a real open interval I is called Φ -monotone if,
for all x,y ∈ I with x � y it satisfies

f (x) � f (y)+Φ(y− x),

where Φ : [0,�(I)[→ R+ is a given nonnegative error function, where �(I) denotes the length of
the interval I . If f and − f are simultaneously Φ -monotone, then f is said to be a Φ -Hölder
function. In the main results of the paper, using the notions of upper and lower interpolations,
we establish a characterization for both classes of functions. This allows one to construct Φ -
monotone and Φ -Hölder functions from elementary ones, which could be termed the building
blocks for those classes. In the second part, we deduce Ostrowski- and Hermite–Hadamard-
type inequalities from the Φ -monotonicity and Φ -Hölder properties, and then we verify the
sharpness of these implications. We also establish implications in the reversed direction.
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