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OPERATOR INEQUALITIES AND GYROLINES

OF THE WEIGHTED GEOMETRIC MEANS

SEJONG KIM

Abstract. We consider in this paper two different types of the weighted geometric means of
positive definite operators. We show the component-wise bijection of these geometric means
and give a geometric property of the spectral geometric mean as a metric midpoint. Moreover,
several interesting inequalities related with the geometric means of positive definite operators
will be shown. We also see the meaning of weighted geometric means in the gyrogroup structure
with finite dimension and find the formulas of weighted geometric means of 2-by-2 positive
definite matrices and density matrices.
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