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MATRIX REARRANGEMENT INEQUALITIES REVISITED

VICTORIA M. CHAYES

(Communicated by J.-C. Bourin)

Abstract. Let ||X||, = Tr[(X*X)P/?]'/P denote the p-Schatten norm of a matrix X € My, (C),
and o(X) the singular values with 7 | indicating its increasing or decreasing rearrangements.
We wish to examine inequalities between ||[A+B||5 +[|A—B||}. ||o)(A)+ o, (B)||;+||o| (A) —
o, (B)|[5. and ||oy(A) + o (B)|[5 + ||01(A) — 0 (B)|| for various values of 1 < p < eo. It
was conjectured in [6] that a universal inequality ||o|(A) + o (B)|[h + |0y (A) — o) (B)||h <
A+ Bl + 1A~ BI[s < [l (4) + 0, (B)|[3 + ][0 () — &, (B)] [ might hold for 1< p <2 and
reverse at p > 2, potentially providing a stronger inequality to the generalization of Hanner’s
Inequality to complex matrices ||A + B|[5+ ||A — B||5 > (||Al], +[|B||p)” + |l|All, — |IB]|]” -
We extend some of the cases in which the inequalities of [6] hold, but offer counterexamples to
any general rearrangement inequality holding. We simplify the original proofs of [6] with the
technique of majorization. This also allows us to characterize the equality cases of all of the
inequalities considered. We also address the commuting, unitary, and {A,B} =0 cases directly,
and expand on the role of the anticommutator. In doing so, we extend Hanner’s Inequality for
self-adjoint matrices to the {A,B} =0 case for all ranges of p.

1. Introduction

It has been of great interest to extend Hanner’s Inequality for L” spaces

1+ 8llp + 11 = &llp = A1+ [lgllp)” + 1111, = llellpl” (1)

for 1 < p < 2 to the non-communative analogue in C? of matrix operators under the
p-Schatten norm

A+ Bl[;+ (1A = BI[; = ([|All, + |IBI],)” + [[1Al], = [[B][ |- 2

In [6], Carlen and Lieb proposed the following two conjectures for their potential
pertinence to proving (2):

CONJECTURE 1. For all 1 < p <2, and all complex-valued n x n matrices A
and B,

A+BI+ A~ BIZ > [l0,(A) + o (B +[loy(4) ~ o BZ. @)
For p > 2, the inequality reverses.
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CONJECTURE 2. For all 1 < p <2, and all complex-valued n X n matrices A
and B,

lA+Bll5+ [l = B[, < [[01(A) + 0y (B)[[} + ||o7(A) — o, (B)][}- Q)

For p > 2, the inequality reverses.

For these, the authors proved Conjecture 1 inthecase A>B >0 and 1 <p <2;
and proved Conjecture 2 in the case A > |B] >0 and 1 < p < 2. We note a missing
requirement in [6] used in the proof for Conjecture 2 in those conditions is also that
0,(A) > 01(B). Lemma 2.1 in [16] proves that Conjecture | holds for all matrices and
p =2k, k € N. To the best of our knowledge, no further work has been done on the
subject.

If Conjecture 1 were true in general, with an additional application of Hanner’s In-
equality on the sequences of singular values, the non-commutative Hanner’s Inequality
for matrices would be proven in general; currently, it is only known for A+B,A—B >0
for all p, or general A and B in the ranges 1 < p < ‘3—‘ and p >4 [3].

In this paper we extend the range of Conjecture 1 with the requirements A > B > 0
to 2 < p < 3, and we prove Conjecture 2 in the A+ B,A—B >0, 6,(A) > 01(B) case
for the range 1 < p < 3. We prove both conjectures for the full range of p in the com-
muting case. We prove Conjecture 1 in the case that A and B are both unitary, and
in the case when A and B are self-adjoint and {A,B} = 0. However, we demonstrate
that both conjectures are false in general. Section 2 gives a background to majoriza-
tion, which is the primary technique that we use in our proofs. Section 3 presents the
extensions of the conjectures’ requirements and ranges, and general counterexamples.

The key observation as to why the conjectures cannot hold in general is that if
the matrix B is taken to be unitary, all its singular values are equal to 1, and therefore
there is no distinction between the “aligned” and the “up-down” rearrangements. If
both conjectures were true, this would imply equality everywhere when B is unitary,
which can easily be numerically confirmed as false.

The fact that these re-arrangement inequalities do not hold in general is notable,
because the analogue to Conjecture 1 with complex functions and the spherically sym-
metric decreasing rearrangement is shown in [6] to hold. Therefore, we see directly
that the non-commutativity of the matrices ruins a commutative identity. In disproving
Conjecture | in general, we also rule it out as a method to attempt to extend Hanner’s
inequality to C?.

We will use the following notation throughout this paper: o(X) denotes the vector
of singular values of a matrix X, assumed to be in descending order unless o(X) is
specified; o) (X) may then be used for emphasis. The norm || - ||, may either indicate
the vector p-norm or the p-Schatten norm dependent on context. We use for a vector
v the notation [v] to indicate the matrix [Diag(v)].
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2. Majorization

Let a,b € R" with components labeled in descending order a; > ... > a, and
by > ... > b,. Itis said that b weakly majorizes a, written a <, b, when

k
Zai<2bi, 1<k<n 5)

and b majorizes a, written a < b, when the final inequality is an equality. Weak log
majorization a <, b is similarly defined for non-negative vectors as

k

[Ta <]t 1<k<n (6)
i=1 i=1

with log majorization a <1o¢) b when the final inequality is an equality. An important
fact is that log majorization and weak log majorization both imply weak majorization
[2] [Lemma 1.8].

Note that it is not necessary that the vectors a and b be in descending order—
majorization is explicitly defined with respect the the rearrangements of the values in
descending order. We define all of the above majorization for matrices, i.e. A < B and
all variations, when the singular values considered as a vector are majorized 6(A) <
o(B). All operators stated for majorization (i.e. f(a) or ab) should be considered to
be applied entrywise to the vectors (i.e. (f(ai),...,f(an)) or (aiby,...,anby,).

Majorization holds the following vital property:

THEOREM 3. (Hardy, Littlewood, and Pélya [9] [10]; Tomi¢, Weyl [17] [18])
Suppose a <,, b. Then for any function f:R — R that is increasing and convex on the
domain containing all elements of a and b,

Y flai) <Y, f(bi). (7
i=1 i=1
If a <b, the ‘increasing’ requirement can be dropped.

An immediate yet highly useful lemma follows:

LEMMA 4. Let a,b € R . Suppose a <, b. Then a* <,, b* forall s > 1.

Log majorization also allows us to characterize equality cases:

LEMMA 5. (Hiai [11] [Lemma 2.2]) Let ®:R™ — R™ be a strictly convex in-
creasing function. Then a <0 b and ¥ ®(a;) = X P(b;) imply a = Ob for
some permutation matrix ©.

As exponentiating is strictly convex, an immediate corollary is a <(jog) b and
a<b imply a = Gb.
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Majorization is an incredibly powerful technique in matrix analysis used to prove
numerous inequalities about eigenvalues and singular values of matrices, powers of
products of positive semidefinite matrices, Golden-Thompson-like inequalities, and
more. A good overview of the techniques and important results can be found in [12],
[14]. The two results that we will need for this paper will regard the eigenvalues of the
sums of Hermitian matrices and the singular values of products of general matrices:

THEOREM 6. (Fan [7]) Let A,B € Myx,(C) be self-adjoint. Then
A(A+B) < A(A)+ A(B). (8)
THEOREM 7. (Horn [13]; Gel’fand and Naimark [8]) Let A,B € My,x,(C). Then
O(AB) <(10g) 0(A)5(B). ©)

We will also need a fairly intuitive lemma that to our knowledge has not yet been
addressed in existing literature, characterizing the concatenation of majorized vectors:

LEMMA 8. Let x <, y, and a <,, b be non-negative vectors labeled in descend-
ing order. Then xa <,, yb.

Proof. We can write the components of y as y,—1 =y, + €1, Yn—2 =Yn+ €1+ &2,
e, VI =Yn+ € +...+&_1 where & > 0. Then applying a <,, b

&—1a1 < &-1b1 (10)
2 2

& | Dai | <ena| X bi (11)
i=1 i=1

(12)

i (Zal) <n (Z bi) (13)
= i—1

and summing them all together,

n n
> yiai < Y, yibi. (14)
i=1 i=1
Applying the same splitting argument to a; with X <,, y gives
n n
Y xiai < Y, viai, (15)
i=1 i=1

and stringing the two inequalities together

n

Y xia; <Y yibi. (16)
i=1

i=1
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Finally, nothing that when a <,, b, the first kth components maintain the weak
majorization relationship (ay,...,ax) <w (b1,...,bx), applying the argument to the kth
components gives the desired result. [

Note that the above technique can be expressed compactly as the weigted sum of
Ky-Fan norms for matrices [a], [b], [x], and [y], and leveraging the matrix majorization
result that A <,, B implies |||A[|| < |||B]|| for every unitarily invariant norm ||| - ||| .

3. Extensions and counterexamples

First, we address rearrangement of commuting matrices:

THEOREM 9. Let A,B € M,x,(C) be two self-adjoint matrices that commute.
Then

lo(A)+a(B)[[; +[a(A) —o(B)||} < [|A+B||;+[|A—BI[; an
<lloy(A)+o,(B)l[; +lo7(A) — oy (B)]I}
for 1 < p <2, and the inequality reverses for p > 2. Furthermore, there is equality in

either znequalltyfor p # 1,2 if and only if the singular values of A and B are aligned
in descending or ascending-descending order respectively.

Proof. In the simultaneously diagonalizable basis, we can write

Ai(A) Aiy (B)
A= ., B= . (18)
Afn(A) A’l’n (B)

Then we note that the singular values of A+ B and A — B can be grouped as
{12;(A) £ 24;;(B)[} = {lIA;(A)| £ [4;;(B)||} = {|0i(A) £ 0%,(B)[ }- (19)

Re-labeling to preserve the pairings above, we consider the functions
Z G, l 1,i) ) (20)

Zo-k l 1,i) ) (21)

and let f* and g* denote the symmetric decreasing rearrangements.
We will need an extension of the Riesz rearrangement inequality:

LEMMA 10. (Almgren, Lieb [1] Theorem 2.2) Let F : Rt x Rt — RT be a
continuous function such that F(0,0) =0 and

F(uz,v2) + F(u1,vi) = F(uz,vi) + F(ug,v2) (22)
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whenever uy > up =0 and vy > vy > 0. Let £" denote the n-dimensional Lebesgue
measure on R". Let f,g:R" — RT be measurable functions such that spherically
symmetric decreasing rearrangements [*, g* are well-defined (i.e. on(f(x) >y) <oo
forall y). Then the inequality

[FU.e00) dzmx< [ F(7 (.67 () d2"s 23)
holds. If condition (22) is reversed, the inequality (23) is reversed.

This lemma results from the following technique taking use of the Riesz rearrange-
ment inequality: we can consider F' as the limit of twice-differentiable functions with
W(x—y) = e 'exp(|x—y|/€) and take the limit as &€ — 0. One can express

[ [Fr0.500W—y) azmcazry
://FIQ(S,I) [//X{f>s}(x)X{g>,}(y)W(x—y) 4P dgny} 4L s d.2'
(24)

and apply the Riesz rearrangement inequality to the interior integral. When we take the
limit, W converges to the delta distribution, and we have

/ / Fia(s.1) [ / / Xipon) (X (eory ()8 (x —y) AL dgny} 4L'sd '

> [ [Pt | [ [a1-a Wit 01860 125 agn| agls ozt
©3)

The following technique is inspired by [6] [Lemma 1.1], which in fact proves
a more general theorem on symmetric decreasing arrangements of general complex
functions. For the left half of our inequality, we choose

F(x,y) = |x+y/" +|x—y|". (26)

We see that 02F (x,y)/dxdy < 0 when 1 < p < 2, with the inequality switching
at p =2, satisfying the condition of Equation (22). Then

f+ellp+ I =gllp =~ + &+ 1 = &7 27

for 1 < p <2 (and taking the limit for p = 1), with the inequality switching for p > 2.
As ||f gl =]|AxB||5 and ||f* £ g*||h = ||o(A) £ o(B)|[5, the left half of Equation
(17) is proven.

For the right half, without loss of generality, we can assume that B is invertible;
otherwise, we could consider a limit of perturbations. As the inequality for matrices
A, B holds if and only if it holds for cA,cB for some scaling constant ¢, we can further
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assume that the largest singular value of B is equal to 1. We define piecewise functions
such as

p
'x—i——‘ —|—‘x—§‘ x=>0,y>1
F(x,y) | ? (28)
e V(‘)H—l) —|—)x %)) x=>0,0<y<1
for 1 < p<2and
’x+§‘ +’ —§‘p x>0,y>1
F(x,y) = (29)

P (x4 ylP +|x—yP) x>0,0<y<1

for p > 2. The values of the function F that we care about will be in the y > 1 range;
these are merely examples of functions existing that satisfy the necessary conditions to
apply Lemma 10.

It can be readily confirmed that F(x,y) is continuous, and by exponential dom-
ination in the limit £(0,0) = 0. We therefore calculate the partial derivative on each
piece and see that 92F (x,y)/dxdy > 0 when 1 < p < 2, with the inequality reversing
at p = 2. Then letting

0i(A) x[i-1,i)(x) (30)

=
Na¥
[
-

—

o9
=
I
M=

Il
—_

(0%, (B) ™" xjiz1.)(x) 31)

and comparing [ F(f(x),g(x)) dx and [F(f*(x),g"(x)) dx (and taking the limit for
p = 1), the full inequality is proven.

To characterize the equality cases, we look closer at Line (25). For piecewise f
and g as defined in Equations (20) and (21) or (30) and (31), there is strict inequality
in application of the Riesz rearrangement inequality for each W (x —y) = £~ ' exp(|x —
y|/¢€) if the functions are not aligned [5]. For the choice of f and g as defined,

[ [ 21590100 008 —3) a2 x azry = 6 (32)

where ¢ is the number of pairs {o;(A),0y,(B)} (or {0;(A),04,(B)"'}) that satisfy
0i(A) > s and o,(B) >t (or the 0;(A) > s,04,(B)~! >1t). By the Riesz rearrange-
ment inequality as applied in Line (25), we know that

[ [ 1520 @100 008 —y) a2 x azry =€ > ¢ (33)

for some other integer ¢/, which now represents the number of pairs {0;(A),0;(B)}
(or similarly {0;(A),0:(B)~'}) that satisfy 0;(A) > s and o;(B) >t (or likewise the
inverse). We note that for both of our choices of F, we have Fi(s,7) > 0 for 5,7 > 0.
For the inequality to be strict, there simply must exist intervals of [so,s;] and [to,?]
where ¢’ > ¢, which upon inspection for any pair of unaligned matrices will be true, as
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aligning the pairs of singular values will increase the number of pairs that satisfy those
desired conditions in at least some range. This means that the interior integral will be
strictly greater when f and g are in decreasing rearrangements, and we conclude that
the inequality (25) must be strict. [J

Next, we address the case when anticommutator {A,B} =0.
THEOREM 11. Let A,B € My, (C) be self-adjoint such that AB+BA = 0. Then
lA+ B[, + 1A= B[} > [[0(A) + a(B)|[; + llo(4) — o (B)[; (34)

for 1 < p <2, with the inequality reversing for p > 2.

Proof. We note that as A (X?) = o(X?) for sef-adjoint X ,

[A+Bll) = ¥ 4((A+B)*)? = ¥ L(A*+ B = 3 (A~ B)*)"* = ||A-B||S.
i=1

i=1 i=1
(35)
When 1 < p <2, we make use of the majorization identity of Theorem 6 of A (A+
B) < A(A)+ A(B) and the fact that f(x) = x”/? is concave to conclude that

|A+B|§+|A—B|§:2§7L,-(A2+Bz)p/2 (36)
> 2_n1(x,-(A2)+x,-(32))P/2 (37)
= 2i<ai<A>2+ai<B>2>P/2 (38)
_ 22 ((ci<A>+2 ()’ | (@)~ ai<B>>2>”/2 9)

> i((ﬁi(A) +0i(B))*)"* + ((0i(A) — 6:(B)*)"? (40

=l[o(4)+aB)|I;+lo(A) —a(B)[}. (41)

Anidentical argument for p > 2 with reversed inequalities can be made now lever-
aging convexity of x/2. Note that this proof extends to general A, B when AB* +BA* =
0. O

The unitary case gives some insight to the role of the anticommutator.
THEOREM 12. Let U,V € M,;»,(C) be unitary. Then
U+ VI[IE+||U=VI[|E > 2Fn (42)

for 1 < p < 2, with the inequality switching for p > 2. There is equality for p # 2
if and only if U =V . The extremization of the inequality is directly dependent on
o(UV +VU), with greatest difference when {U,V} =0.
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Proof. Note that Equation (42) can be directly derived from [15] the Clarkson type
inequalities

2(/|A1I5 -+ 11BI1D) < A+ BIS -+ [|IA = BIIL < 27~ (A1} +[1B][5) (43)

for p > 2 and reversing for 1 < p < 2; and in fact can be seen from direct matrix
inequalities of Theorems 2.1 and 2.5 of [4]. However, we can use majorization to
examine this inequality on the level of the eigenvalues to see the direct role of the
anticommutator.

We can assume without loss of generality that U and V are also self-adjoint;
otherwise, consider the unitary matrices

~ 0oU ~ oV
b [U* O}, - [V* 0} (44)

then the inequality holds for U,V if and only if it holds for U ,‘7 by dividing by the
appropriate factor of 2.

Once more we will make use of A ((U +V)?) = o((U £V)?). We note that UV +
VU is a Hermitian matrix, and as ||[UV +VU|| < ||[UV||+||VU|| < 2||U||||V]| =2,
the eigenvalues of UV + VU must be within the interval [—2,2], and can be written as
2cos(6;). Then

2 2

[0+ V[ + 110 =VI[s = [+ V)P + I = V)3 (45)
2 2

= [[AQI+UV+VO)|L3+ A2 -0V = V)|V (46)

= (24 AUV V)54 2= AUVHVO)|[PS @T)

2 2721 + cos(6;)|P/% + 27721 — cos(;)[7/2. (48)

The function f(6) = (1 +cos(0))* + (1 —cos(0))* can be examined on the in-
terval (0,%). It has derivative ssin(0)[(1 —cos(6))* ! — (14 cos(6))*~!], which can
only be 0 at @ = 0,0 = 7. It is immediately confirmed that the function monotone
for all s > 0 is minimized at @ = 0 and maximized at 6 = % for 0 < s < 1, with the
maximum and minimum reversing for s > 1. Therefore,

N 2P/2|1 + cos(6;) [P/ +20/2|1 —cos(6))[P/* = ¥ 2P 2|P2 = 2P (49)
Jj=1 j=1

and the rearrangement inequality holds as desired for 1 < p < 2, with the inequality
reversing for p > 2. As the desired extrema are reached only at 6 = 0, then if there is
equality for p > 2, we must have 6; =0 for all j, and hence UV =VU =1. As U is
self-adjoint and unitary, we know that U ~1 =, and hence we conclude V = U . The
alternative extrema are reached when 6; = % for all j, and hence UV +VU =0. 0O

We finally expand upon the ranges of Conjectures 1 and 2 as originally seen in [6],
and comment on how this can lead to counterexamples.
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THEOREM 13. Let A,B € M,;»,(C) be self-adjoint with A > B > 0. Then
|A+Bl[5+[|[A= Bl > [|lo(A) +o(B)||,+[|o(A) —a(B)][} (50)

Sfor 1 < p <2, with the inequality reversing for 2 < p < 3. There is equality for p # 1,2
if and only if there is equality in the entire range 1 < p < 3.

Proof. For a positive matrix C and 1 < p < 2, for positive normalization constant

k, we have
> /C 1 1
Cl’:k/ S )iar. 51
P Jo <t2 t+t+C> D

We can therefore express the difference between sides in Equation (50) for 1 < p <2
by the integral representation after cancellation as

h 1 1 1 1 »
fpTr [/o <A+B+t TATBr1 o(A)roB) 11 o) —G(B)—i—t) whdt |

(52)

In [6] it is proven that when A > B > 0, this integrand is always positive semidefinite.

Therefore, the integral is zero is and only if it is zero everywhere, if and only if Equation

(52) is zero. This would happen independent of p, and hence if there is equality for

some 1 < p < 2, there must be equality forall 1 < p < 2.

To extend the range to 2 < p < 3, we see that

“/C 1 1 /C2 C C
CP:kc/ A I t”dt:k/ C 8y C Var 53
"o <t2 t+t+C) " Jo <t2 t+t+C) (>3)

©/C*? C 1 1
— - - - P+l 4
k,,/o <t3 t2+t t—f—C)t dt. (54)

The first three terms of the integral cancel completely between each side of Equation
(50), and now as the sign of the final term is reversed, the argument for 1 < p <2 is
reversed. [

The obvious question is whether or not it is possible to relax the requirement that
A > B >0, perhaps evento A+ B,A — B > 0. The answer is: it is not.

COUNTEREXAMPLE 14. The matrices
60 01
A:M, B:LO] (55)
have the property A+ B,A—B >0, and
l|A+B||p+[|A—B|} < |lo(A)+o(B)|[)+][|lo(A)—a(B)||; (56)

for 1 < p<2and p >3, with the inequality reversing between 2 < p < 3.
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A plot of Counterexample 14 can
be seen in Figure 1. This counterex-
ample hinges on the fact that we chose
B to be unitary, so the “up-down” rear-
rangement and the “aligned” rearrange-
ments were the same. In this case, as A
and B satisfied the requirements of The-
orem 15 (the extension of Conjecture 2)
but not of Theorem 13, ||(A) £+ o(B)||5
was treated as the “up-down” and not the
“aligned” case.

Our proof of Theorem 15 is very
similar to our proof of Theorem 13 which
drew heavy inspiration from the proofs
in [6]. However, it diverges from [6]
in a very important manner: in [6], the
rearrangement inequalities in the inte-
gral representation required both A,B >
0. Therefore for Conjecture 2, they first
proved ||A + B|[; +[|A — B[} < [|A+
IB||5+ ||A —|B|||5 for 1 < p <2, then working with positive matrices A and |B| ad-
dressed the rearrangement. As monotonicity of X” was required, this does not extend
as easily to 2 < p < 3 as the proof of Theorem 13 did. We instead use majorization in
the integral representation, removing the need to consider |B| at all, which then allows
us to extend the range without trouble:

0.02

0.01

1.5

[ ]
g
in

-0.01

Figure 1: ||o(A) + o(B)||5 + |lo(A) —
o(B)|[p — lA+ B[, — [|A=B|l; for 1 < p<
3.1, demonstrating the opposite expected behav-
ior on the intervals 1 < p <2 and 2 < p<3.

THEOREM 15. Let A,B € Myx,(C) be self-adjoint with A+ B,A—B > 0 and
0,(A) = 01(B). Then

[lA+ B[, +[lA =B, < [lo1(A) + o, (B)[[; + ||o(A) — oy (B)[[} 57

SJor 1 < p <2 with the inequality reversing for 2 < p < 3. There is equality for p # 1,2
if and only if A and B commute and they have simultaneous diagonalizations with
diagonals 61(A) and o|(B), and hence there is equality in the entire range 1 < p < 3.

Proof. Once more, we use the integral representation. We can express the differ-
ence between sides in Equation (57) for 1 < p < 2 by the integral representation after
cancellation as

kTrUm< ! + ! - ! - ! )t”dr]
P 0o \A+B+t A—B+t o(A)+0o|(B)+t 0(A)—0|(B)+t '
(58)
We will show that the integrand is always negative. We make the substitution
H=A+t,K=H""?BH'/?, then
(A+B+1) ' =H 21+ K)'H 2 =71/ ( S (—1)”(11{)’”) H™ 2 (59)

m=0
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and

1 1 >
—=2H 12 K2\ g2, 60
AtB+i A_B+1 (Z (60)

m=0

For each m, we notice that K2 is a positive matrix, and hence H'/2K*"H~1/2
is positive, and the eigenvalues and singular values are the same. Therefore,

Te{H 2K 1] i oi(H~ 12K /2 ©1)
i=1

_ i oi(H V2 (HV 2B~/ = 1/2) ©2)
i=1

_ i o(H\2(HV2BH12)m)? (63)

< io, V21V (o4

oi(H o (H 2P o (B) M oi(H 2 (65)

N
Ms T

Il
—_

Our1-i(H) 2" oi(B)*". (66)

|
M=

—

This string makes repeated use of the majorization inequalities from Theorem 7 and
Lemmas 4 and 8. Furthermore, there is equality for p # 1,2 if and only if the inte-
grand is always 0, and there is equality throughout. As we made use of log majorization
0(AB) <(10g) 06(A)0(B), by Lemma 5 this must imply that 6(AB) = 6(A)o(B), which
happens if and only if A and B commute with singular values aligned: by variational
argument, 0;(AB) = 01(A)o;(B) if and only if the eigenvectors of ¢;(A) and o} (B)
are the same, and then reduction of dimension repeats the argument for the other singu-
lar values. Reversing the expansion trick from Line (66) gives m as desired,
completing our proof for 1 < p < 2. The same integral representation for 2 < p < 3 as
in the proof of Theorem 13 now extends the range. [l

An obvious counterexample to Conjecture 2 for all ranges are any pair of unitary
matrices, as shown by Thoerem 12. However, there are matrices that hold in the range
1 < p <2, butnotin the range 2 < p < 3, as demonstrated by Counterexample 16 and
Figure 2. In fact, these matrices C and D also provide a counterexample to Conjecture
1, as seen in Figure 3.

COUNTEREXAMPLE 16. The matrices

co [6 01}’ D— [—1.97035 1.72243

|0 — 1.72243 1.79035 ©7)

are a counterexample for both Conjecture 1 and Conjecture 2, with contrary behavior
for Conjecture 1 within the interval 1 < p < 2; and contrary behavior for Conjecture
2 within the interval 2 < p < 3.



MATRIX REARRANGEMENT INEQUALITIES REVISITED 443

Figure 2: ||o}(C) + oy (D)|[5 + ||o}(C) —

o (D)l —llc+Dl[p —llc=Dl|y for 1< Figure 3: ||o(C) + a(D)|[h + [|o(C) —
p < 3, demonstrating the expected behavior o(D)||5 —||C+D|5 —||C - DI} with con-
on the interval 1 < p < 2, and contrary be- trary behavior within 1 < p < 2.

havior within 2 < p < 3.

[1]
[2]

[3]

[4]

[5]
[6]
[7]

[8]
[9]
[10]

[11]

[12]
[13]
[14]

[15]

REFERENCES

F. J. ALMGREN JR, E. H. LIEB, Symmetric decreasing rearrangement is sometimes continuous
Journal of the American Mathematical Society, pp. 683-773 (1989).

T. ANDO, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra
and its Applications 118, 163—-248 (1989), https://doi.org/10.1016/0024-3795(89)90580-6,
http://www.sciencedirect.com/science/article/pii/0024379589905806.

K.BALL, E. A. CARLEN, E. H. LIEB, Sharp uniform convexity and smoothness inequalities for trace
norms, Inventiones mathematicae 115 (1), 463482 (1994),
https://doi.org/10.1007/BF01231769.

J. C. BOURIN, E. Y. LEE, Clarkson-McCarthy inequalities with unitary and isometry orbits, Linear
Algebra and its Applications 601, 170-179 (2020),
https://doi.org/10.1016/j.1aa.2020.04.019,
http://www.sciencedirect.com/science/article/pii/S0024379520302135.

A. BURCHARD, Cases of equality in the riesz rearrangement inequality, Annals of Mathematics 143
(3),499-527 (1996). http://www. jstor.org/stable/2118534.

E. CARLEN, E. H. LIEB, Some matrix rearrangement inequalities, Annali di Matematica Pura ed
Applicata 185 (5), S315-S324 (2006), https://doi.org/10.1007/s10231-004-0147-z.

K. FAN, Maximum properties and inequalities for the eigenvalues of completely continuous operators,
Proceedings of the National Academy of Sciences of the United States of America 37 (11), 760-766
(1951), 10.1073/pnas.37.11.760, https://wuw.ncbi.nlm.nih.gov/pubmed/16578416.

I. M. GEL’FAND, M. A. NAIMARK, The relation between the unitary representations of the complex
unimodular group and its unitary subgroup, Izv. Akad. Nauk SSSR Ser. Mat. 14 (3), 239-260 (1950).
G.H. HARDY, J. E. LITTLEWOOD, G. POLYA, Some simple inequalities satisfied by convex functions,
Messenger Math. 58, 145-152 (1929), https://ci.nii.ac.jp/naid/10009422169/en/.

G. H. HARDY, G. POLYA, Inequalities, Cambridge: Cambridge University Press (1934), Bibliogra-
phy: p. 300-314.

F. HIAL, Equality cases in matrix norm inequalities of golden-thompson type, Linear and Multilinear
Algebra 36 (4), 239-249 (1994), doi : 10.1080/03081089408818297,
https://doi.org/10.1080/03081089408818297.

F. HiAlL, D. PETZ, Introduction To Matrix Analysis And Applications, 1 edn., chap. 6, pp. 227-271,
Springer International Publishing, Cham (2014).

A. HORN, On the singular values of a product of completely continuous operators, Proceedings of the
National Academy of Sciences of the United States of America 36 (7), 374 (1950).

A. W.MARSHALL, I. OLKIN, B. C. ARNOLD, Inequalities: Theory of Majorization and Its Applica-
tions, 2 edn., Springer, New York (2011).

C. MCCARTHY, c_p cp, Isr. J. Math. 5, 249-271 (1967).



444 V. M. CHAYES

[16] N. TOMCZAK-JAEGERMANN, The moduli of smoothness and convexity and the Rademacher av-
erages of the trace classes S p(1 < p < e0)*, Studia Mathematica 50 (2), 163-182 (1974),
http://eudml.org/doc/217886.

[17] M. ToMmIC, Théoreme de gauss relatif au centre de gravité et son application, Bull. Soc. Math. Phys.
Serbie 1, 31-40 (1949).

[18] H. WEYL, Inequalities between two types of eigenvalues of a linear transformation, Proceedings of
the National Academy of Sciences of the United States of America 35 (7), 408411 (1949).

(Received September 21, 2020) Victoria M. Chayes
Department of Mathematics

Rutgers University

Piscataway, NJ 08854

e-mail: ve362@math. rutgers.edu

Mathematical Inequalities & Applications
w ele-math.com

mia@ele-math.com



