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APPROXIMATE ω –ORTHOGONALITY AND ω –DERIVATION

MARYAM AMYARI AND MARZIEH MORADIAN KHIBARY

Abstract. We introduce the notion of approximate ω -orthogonality (referring to the numerical
radius ω ) and investigate its significant properties. Let T,S ∈ B(H ) and ε ∈ [0,1) . We say
that T is approximate ω -orthogonality to S and we write T ⊥ε

ω S if

ω2(T +λS) � ω2(T )−2εω(T)ω(λS), for all λ ∈ C.

We show that T ⊥ε
ω S if and only if inf

θ∈[0,2π)
Dθ

ω (T,S) � −εω(T)ω(S) in which Dθ
ω (T,S) =

lim
r→0+

ω2(T + reiθ S)−ω2(T )
2r

; and this occurs if and only if for every θ ∈ [0,2π) , there exists a

sequence {xθ
n } of unit vectors in H such that

lim
n→∞

|〈Txθ
n ,xθ

n 〉| = ω(T) and lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T)ω(S),

where ω(T) is the numerical radius of T .
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