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DISCRETE HARDY’S TYPE INEQUALITIES AND

STRUCTURE OF DISCRETE CLASS OF WEIGHTS

SATISFY REVERSE HÖLDER’S INEQUALITY

S. H. SAKER ∗ AND R. P. AGARWAL

Abstract. In this paper, we will prove a new discrete weighted Hardy’s type inequality with dif-
ferent powers. Next, we will apply this inequality to prove that the forward and backward prop-
agation properties (self-improving properties) for the general discrete class Bp,q of weights that
satisfy the reverse Hölder inequality hold. As special cases, we will deduce the self-improving
properties of discrete Gehring and Muckenhoupt weights. An example is considered for illustra-
tions.
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[4] A. BÖTTCHER AND M. SEYBOLD, Wackelsatz and Stechkin’s inequality for discrete Muckenhoupt
weights, Preprint no. 99–7, TU Chemnitz, (1999).
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[29] J.-O. STRÖMBERG AND A. TORCHINSKY, Weighted Hardy Spaces, Lecture Notes in. Math. 1381,
Springer, Berlin (1989).

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


