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WEIGHTED COMPOSITION OPERATORS
AND THEIR PRODUCTS ON [?(X)

M. R. JABBARZADEH* AND M. GHEYTARAN

(Communicated by J. Pecari¢)

Abstract. In this paper, we study the ascent and descent of weighted composition operators on
L2(%). In addition, we discuss measure theoretic characterizations of some classical properties
for products of these type operators.

1. Introduction and preliminaries

Let (X,X, 1) be a complete sigma finite measure space and let .7 be a sub-sigma
finite algebra of X. If B C X, let @z = o/ N B denote the relative completion of the
sigma-algebra generated by {ANB: A € o/} and denote the complement of B in X by
B¢. All comparisons between two functions or two sets are to be interpreted as holding
up to a u-null set. We denote the linear spaces of all complex-valued X-measurable
functions on X by L°(X). The support of f € L°(X) is defined by o(f) = {x € X :
f(x) #0}. Let u € L°() and let ¢ : X — X be a measurable transformation on X,
that is, ¢~'(A) € = for all A € X. Denote by p 0@~ the positive measure on X
givenby p_ 0@ ' (A) = (¢~ (A)No(u)) forall A€ X. Put g, = p. We say that

1

¢ is nonsingular, if Lo ¢@™" is absolutely continuous with respect to u . In this case we

1
write (1o @' < u, as usual. Let & be the Radon-Nikodym derivative, 1 = d’“‘% )
Let 1 < p < oo. By a weighted composition operator in LP(X) = LP(X,X, i) =

LP(u) we mean a mapping W = uCy : LP(X) O (W) — LP(X) formally defined by

_Ju@f(e(x) xeco(u)

W) = {o v o(u),
forall fe I(W)={feLP(Z):u(fop)ec LP(X)}. In general, such operator may
not be well-defined. We use the assumption He © o '=(uo go‘l)‘ w < U to see

that W is well-defined on 2 (W), for more details, see [1]. Now, set u = 1. Then
the composition operator C, defined by Cy(f) = fo ¢ on LP(X) is well-defined if
and only if the transformation ¢ is nonsingular. It is known that Cy € #(L"(X)), the
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algebra of all bounded linear operators on L?(X), if and only if 4 € L*(X). In this case
2(Cp) =LP(%), ||Cyl||? = ||h]|-c and W =M, C, where M, is a multiplication operator
defined by M, (f) = uf on Z2(M,) ={f € LP(X) 1 u.f € LP(Z)}. It is known by the
closed graph theorem that 2(M,) = L”(X) if and only if u € L™(X), or equivalently,
M, € A(LP(X)). In this case, |M,|| = ||ul|- (see [22]).

Assume f is a non-negative X-measurable function on X . Since 7 is sub-sigma
finite, by the Radon-Nikodym theorem, there exists a unique <7 -measurable function
E“(f) such that [, fdu = [, E¥(f)du, where A is any </ -measurable set for which
Ju fdu exists. Note that E(f) depends both on y and <7. A real-valued measurable
function f = f* — f~ is said to be conditionable if u({x e X : E(f")(x) =E(f)(x) =
w})=0.If f is complex-valued, then f € Z(E) = {f € L°(X) : f is conditionable} if
the real and imaginary parts of f are conditionable and their respective expectations are
not both infinite on the same set of positive measure. One can show that every L”(X)
function is conditionable. In the setting of L” -spaces, the conditional expectation op-
erator E plays an important role in the study of weighted composition operators. We
use the notation L”(</) for LP(X, 7,y ) and henceforth we write u in place 4, .
The mapping E : LP(X) — LP(</) defined by f+— E“(f), is called the conditional
expectation operator with respect to <7 . In the case of p =2, it is the orthogonal pro-
jection of L?(X) onto L?(.<7). For further discussion of the conditional expectation
operator see [1, 8, 15, 19].

For each n € N, let X, := ¢ "(X) be a sub-sigma finite algebra of X and let
po@™ < p. Set upy =u.(uo@)---(uo@" "), (h), =duog™"/du, E" = E>
and (/) = (h)nE"(Juy)|?) 0 @~". We use the symbols i, E and J = RE (|u|P) o ¢!
instead of (h);, E! and (J), respectively. Note that if ¥, is sigma finite so is X
forany k <n. Let f € Z(E"). Since E"(f) is a Z,-measurable function, there is a
g € L°(2) such that E"(f) = go ¢". In general g is not unique. This deficiency can be
solved by assuming (g) C o((h),), because for each g1, g2 € L°(Z), g1 0 @" = gz 0 @"
if and only if gy = g» = g on o((h),) . In this case g is a well-defined and unique.
As a notation, we then write g = E"(f) o @~". With this setting by the change of
variables formula, we obtain [y fdu = [y (h).E"(f) o @~ "du, in the sense that if one
of the integrals exists then so does the other and they have the same value (see [2]). For
1 < p < oo, define

11l = ( /X )P
I fl pohap = (/X |f|Phdu)
I fll posau = (/X IfII’Jd/,L)z’l’.

==

’

It is easy to check that
ICo(Nlp =M g flp = 1fllppans f € P(Cop) CLP(Z):

W = 1M g550lp = 1f lpaan, f€ZW)CSLP(Z). (1.1)
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Hence %(Cy) = LP(X) N LP(hdu) and (W) = LP(X) N LP(Jdu). Campbell and
Hornor in [2] proved that W is a densely defined and closed operator if and only if
J is finite valued, that is, u({x € X : J(x) = e}) = 0. Also, ZW) ={u.(foo):
ferrJdu)}. If J € L=(X), then LP(X) C LP(Jdu), and so Z(W) = LP(X). More-
over, it follows from (1.1) that W € B(LP (X)) if and only if J € L*(X) (see also [9]).
In particular, in case u =1, Z(Cy) = LP(Z) if and only if & < oo} that is finite val-
ued, and Z(E) = Z(Cy) =LP(¢ ' (Z)) = {fo@: f€LP(hdu)}. If h € L(X), then
LP(X) CLP(hdp), and so 2(Cy) = LP(X). Lambert et al. in [9] shows that the adjoint
W* of W € B(L*(X)) is given by W*(f) = hE(iif)o @~ !, foreach f € L*(Z). In this
case, W*'W =M; and WW* =M, (j09)EM5.

Products of operators appear often in the service of the study of other operators.
Weighted composition operators and their products have been used to provide examples
and illustrations of many operator theoretic properties. In several cases major conjec-
tures in operator theory have been reduced to the weighted composition operators. The
purpose of this note is to find some characterizations of properties of weighted com-
position operators on L?(X) and present a relationship between W = uCy and their
products. A good reference for information on the weighted composition operators in
L?-spaces is the monograph [1]. In Section 2, we collect some sufficient facts on prod-
ucts of weighted composition operators. In section 3, we investigate semi-Kato type
weighted composition operators. Finally, in section 4, we characterize the weighted
composition operators on L?(X) whose ascent and descent is finite.

2. On some classic properties of W = uC, on L*(X)

Fori=1,2 and n € N, let ¥} := ¢, "(X) be a sub-sigma finite algebra of T and let

o g™ < p. Set iy = ui.(uj0 @)+ (o @ "), (hi)y =dpo@ " /du, EI = E*
and (J;)n = (hi)nE} (Jui()|*) 0 @;". We use the symbols h;, E; and J; = hiEi(|u;|*) o
@; ! instead of (h;)1, E} and (J;)1, respectively. Put @3 = @; 0 @2, u3 = up.(u1 0 ).
Then pog" < u.

REMARK 2.1. For a nonsingular measurable transformation ¢; (i = 1,2), let
hi < oo and @5 '(2) be a sub-sigma finite algebra of . Then by [1, Lemma 26] we
have

hy = E ()o@ and o(h3o@3) = X. 2.1)

Also, if Cj;,3 is densely defined then so is C(,,3Cf;,3 (see [20, Theorem 1.8 and 7.2]). In
this case C¢3C$3 = Mj,00,E3 (see [1, Theorem 18]). Moreover, if /; € L*(X) then by
[1, Prposition 17], Cj,.(f) = hiE1(Eax(f) o @y ') oo ! forall f e L*(X).

LEMMA 2.2. For a nonsingular measurable transformation ¢; (i=1,2), let h; €
L*(X). Then

1

- s co-e ,
_El(hz)O(PzEl(hZEz(f) (p2 ) 0, fEL(Z)_

E5(f)
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Proof. Let f € L*(X). Then by Remark 2.1 we have

1 *
Es(f) = mC¢3C¢3(f)
_hoes
hs o @3
1

= op; Ho
_El(hz)O(PzEl(h2E2(f) (p2 ) (/)2 D

E{(lEx(f)opy ) o,

For nonsingular measurable transformation @; and ¢, let h; < o (i = 1,2,3).
Then we have

D(Cp,Co) ={f €L*(Z): f € D(Cyy), fops € L} (D)}
= L*((1+hy)du) N L* (hadu)
= L*((14hy +h3)du)
= L*((14+h1 +hEi(ln) oo ')du)

and 2(Cp,) = L*((14+hiE1(h2) o 9 )du). Thus, 2(Cp,Cqp,) € Z(Cyy). If E1(h) 0
@' >k on X forsome k > 0, then for each f € 2(Cy,),

1 _
[1ropPan= [ mlfPau < [ mEi()o9; P < .
X b k Jx

It follows that Cyp, = Cy, Co, .

PROPOSITION 2.3. The following assertions hold.

(a) For nonsingular measurable transformation @, and @, if {h;,ha} C L”(X),
then J3 = hiE1 (|u1|*J2) o (pfl.

(b) Let %—1(2) be a sub-sigma finite algebra of X. Then Wj is injective if and
only if 6(h1) = o(E1(|w1[*)2)) = X.

Proof. By assumption, h3 € L”(X). Hence Ej is well-defined. Now, (a) is imme-
diate from by (2.1) and Lemma 2.2.

For the proof of the second statement, we know that W; is injective if and only if
o(J;) =X. Now, let A= {x € X : E;(Ju1|*/2) = 0}. So A = ¢, '(B), for some B € X.
If u(A) >0, then u(B) > 0 because o qol_1 < u. Hence

/BhlEl(\ul\zfz)Oﬁofldﬂ Z/AEl(\Mllzfz)dﬂ =0,

and so a1 =0 or E|(|u1|>/2) o ;' =0 on B. Therefore, h; >0 and E(|us|*/2) o
@' > 0 implies that Ey(|us|>)2) > 0. Now, let Ey(|us|>J2) > 0. Since Ei(|u1|>2)
is a ¢, '(X)-measurable, then there exists a unique g € L°(X), with o(g) C o(hy),
such that Ej(|uj|2)2) = go ¢;. It follows that 0 < [y go @1du = [y h1gdu, and so
E(lu1]*)2) o' =g >0 on o(h;). We conclude that o(J3) = X if and only if
o(hm)=0(Ei(lmPr)=Xx. O
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LEMMA 2.4. Let W; € B(L*(X)), @3 = @1 0@y and u3 = uy.(uy o p). Then the
following assertions hold.

(a) Jyo @3 = (hyo @3)E1(Ju1]*)2) o .

(b) W3 (f) = mE (it ha s (itaf) 0 @y Yo g .

(c) WiWs(f) = (mE1([m[P2) o @ ) f -

(d) WsW3 (f) = u3(h1 0 @3)Ey (it o Ex(it2 f) 0 93 ') 0 5.

(e) WiWsWs(f) = (ushi E1(Jur|*J2) 0 @ ') f o 3.

(f) WsWyWs(f) = (uz(hy 0 @3)E1 (|ur[*)2) 0 92) f 0 3.

(g) W3W5'(f) = uz(hz o @3)E3(us f).

Proof. Part (a) follows from (2.1) and Lemma 2.2. To prove (b), let f € L*(Z).
Then
W3 (f) = Wi (W5 (f)) = Wi (lEx (it f) 0 93 ")
= mE(ihEs(iaf)o g, o
The reminder of the proof is left to the reader. [

In [6], Douglas proved that when A,B € #(), then AA* < ABB* for some
A > 0;if and only if A= BC for some C € B(H).

PROPOSITION 2.5. Let for i=1,2, W; = u;Cy, € B(L*(X)). Then J3 < MJ a.e.
(1] and J30 @3 < Aa(Jo0 @) a.e. (U |¢;'(Z)} on o(u3) for some A; > 0.

Proof. Since W3 = W,W,, by Douglas’ theorem, there exists A; > 0 such that
WiWs < MWW, and W3W5 < AL,WoW;' . Then foreach f,g € L?(X) we have (Jgf,f) <
(MJLf,f) and (us(hs o @3)E3(ui38),8) < (Aauz(hz 0 92)E2(ii2g),8). For A € £ with
W(A) <o, take f =4 and g =y, -1,u3. Since E3(uzg) = x¢;1(A)E3(|u3\2) and

Ex(1128) = X1 4y (10 ©)E>(Ju2|?), we obtain

[ wlPsoedu< [ | dalusP (2o g2)du.
(23 (A) (23 (A)
This completes the proof. [

Let [T,S] =TS — ST for T and S in A(.). An operator T € HB(H) is said to
be normal if [7,7*] = 0, quasinormal if [7,7*T] = 0 and hyponormal if [T,T*] > 0.
Normal, quasinormal and hyponormal bounded weighted composition operators have
been characterized in [2, 14] as follows:

LEMMA 2.6. Let W =uCy € B(L*(X)). Then the following assertions hold.
(a) W is normal if and only if (¢~" (Z))g(u) =ZXg() and J = Yg(u)J © @.

(b) W is quasinormal if and only if J =Jo @ on ¢ (u).

(c) W is hyponormal if and only if o(u) = 6(J) and (ho (p)E(#) < 1.
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PROPOSITION 2.7. Let W; = u;Cyp, € B(L*(X)) with Jyo @y =Jy and Joo0 ¢y =
J.

(a) If Wy and W, are normal (quasinormal), then W3 is a normal (quasinormal)
operator.

2
(b) If Wy and W, are hyponormal and thQ(%) o, Visa o' (Z)-measurable
function, then W5 is a hyponormal operator.

Proof. (a) Let W; be normal operator. Then by Lemma 2.6(a), ((pi_l(Z))g(ui) =
o) and Ji = Xo(u)Ji © @i Also, by hypotheses we get that
(051 (2) gy = @5 (01 (X)) No(u3) = 03 ' (9 (2) NO(u2) Ny ' (0 (1))
=¢, (o (Z)No(u))No(uz) =@ (ENo(ur)) No(u)
= (¢, "(Z)No(u2)) No(ur092) =ZN0(u2) N0 (0 @)
= Zﬂc(ug(ul op)) =2No(u3) =24 ou3)s
and J3 = hiE1(Jug|22) o ot = hiE1(Jug |22 0 @) oQ; 1= J,J;. Since W; and W, are
normal, we have
X (u3)93 © P3 = Xo(ur)n0(uy092)d3 © P3
= {Xo(unT2° @1 O2H X5 (uy0py)J1 0 P10 P2}
= {Xowy 20 P2 Xo(w)T10 @1} o @2
= DhJio@ =Dt =I5
Thus, W3 is normal.

(b) By hypotheses, o(u;) = o(J;) and (h;o @;)E;( I‘ ) <1 for i =1,2. Hence
we obtain

o(J3) = o (L) =@, ' (6(1)No(h) = o(us);
ExJ1)=J1=E(1)op, ", Ei(h)=h=E(h)og, ",
and 1 {
(5o =5 € Lo ().
Since hzo @3 = (hy o @3)E1(hy) o @ and o (E;(h;) o ¢;) =X (see [11]), we have

(h 30<P3)E3<‘ ;3'2) = (h1o@3)E; (%&(%) 0<sz1> ° P

= (1o g3)Ey (|u1|2h2E2(‘12]' )oor')ow

o g (“5) o) s (20) 0 g5y o

{
{ hio @ El( 12)}0@ {(h o<pz)Ez<”J22|2)} <1
This completes the proof. [l
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An atom of the measure  is an element B € £ with p(B) > 0 such that for
each F € X, if F C B then either pu(F) =0 or u(F) = u(B). A measure with no
atoms is called non-atomic. Write X = (U,enA,) UB, where {A,},en is a countable
collection of pairwise disjoint atoms and B, being disjoint from each A,, is non-atomic
(see [25]). In [4] Chan proved that M, is compact on L?(X) if and only if for any
€ >0, the set {x € X : |u(x)| > €} consists of finitely many atoms. In the following,
we give a sufficient condition for the product of a weighted composition operator W,
with the adjoint of a weighted composition operator W on L?(X) to be compact. The
order of the product gives rise to two different cases (see [5, 24]).

PROPOSITION 2.8. For i=1,2, let W; = uCy, € B(L*(Z)). Then the following
assertions hold.

(a) If for each € >0, the set A= {x € X : (|uz|*(J10@2)(h109))(x) = €} consists
of finitely many atoms, then WiW5" is compact.

(b) If for each € > 0, the set B={x € X : hy (x) (E(|u1|*(ha0 92)) o ;') (x) > €}
consists of finitely many atoms and uy € L°(Z,), then Wy Wy is compact.

Proof. Let f € L*(X). Then

WiWs (f) = w1 (hy 0 1) (E2(iiaf) 0 9, ') o @3
WWi (f) = hoEs (i (fo @) 0 95 .
Using change of variable formula and inequality |E»(f)|> < E>(|f]?), we obtain

W5 () = [ i PR3 o g1 Ex(if)o s o grd
= [ E(aP)o o VEIE(ES) o 0y Pau
= [ I )P o g5 dy
= [ (10002 B2 )P
< [ 10 @)tz @)Ex(laf £ P)ap

_ 2 _ 2
= M PG | = Mol
where Uy := +/uz]2(J1 0 2) (72 0 @2). Similarly,

W5 Wi ()P = | BIEs (i (o 1)) o gy Py
= [ (20 2)|Ex(i0 (£ 1)) P

< [ 0 @ Ex(uP s PLfP o 1)

< [ BE(P)o g5 Exllan Pl o or) 0 93 du
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=/XhlEl(\MHZJzO<P2)0<Pf1|f|2dli

2 _ 2
h1E1(|u1\2J20¢2)O¢1—1f|| - ||M¢U7H )

where U, := \/h1E1(|u1 [2J20¢;) 0 (pl_l. Since sets A and B consist of finitely many
atoms, hence the corresponding multiplication operators are compact. It follows that
Wi W5 and W, W, are compact operators on L*(X). [

PROPOSITION 2.9. Let W; € B(L*(X)) for i = 1,2. Then the following asser-
tions hold.

(a) If J3 is bounded away from zero on o(J3), o(Ei(Jui|*h) o, ") =X and
o(Ei(jm|*) 0@, ') =X, then (W) is closed.

(b) Let Wy and Wy have closed range. If 6(J2) =X or o(J2)° is contained in
union of a finite number of atoms, then Ws has closed range.

Proof. (a) Let f € L*(Z). Then
M 13 = [ (P o 07 'L P
= /X PR f P o prdu

< Walle [ a1 P o grdp
= [Wall? M 3.

Recall that for u € L*(X), #(M,,) is closed in L?(X) if and only if u is bounded away
from zero on o (u) (see [21]). Thus there exists A > 0 such that A||f|| < ||[M 7 f| for
each f € L?(o(J3)). By hypotheses, we have ¢(/3) = o(h;), o(J;) = o(h;) and so
o(J1) = o(J3). It follows that Z(W;) is closed.

(b) It is a classical fact that W5 has closed range if and only if A4 (W,) +.2(W))
is closed (see [18, Corollary 1]). Now, by assumptions, 4 (W,) = {0} or A4 (W>) is a
finite dimensional subspace of L?(X) and hence W3 has closed range. [J

3. Semi-Kato type weighted composition operators

DEFINITION 3.1. We say that T € %B(s¢) is an operator of semi-Kato type, if
the null space of T is contained in N Z(T"). T € B(H) is called Kato if Z(T) is

n=1

closed and .4 (T) C roi,%’(T").

Any bounded operator that is either onto or bounded below is Kato (see [17]). The
set of all semi-Kato and Kato type operators will be denoted by . ¢ () and ¥ ()
respectively. Obviously, 7 () C S # (). Also, if T € ¥ # () and for each
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n €N, T" has closed range, then T € # (). Now, for W = uC, € B(L*(%)),
Campbell and Hornor in [2] proved that

AW") = cls{capa: A€ (@ "(E))o(en)} 3.1

n—1 .
where ¢, = u(,) = '1}1 uo @'. This holds even in case W is a densely defined unbounded

operator [2, Lemma 6.2]. It is easy to check that |W"f]|| = ”M\/Wf”’ for all f €
L?(X). This implies that

N (W) = cls{xx o)L (2)} (3.2)
=cls{fel*Z):f=00onc((J))}
=L (ZNo((J))°).

Also, we deduce that W" has closed range if and only if (J), is bounded away
from zero on ¢ ((J),) (e.g., see [10]).
THEOREM 3.2. Let W =uCyp € B(L*(2)), Zw:= Fﬂl((p’”(Z))g(c ) and let llen —
n= n

1|2 — 0 as n — oo. Then the following assertions hold.

(a) W e .7 % (L*(X)) if and only if 2N (c(J))¢ C Z...

(b) W € # (L*(Z)) if and only if. for each n €N, (J),, is bounded away from zero
on 6((J)n) and ZN(c(J))¢ C Z..

Proof. (a) Using (3.1) and (3.2) we have
T = cds{enl2((97(5)) )}
and A (W) =L*(ZN(a(J))). It follows that W € % (L*(X)) whenever L*(2N
(6())) € A RWY = clsfenl?( [ (97(D)),) . where e = il;_clluo . Butby

hypothesis c.. = 1 (a.e.). Hence L* (2N (0(J))¢) C L*(Z.), and so =N (0(J))¢ C Z.
Conversely, if ZN (o (J))¢ C Z., then we obtain

(20 (0())) € 13(22) = eal?( ) (97" (Z))oe)

_ nrjl{c.l.s{c,,Lz ((@7"(2) oo, ) 1 = ni%’(W").

(b) Let W € # (L*(X)). Then for each n € N, Z(W") is closed. So (J), is bounded
away from zero on o((J),). Moreover, L*(£N (c(J))¢) = A (W) C ﬁlﬁ(W”) =
L?(X..). Conversely, if for each n € N, (J), is bounded away from zero on o ((J),)

and £ (0(J))¢ C S... Then Z(W") = Z(W") and A (W) C ﬁjlgz(wn). O

n—1

Recall that @3 = @10 @2, uz = up.(u 0 @) and u;,) = I (uj0 ¢}). Hence
i=

n—1

3(n) = I (uz0 @3) (110 @20 ¢5).
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n—1 X . on—1 . .
Let @1 0@ = 0 @;. Then uz,) = (il;Ilugo @] o (pé)(ilz'[lul ) (pé+1 o ¢;). In this case

n—1 .
if up 0@ = uy, then o (uz(,)) C o( 'l'[lug 0 ;) = 0 (uy(y)) . Moreover, if uj o @ = uy,
1=
then u3(,) = (uy(n))- (1 (n)) and hence o (u3(,)) = 0 (uy(n)) N0 (1)) Fori € {1,2,3},
define X} := Fjl((pi_” (£)o(u,) - Then

=

22 = 0 (0" (907" () g0y, € 0, (02"(2)) o

U3(m) = pe1 U(m))’

also, 3 C X! So,if @o@y =@ o¢, ujo@ =u; and ur 0 @; = uy, then =2 C
Inxz2.

THEOREM 3.3. For i€ {1,2}, let W;=u,Cy, € Z(L*(X)) and let lliny — 1|2 —
0 as n — oo. Then the following assertions hold.

(a) If W; € S (L*(X)), o(E1(u}h) o) =0 (Ei()2)) and £LUL2 C 53,
then Wy € & (L*(X)).

(b)If Ws € . (L*(2)), Q1o @2 =@r0¢1, uz0 @y = uy and uy o ¢y = uy, then
Wy € S (L2(X)).

Proof. (a) Recall that J3 = hEj(ul)2) o ;' and o(J;) C o(hy). Then by hy-
pothesis and Theorem 3.2(a), we have 2N (0(J3))¢ = ZN{o(h)No(Ei())}° =
En{(c(h))U(c(L)} CZlUZ2C 22, andso W3 € 7 (L*(X)).

(b) By our assumptions %3 C 2! and u3(,) = (ua(n))-(u1()) for all n € N. It
follows that u3 () = 1imy—co U3 () = (Up(ee))- (] () = 1, and s0

N (W) C A (W) C

1 D8

)

C.l.

«\.
[

N
N

o8

WL (95" (2)o(us) }

Z>)G(”3(n)))

Il

S o3
— Lol
=

8o 1l D8
| —~
I,

=

I
~
]
™M
N
~
]
™M
8 —

—~  —

L (

o
~
5
—~
<
fn

(an(z))ﬁ(ul(n)))}

3
1 D38 ’!‘:)8

E
E

=

Thus, W) € 7% (L*(X)).

O

4. Ascent and descent of weighted composition operators

Let T be a bounded linear operator on a Banach space Z. Recall that for each
non-negative integer k, A (TX) C A (T*1) and Z(T*') C #(T*). The ascent
o(T) of T is the least non-negative integer such that .4 (TX) = 4 (T*1), for all k >
o/(T) and the descent d(T) of T is the least non-negative integer such that % (T*) =
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R (T, forall k> d(T). It is a classical fact that if o(T) < o and d(T) < o then
o(T) = d(T). For more comprehensive study, we reefer the reader to [23].

Let n € N, ¢ be nonsingular and let W = uC, € #(L*(Z)). For this u and ¢,
we define the measure 1, , by

n _ fq) (A) ‘u|2dou“ n= 1’
“u,q)(A)_ {fq) 1) ‘u|2d.un 1 n>=2.

It is easy to check that

[T <<uuq>o<p*1<<uo<p’2<<uo<p’1<<u;

1 1 —
st <ot <o < <ty o "

<pop "M <« o< <o < .

We prove by induction that
M p(A) = /(J)ndu, neN,Aex.
A

It is clear that dy, o = Jdu. Suppose duL’f’q, = (J)rdp holds for k=1,2,---,n—1.
Then we have

o) = [, luPaniy

—/ |”| Jn—1dpd

—/ PE" (g Do " Vdpogp =l

= [ w0 @ PE T (g P
[
/ *og "du

~ [
A

Hence, du;),/du = (J),. Now, set Qp =Jo =1 and Q, = hE(Qy1]ul?) o
Then Q; =J = (J)1, and so du,o = Q1dp. Suppose d[.t,iq, = Qrdu holds for k =
1,2,---,n—1. Then for each A € ¥ we have

1y o(A =/ ulduy! =/ Q- 1dp
L T ST
=/AhE(Qn_1IuI2)o<p*1du=/AQndu.
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So, d[.t,ﬁq, /du = Q,. Thus, we conclude that

() = (W)aE" () ) 0 9" = hE(Qu1u) o 9" = O,

The measure v and u are called equivalenton X if 4 < v < 1 and denoted by u ~v.
In [13] Kumar has characterized the weighted composition operators on L?(X) whose
ascent and descent is 1. The following theorem characterizes weighted composition
operators with finite ascent.

THEOREM 4.1. W € B(L*(X)). Then (W) = no if and only if [, s+t =
.uu,(p"()‘

Proof. Recall that A (W") = y, L*(Z) = L*(X,), where X, = {x € X : (J)u(x) =
0}. Now, suppose a(W) =ng. Thus A (W"0) = 4 (W"*1) by definition. Then we
have
a(W) =ng <= N (W) =4 (Wth
= P(Xy) = P(Xups1)
— Xn() = Anp+1
= ((Nng [4=04 ()41 [4=0, VA€ X)

= (U(A) = /A (Dt =0 1% (4) = /A (V)ngs1dlt =0, VA € )

This completes the proof. [l

THEOREM 4.2. Let W € B(L*(X)), A, = o(u(yy) andlet, forall n €N, L, =
0 "(X) be a sub-sigma finite algebra of . Then d(W) = ng < e if and only if the
following assertions hold.
(a) Zno-&-l mAno+l =2,,NAy,, and
(b) L2 (Zn, NAy,) is an invariant subspace for M Tang -
Mo(p"()

Proof. Let d(W) = ny. Since Z, 11 € X,, and A, 11 C Ay, 80 Zpyp1 NAy+1 €
Ty NAyy. Let A € X and take u, ) = u(uo @)(uo @?)--- (uo @), We shall show
that A,y N @™ (A) € Zy+1 NApy+1. By hypothesis R(W"0) = R(W"*1) and ny is
finite. Hence W has closed range. Thus

%(Wno) = {”(no)f : f € LZ(Z,,O r_]Ano)};
AW = {ugy1)8: 8 € L (Zngs1 NAngs1)}-
Take B = @™ (A)NA,, and choose f = yp € L*(X,,NAy,). Hence there exists g €
L? (Zn0+l mAn0+l) such that u(no)f =U(ny+1)8 - Since A, = G(u(no)) ,B= G(M(nO)XB) =

0(8)NApy+1- But 6(g)NAs +1 € (Zpg+1 NAyy+1). Consequently, X, NA,) € Zpi1 N
Apy+1- This proves (a).
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To prove (b), suppose f € L*(Z,,NAy,). Then, by hypothesis, Uing)f = U(ng+1)8
for some g € L? (Zng+1 NApg41) -
It follows that fxa, = (4o @"™)xa, g,andso

XAnoﬂg = xAn0+l € Lz(znoJrl mAn0+1).

uo Q"o

This implies L5 xa,, ., € L2((Zny NAny), by part (a).

Conversely, assume that (a) and (b) hold. From (a) we see that Lz(Zn0 NAp,) =
L*(Zhy+1 NAng+1), and 50 Apy = Aygt1 . Since Z(Wn0tl) C (W), it will thus be
sufficient to prove Z(W") C Z(W"0™). Let u,,) f € Z(W™) for some f € L*(Z,, N
Any). Then g = (f/(uo @™))xa,, € L*(Z,,NAy,), by part (b). But, this implies that
Ung+1)8 = U(ng) S € 2 (W"0t1) | This the completes proof. [

Let W € Z(L*(X)) and (W) =d(W) = ng < o. Then by [12, Theorem 1.12],
L*(Z) = L*(Xy,) ©® Z(W™) and the restriction of W to L*(X,,) is nilpotent and W,
when restricted to Z(W™0), is bijection. Note that, in the proof of surjectivity of W on

2
Z(W") we need not to have a:(W) = ng < e=. Moreover, since - ;(évz,,)o) algebraically

isomorphic with yg((y), \L*(Z) := L*(X; ), so L*(Xy ) isomorphic with Z(W™) =

K0

{U(ag)-(f o @™) 2 f € LP((J)ngdi)}-

PROPOSITION 4.3. Let W € B(L*(Z)). Then d(W) < o if and only if W, when
restricted to Z(W™), is onto mapping of Z(W™) to all of itself for some ny € N.

Proof. Let d(W) = no < e and choose f € Z(W™). Since Z(W") = Z(Wm+tl),
there exists g € L?(Z) such that W(W"0(g)) = f and W"0(g) € 2(W™"). This implies
that W : Z(W"0) — Z(W") is onto. Conversely, if for some non-negative integer no,
W : Z(W"0) — Z(W") is onto, then Z(W0H1) = W (% (W"0)) = 2(W"), and thus
dW)<ny<e. 0O

In [16] Morrel and Muhly introduced the concept of a centered operator. Let H
be the infinite dimensional complex Hilbert space. An operator 7 on a Hilbert space
H is said to be centered if the doubly infinite sequence {T"T**, T*"T™ : n,m > 0}
consists of mutually commuting operators. Let Cyp, and Cgp, be normal operators and
let @10 @ = @20 ¢;. By Fuglede-Putnam theorem we have Cy,Cy, = Cy, C; . Since
normal operators are centered, it follows that Cy, = C¢,Cy, is centered. In [7], Embry-
Wardrop and Lambert proved that the composition operator Cy, € B(L?(X)) is centered
if and only if 4 is Z..-measurable, where Z.. =N Z,.

PROPOSITION 4.4. Let Cy € B(L*(X)) and for all n €N, %, is a sub-sigma
finite algebra of . If d(Cy) = k and h is X -measurable, then Cy is centered.

Proof. By hypothesis, L?(Z;) = L*(Z,) for all n > k. Thus Z.. = X;. Now, the
desired conclusion follows from [7, Theorem 5]. [
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Let w= {m,};;_, be a sequence of positive real numbers such that for all n € N,
0<a<m<B. Set I>(w) =L*(N,2V, 1), where 2V is the power set of natural
numbers and y is a measure on 2V defined by u({n}) =m,. For ¢ : N — N, suppose
Cp € #(1*(w)). In the following we give a characterization of Cy on [?(w) whose
ascent and descent are infinite.

PROPOSITION 4.5. Let Cy € B(1*(w)). Then the following assertions are hold.

(a) o(Cy) = oo if and only if for all k € N, there exists a sequence of distinct
integers {n} such that n, € (") but n, ¢ % (o*1).

(b) d(Cy) = o= if and only if @, when restricted to Z(@X), is not injective for all
keN.

Proof. (a) Set X; = {n € N: (h);(n) = 0}. Because (h)r;1 = (h)i(Ex(h))op!
Xy C Xp41 for each k € N. Since (h)i(n) = anzje(p—k(n) mj, (h)i(n) =0 if and only
if n¢ Z(¢o"). Thus, Xy = {n € N:n ¢ %Z(¢*)}. Therefore,

0(Cy) = o0 <= L*(X;) C L*(Xps1), VK EN
< Xi C Xgr1, VkeN
= VkeN 3m eN: € Z(0")\ Z(o"T).

Note that (Z(¢*)\ Z(o*"1)) N (Z(o* 1)\ % (")) =0, forall k € N.
(b) Let np € N and n € Z(¢™). Then @™ (p) =n, for some p € N. Then

m
(W)=~ ¥ my> "
jep™"0(n)

Thus (1), > % on o((h)s,) = Z(¢"), and so Cyr has closed range. First, we
show that % (Cyno) = L? (Xy,)» where X; = 6((h)n,). For this, let f € L*(X). Then
[Cpmo (F)1* = 15, £1l(#),ay - This implies that the mapping A(xx; f) = fo " from
L? (Xy,) onto Z(Cyno) = {fo@™: f € L*((h)nydu)} is an isometry isomorphism.
Now, by Proposition 4.3, d(Cy) = ng < e if and only if Cy : L* (X5 ) — L*(X,;) is onto.
But, it is a classical fact that Cq, E %’(LZ (Xy,)) is surjective if and only if @™ : X —
Xy, is injective (see [22]). But, X;i = ={ke N (h)ny(k) >0} ={keN:keZ(@™)}.
This completes the proof. [
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