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DISCRETE HARDY’S TYPE INEQUALITIES AND

STRUCTURE OF DISCRETE CLASS OF WEIGHTS

SATISFY REVERSE HÖLDER’S INEQUALITY

S. H. SAKER ∗ AND R. P. AGARWAL

(Communicated by M. Praljak)

Abstract. In this paper, we will prove a new discrete weighted Hardy’s type inequality with dif-
ferent powers. Next, we will apply this inequality to prove that the forward and backward prop-
agation properties (self-improving properties) for the general discrete class Bp,q of weights that
satisfy the reverse Hölder inequality hold. As special cases, we will deduce the self-improving
properties of discrete Gehring and Muckenhoupt weights. An example is considered for illustra-
tions.

1. Introduction

The classical Muckenhoupt class of weights has been introduced by Muckenhoupt
[17] in connection with the boundedness of the Hardy and Littlewood maximal operator
in the space Lp

w(R+) with weight w . A year later, a different class of weights satisfying
reverse Hölder’s inequality has been introduced by Gehring [7, 8] in connection with
the integrability properties of the gradient of quasiconformal mappings. For further
studies of these two classes, we refer the reader to [6, 10, 17, 19, 20, 21, 28] and the
references cited therein.

During the past few years there has been renewed interest in the area of discrete
harmonic analysis and then it becomes an active field of research [12]. For example,
the study of regularity and boundedness of discrete operator on �p(Z+) analogues for
Lp(R+)-regularity and boundedness has been considered by some authors, see for ex-
ample [3, 11, 14] and the references they are cited. This began with an observation of
Riesz in his work on the Hilbert transform in 1928 and later in the work of Calderón
and Zygmund on singular integrals in 1952. Whereas some results from Euclidean har-
monic analysis admit an obvious variant in the discrete setting, some others do not. It is
well known that passage from integral operators to their discrete analogues is not trivial
(see, e.g., [5]) and each of these two settings requires its own techniques. The discrete
weighted theory came of age with the paper [9] of Hunt, Muckenhoupt and Wheeden,
showing that for non-negative weight v , the discrete Hilbert operator is bounded on
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�p
v (Z+) if and only if v belongs to the discrete Muckenhoupt class of weights. We

confine ourselves in this paper in studying the structure of a general class of discrete
weights which contains the discrete Muckenhoupt and discrete Gehring classes as spe-
cial cases.

In the following, we introduce some notation and basic results in discrete harmonic
analysis that will be used in the rest of this paper. Throughout, we assume that 1 < p <
∞ . A discrete weight on Z+ = {1,2, . . .} is a sequence v = {v(n)}∞

n=1 of nonnegative
real numbers. Given a weight v , we denote by �p

v (Z+) the Banach space of all real-
valued sequences x = {x(n)}∞

n=1 such that

‖x‖�
p
v (Z+) :=

(
∞

∑
n=1

|x(n)|p v(n)

)1/p

< ∞.

A discrete weight v is said to belong to the discrete Muckenhoupt class A 1(A) on
I ⊂ Z+ for p > 1 and A > 1, if the inequality

1
|J| ∑

k∈J

v(k) � Av(k), for all k ∈ J, (1)

holds for every subinterval J ⊂ I and |J| is the cardinality of the set J . In [1] Arińo
and Muckenhoupt proved that if v is nonincreasing and satisfies (1) then the space
d(v−q∗/q,q∗) is the dual space of the discrete classical Lorentz space

d(v,q) =

⎧⎨
⎩x : ‖x‖v,q =

(
∞

∑
n=1

|x∗(n)|q v(n)

)1/q

< ∞

⎫⎬
⎭ ,

where x∗(n) is the nonincreasing rearrangement of |x(n)| and q∗ is the conjugate of q.
A discrete weight v is said to belong to the discrete Muckenhoupt class A 2(A) on the
interval I ⊆ Z+ for p > 1 and A > 1, if the inequality

∑
k∈J

v(k) ∑
k∈J

v−1(k) � A |J|2 , (2)

holds for every subinterval J ⊂ I . In [18] Pavlov gave a full description of all complete
interpolating sequences on the real line by using the integral from of (2). In particular,
he proved that the sequence λn of real numbers is a complete interpolating sequence if
and only if the function w = |F(x+ iy)|2 , x ∈ R , satisfies the Muckenhoupt condition

∫
J
w(x)dx

∫
J
w−1(x)dx � A |J|2 , (3)

for some constant A > 0, some y �= 0 for all intervals J ⊂ R of finite length |J| , where

F(z) = lim
R→∞ ∏

|λn|<R

(
1− z

λn

)
.
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Lyubarskii and Seip [13] shown that the condition (3) can be replaced by a discrete
version (2) and proved that sequence λn of real numbers is a complete interpolating se-
quence if and only if there is a relatively dense subsequence λnk such that the numbers

d(k) =
∣∣∣F ′

(λnk)
∣∣∣2 satisfies the discrete Muckenhoupt condition (2) for some constant

A > 0 and all finite sets J of consecutive integers containing |J| elements. Checking
the Muckenhoupt condition (3) for a function F given by an infinite product (cover-
ing in the Cauchy principle value sense) is particularly quite hard. Condition (2) is
already easier to verify since it involves only countably many sets J instead of all finite
intervals.

A discrete nonnegative sequence v is said to belong to the discrete Muckenhoupt
class A p(A) on the interval I ⊆ Z+ for p > 1 and A > 1 if the inequality

(
1
|J| ∑

k∈J

v(k)

)(
1
|J| ∑

k∈J

v
−1
p−1 (k)

)p−1

� A, (4)

holds for every subinterval interval J ⊂ I. For a given exponent p > 1, we define the
A p -norm of the discrete weight v by the following quantity

A p(v) := sup
J⊂I

(
1
|J| ∑

k∈J

v(k)

)(
1
|J| ∑

k∈J

v
−1
p−1 (k)

)p−1

, (5)

where the supremum is taken over all intervals J ⊂ I . When we fix a constant A > 1 the
couple of real numbers (p,A) defines the A p discrete Muckenhoupt class A p(A) :

v ∈ A p(A) ⇐⇒ A p(v) � A,

and we will refer to A as the A p −constant of the class. Note that by Hölder’s in-
equality A p(v) � 1 for all 1 < p < ∞ and that the following inclusion is true:

if 1 < p � q < ∞, then A p ⊂ A q and A q(v) � A p(v).

A discrete nonnegative weight v is said to belong to the discrete Gehring class G q(K )
for a given exponent q > 1 and a constant K > 1, (or satisfies the reverse Hölder
inequality) on the interval I ⊂ Z+ if for every subinterval J ⊆ I , we have

(
1
|J|∑k∈J

vq(k)

) 1
q

� K
1
|J| ∑

k∈J

v(k).

For a given exponent q > 1, we define the G q -norm of v as

G q(v) := sup
J⊂I

⎡
⎣( 1

|J| ∑
k∈J

v(k)

)−1(
1
|J| ∑

k∈J

vq(k)

) 1
q
⎤
⎦

q
q−1

,
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where the supremum is taken over all intervals J ⊂ I and represents the best constant
for which the G q -condition holds true independently on the interval J ⊆ I . We say that
v is a discrete Gehring weight if its G q -norm is finite, i.e.,

v ∈ G q ⇐⇒ G q(v) < ∞.

When we fix a constant K > 1 the couple of real numbers (q,K ) defines the G p -
discrete Gehring class G p(K ) :

v ∈ G q(K ) ⇐⇒ G q(v) � K ,

and we will refer to K as the G q-constant of the class. Note that by Hölder’s inequality
G q(v) � 1 for all 1 < q < ∞ and that the following inclusion is true:

if 1 < p � q < ∞, then G q ⊂ G p and 1 � G p(v) � G q(v).

It is evident from the condition (4) that v and v−1/(p−1) must be summable and con-
sequently almost every where finite. In particular, v > 0 almost everywhere. The
following simple facts follow directly from the definition of the condition (4) and the
properly applicable Hölder’s inequality: The weight v ∈ A p (1 < p < ∞) if and only

if v−
1

p−1 ∈ A p
′

where p
′

is the conjugate of p , and if v ∈ A p (1 < p < ∞) then
vα ∈ A p for any 0 < α < 1.

In [4] Böttcher and Seybold proved that if v ∈ A p satisfies (4) then there is an
v ∈ A p−ε which is called the self-improving property for discrete weights. This result
also has been stated in the book of Strömberg and Torchinsky [29] for the class Muck-
enhoupt weights as a result in an abstract context but nothing has been said regarding
the exact value of ε .

In [25] the authors established the discrete versions of the Korenovskii result [10]
and proved that if q > 1, A > 1 and v is a nondecreasing weight belonging to A q(A) ,
then v ∈ A p(A1) for p ∈ (p0,q] where p0 > 1 is the unique solution of the equation

(Ap0)
1

q−1

(
q− p0

q−1

)
= 1. (6)

This result shows that if v ∈ A q(A) then there exist an ε > 0 and a constant A1 =
A1(p,A) such that v ∈ Aq−ε(A1) , (self-improving property) and thus

Aq(A) ⊂ Aq−ε(A1), (7)

where ε = q− p for p ∈ (p0,q] where p0 > 1 is determined from the solution of the
equation (6). In [4] Böttcher and Seybold proved that if v satisfies the Muckenhoupt
condition (4), then there exists a constant δ > 0 and K1 < ∞ depending only on p and
v such that the reverse of the inequality Hölder inequality

1
|J| ∑

k∈J

vp(1+ε)(k) � K1

(
1
|J| ∑

k∈J

vp(k)

)1+ε

, (8)
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holds (a transition property) for all ε ∈ [0,δ ] and all J of the form |J| = 2r with
r ∈ N , the set of natural numbers. In [22] the authors proved that if v is a nonincreasing
sequence and satisfies (1) for A > 1, then for p ∈ [1, C/(C−1)) the inequality

1
|J| ∑

k∈J

vp(k) � A1

(
1
|J| ∑

k∈J

v(k)

)p

, for J ⊂ I, (9)

holds for every subinterval interval J ⊂ I . This result proves that any Muckenhoupt A 1

weight belongs to some Gehring classes of weights (a transition property). In [24] the
authors proved the discrete versions of the results of D’Apuzzo and Sbordone [6] for
the general case of nondecreasing functions and proved that if q > 1 and Kq > 1 and
v is a nonincreasing sequence belonging to G q(Kq) , then v ∈ G p(Kp) for p ∈ [q,q∗)
where q∗ is determined from the equation

(
x

x−1

)−1( x
x−q

) 1
x

= Kq. (10)

For more details of properties of discrete Muckenhoupt and Gehring weights, we refer
the reader to the papers [23, 26, 27].

The natural question now is: Is it possible to prove the self-improving properties
of general class of discrete weights which as special cases contain the properties of the
discrete Muckenhoupt and Gehring weights?

Our aim in this paper, is to give an affirmative answer to the above question for the
generalized discrete class of weights that satisfy a generalized reverse Hölder inequality

(
1
|J| ∑n∈J

vq (n)

)1/q

� C

(
1
|J| ∑n∈J

vp (n)

)1/p

, for all J ⊂ I. (11)

For C � 1 and q > p > 1, we denote by Bp.q(C ) the class of all nonnegative weights
v that satisfy the inequality (11). By recalling the classical Hölder inequality it is clear
that the definition of Bp.q is well posed only for C � 1, where the equality prevails in
case of constant sequences. The smallest constant, independent on the interval J , sat-
isfying the inequality (11) is called the Bp.q -norm of the weight v and will be denoted
by Bp,q(v) and given by

Bp,q(v) := sup
J⊂I

(
1
|J| ∑n∈J

vp(n)

)− 1
p
(

1
|J| ∑n∈J

vq(n)

) 1
q

. (12)

We say that v is a Bp.q -weight if its Bp.q -norm is finite, i.e.,

v ∈ Bp,q ⇐⇒ Bp,q(v) < +∞.

When we fix a constant C > 1 the triple of real numbers (p,q,C ) defines the Bp.q

discrete class:
v ∈ Bp,q(C ) ⇐⇒ Bp,q(v) � C ,
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and we will refer to C as the Bp.q−constant of the class. Moreover

v ∈ Bp,q(C ) ⇔ vp ∈ B1,q/p(C p) ⇔ vq ∈ Bp/q,1(C q),

and the following properties hold:

Bp,q(C ) ⊂ Bp,r(C ), for p < r � q,

Bp,q(C ) ⊂ Br,q(C ), for p � r < q.

It is immediate to observe that the classes A p and G q are special cases of the Bp.q(C )
of discrete weights as follows:

(1). A p(C ) = B
1

1−p ,1(C ) ⇔ A
p−1
p (C ) = B1,p(C ),

(2). G q(C ) = B1,q(C ).
The goal of this paper is to prove that the forward (Bp,q ⊂ Bp,q+ε ) and the back-

ward (Bp,q ⊂ Bp−ε,q ) propagation properties for the general class Bp,q of all non-
negative weights v satisfying the reverse Hölder inequality (11) hold.

The paper is organized as follows: In the next section, we state and prove the
essential inequalities that will be needed in the proofs of the main results. These basic
inequalities include the weighted inequality of Hardy’s type. In Section 3, we state and
prove the main results for self-improving properties of the general class Bp.q(C ) and
determine the exact values of constants and exponents in the respective inequalities.
Next, we obtain the self-improving properties of A p and G q classes as special cases.
An example is considered to illustrate the sharpness of the results.

2. Basic lemmas

In this section, we state and prove the basic lemmas that will be used in the proofs
of the main results in the next section. Throughout the rest of the paper, we will assume
that the weights are nonnegative sequences defined on I ⊂ Z+ and use the conventions
0 ·∞ = 0 and 0/0 = 0 and ∑b

k=m y(k) = 0, whenever m > b, Δ
(
∑k−1

s=a y(s)
)

= y(k) and

∑k−1
s=a Δy(s) = y(k)− y(a).

LEMMA 1. [2, Lemma 3] If p � 1, then for all n ∈ Z+

N

∑
k=1

a(k)

(
k

∑
s=1

a(s)

)p−1

�
(

N

∑
k=1

a(k)

)p

� p
N

∑
k=1

a(k)

(
k

∑
s=1

a(s)

)p−1

. (13)

The inequalities reverse direction if 0 < p < 1 and a(1) > 0. The constants (1 and p)
are best possible.

We begin with the following lemma is the discrete version of the Hardy-Littlewood
inequality.
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LEMMA 2. Suppose that v is a nonincreasing sequence with v(1) > 0 . Then for
r � 1 the following inequality

(
N

∑
k=1

vr(k)

)1/r

�
[

N

∑
k=1

(k)(1/r)−1 v(k)

]
, (14)

holds.

Proof. Since vr is nonincreasing on Z+ , we have that

kvr(k) �
k

∑
s=1

vr(s), for all k ∈ Z+. (15)

Using the fact that the function ψ(u) = u(1/r)−1 is nonincreasing on (0,∞) , we have
from (15) that

(
k

∑
s=1

vr(s)

)(1/r)−1

vr(k) � (kvr(k))(1/r)−1 vr(k) = (k)(1/r)−1 v(k). (16)

By using the power rule (13) with p = 1/r � 1 and a(k) = vr(k) with a(1) > 0, we
have that (

N

∑
k=1

vr(k)

)p

�
N

∑
k=1

vr(k)

(
k

∑
s=1

vr(s)

)p−1

. (17)

Summing the inequality (16) over k from 1 to N and using (17), we get that

(
N

∑
k=1

vr(k)

)1/r

�
[

N

∑
k=1

(k)(1/r)−1 v(k)

]
, (18)

which is the desired inequality (14). The proof is complete. �

By replacing v by vr and setting r = s/r � 1 in (14) , where r and s are positive
numbers such that s � r , we get the following result.

COROLLARY 1. Let v : Z+ → R
+ be a nonincreasing sequence and there exist

positive numbers r and s such that r � s. Then

(
N

∑
k=1

vs(k)

)r/s

�
(

N

∑
k=1

k(r/s)−1vr(k)

)
. (19)

In Corollary 1, if the sequence v is replaced by 1/g , where g is a positive and
nondecreasing sequence, we get the following result.
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COROLLARY 2. Let g : Z+ → R
+ be a positive and nondecreasing sequence. If

r and s are positive real numbers such that r � s, then

(
N

∑
k=1

g−s(k)

) r
s

�
(

N

∑
k=1

k
r
s−1g−r(k)

)
. (20)

LEMMA 3. Assume that ϕ , ψ are nonnegative sequences, then

N

∑
k=1

ϕ(k)

(
N

∑
s=k

ψ(s)

)
=

N

∑
k=1

ψ(k)

(
k

∑
s=1

ϕ(k)

)
. (21)

Proof. Assume that Ψ(k) = ∑N
s=k ψ(s). Applying the summation by parts

N

∑
k=1

Δu(n)υ(n+1) = u(k)υ(k)|N+1
k=1 −

N

∑
k=1

u(n)Δυ(n), (22)

on the term ∑N
k=1 ϕ(k)Ψ(k) with u(k) = Ψ(k) and Δv(k) = ϕ(k), we see that

N

∑
k=1

ϕ(k)

(
N

∑
s=k

ψ(s)

)
= Ψ(k)v(k)|N+1

1 −
N

∑
k=1

ΔΨ(k)v(k+1),

where v(k) = ∑k−1
s=1 ϕ(s). Using v(a) = Ψ(N +1) = 0, we obtain that

N

∑
k=1

ϕ(k)

(
N

∑
s=k

ψ(s)

)
=

N

∑
k=1

(−ΔΨ(k))v(k+1)

=
N

∑
k=1

ψ(k)

(
k

∑
s=1

ϕ(s)

)
.

The proof is complete. �
For any weight g : I → R

+ , we define the Hardy operator M g : I → R
+ by

M g(n) =
1
n

n

∑
k=1

g(k), for all n ∈ I. (23)

From the definition of M g , we see that if g is nonincreasing, then

M g(n) =
1
n

n

∑
s=1

g(s) � 1
n

n

∑
s=1

g(n) = g(n).

By using the above inequality one can see that Δ(M g(n)) < 0. These two facts, give
us the following properties of M g.

LEMMA 4. If v is nonincreasing then so is M g and M g � g.
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REMARK 1. As a consequence of Lemma 4, we notice that if g is nonnegative
and nonincreasing, then M gq � gq. We also notice that if g is nonnegative and nonin-
creasing, then so is M gq for q > 1.

LEMMA 5. Let g : Z+ → R
+ be a nonnegative sequence and M g defined be as

in (23). If λ < 0 , then

N

∑
k=1

kλ M g(k) � 1
λ

[
Nλ

N

∑
k=1

g(k)−
N

∑
k=1

kλ g(k)

]
. (24)

Proof. From the definition of M g , we see that

N

∑
k=1

kλ M g(k) =
N

∑
k=1

kλ

k

k

∑
s=1

g(s) .

By applying Lemma 3, we get that

N

∑
k=1

kλ M g(k) �
N

∑
k=1

g(k)

(
N−1

∑
s=k

kλ−1

)
. (25)

By employing the inequality

γxγ−1(x− y) � xγ − yγ � γyγ−1(x− y), (26)

for x � y > 0, for γ = λ < 0, we have that

λ sλ−1 � Δsλ � λ (s+1)λ−1.

This implies that (note that λ < 0)

N−1

∑
s=k

sλ−1 � 1
λ

N−1

∑
s=k

Δsλ =
1
λ

[
Nλ − kλ

]
.

This and (25) give us that

N

∑
k=1

kλ M g(k) � 1
λ

[
Nλ

N

∑
k=1

g(k)−
N

∑
k=1

kλ g(k)

]
,

which is the desired inequality (24). The proof is complete. �

THEOREM 1. Let u be a nonnegative sequence. If 0 < p � q and q � 1 , then

[
∞

∑
n=1

(
n

∑
k=1

u(k)

)q

n−p−1

]1/q

�
(

q
p

)[ ∞

∑
n=1

(nu(n))q n−p−1

]1/q

. (27)
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Proof. Since ∑n
k=1 Δ(k−1)p/q = np/q , we have that(

n

∑
k=1

u(k)

)q

=

(
np/q

n

∑
k=1

u(k)

Δ(k−1)p/q

Δ(k−1)p/q

np/q

)q

= np

(
n

∑
k=1

u(k)

Δ(k−1)p/q

Δ(k−1)p/q

∑n
k=1 Δ(k−1)p/q

)q

. (28)

Now, by applying Jensen’s inequality

ϕ
(

∑ωkuk

∑ωk

)
� ∑ωkϕ (uk)

∑ωk
, (29)

with the convex function ϕ(x) = |x|q , for q > 1,

uk =
u(k)

Δ(k−1)p/q
, and ωk = Δ(k−1)p/q ,

we have that

(
n

∑
k=1

u(k)

)q

� np
n

∑
k=1

(
u(k)

Δ(k−1)p/q

)q

Δ(k−1)p/q

∑n
k=1 Δ(k−1)p/q

= np
n

∑
k=1

uq(k)

(
Δ(k−1)p/q

)1−q

np/q

= np−p/q
n

∑
k=1

uq(k)
(

Δ(k−1)p/q
)1−q

. (30)

By applying the elementary inequality

γxγ−1(x− y) � xγ − yγ � γyγ−1(x− y), (31)

for x � y > 0, 0 � γ � 1, with 0 � p/q < 1, we obtain

p
q

kp/q−1 � Δ(k−1)p/q � p
q

(k−1)p/q−1 . (32)

Then (30) becomes(
n

∑
k=1

u(k)

)q

�
(

q
p

)q−1

np−p/q
n

∑
k=1

kq−p−1+p/quq(k). (33)

By using inequality (33), we have

∞

∑
n=1

(
n

∑
k=1

u(k)

)q

n−p−1 �
(

q
p

)q−1 ∞

∑
n=1

n−p/q−1

(
n

∑
k=1

uq(k)kq−p−1+p/q

)

�
(

q
p

)q−1 ∞

∑
n=1

n−p/q−1

(
n+1

∑
k=1

uq(k)kq−p−1+p/q

)
. (34)
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The elementary inequality (26) with γ = −p/q < 0 implies that

− p
q

(n−1)−p/q−1 � Δ(n−1)−p/q � − p
q
n−p/q−1. (35)

Also, by employing (35) and (21) on (34), we have

∞

∑
n=1

(
n

∑
k=1

u(k)

)q

n−p−1

�
(

q
p

)q−1 ∞

∑
n=1

(
− q

p
Δ(n−1)−p/q

)(n+1

∑
k=1

kq−p−1+p/quq(k)

)

= −
(

q
p

)q ∞

∑
n=1

uq(n)nq−p+p/q−1

(
∞

∑
k=n+1

Δ(k−1)−p/q

)

= −
(

q
p

)q ∞

∑
n=1

uq(n)nq−p+p/q−1
(
−n−p/q

)
�
(

q
p

)q ∞

∑
n=1

[nu(n)]q n−p−1,

which is the desired inequality (27). The proof is complete. �
Now, by putting u = g and q = β and p = β −α with 0 < α < 1, we have from

Theorem 1 the following new inequality of Hardy’s type which plays a crucial rule in
the proof of the main results.

THEOREM 2. Let g be a nonnegative sequence. Suppose that β > 1 and 0 < α <
1 or β < 0 , α < 0 and M g be defined as in (23) . Then

N

∑
k=1

1
k1−α (M g(k))β �

(
β

β −α

)β N

∑
k=1

1
k1−α gβ (k) . (36)

By replacing g by gp, α = q/s < 1 and β = q/p > 1 in Theorem 2 we get the
following result.

LEMMA 6. Let g be a nonincreasing sequence. If p, q and s are positive num-
bers such that s > q > 0 and q > p, then

N

∑
n=1

n
q
s −1

(
1
n

n

∑
k=1

gp(k)

) q
p

�
(

s
s− p

) q
p N

∑
n=1

(n)
q
s −1gq (n) . (37)

In Theorem 2 if we set α = q/r and β = q/p where q > 0 and r < p < 0, and
replacing g with gp where g is a nondecreasing sequence, we get the following result.

LEMMA 7. Let v be a nondecreasing sequence. If q > 0 and p, r < 0 , then

N

∑
n=1

(n)
q
r −1

(
1
n

n

∑
k=1

gp(k)

)q/p

�
(

r
r− p

) q
p N

∑
n=1

(n)
q
r −1 gp (n) . (38)
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3. Main results

In this section, we prove the main results. First, let us recall and present some
properties of the Bp,q(C )-characteristic equation

(
x

x−q

) 1
q

= C

(
x

x− p

) 1
p

. (39)

This equation (see [19] and [20])) can be written in terms of ω -function in the equiva-
lent form ω(p,q,x) = C , where

ω(p,q,x) =
(

x
x− p

)− 1
p
(

x
x−q

) 1
q

.

Actually, by observing that the ω function is strictly increasing for x in (−∞,0) and
strictly decreasing in (0,+∞) , we see that the equation ω(p,q,x) = C admits only one
negative root ν− = ν−(p,q,C ) and one positive root ν+ = ν+(p,q,C ) .

THEOREM 3. Let C > 1 and p, q ∈ R−{0} real numbers such that p < q and
v ∈ Bp,q(C ). Furthermore assume that ν− and ν+ are the two solutions of the equa-
tion

ω(p,q,x) = C . (40)

(i) . If p > 0 then there exists s ∈ [q,q∗) where q∗ = ν+(p,q,C ) such that

1

N
q
s

N

∑
n=1

(n)
q
s −1vq (n) � 1

ϕq,p(s)
1
N

N

∑
n=1

vq (n) , (41)

where

ϕq,p(s) = 1−
[
C

(
s−q

s

) 1
q
(

s
s− p

) 1
p
]q

> 0.

(ii). If p < 0 then there exists r ∈ (p∗, p] where p∗ = ν−(p,q,C ) such that

1

N
p
r

N

∑
n=1

(n)
p
r −1vp(n) � 1

ψ p,q(r)
1
N

N

∑
n=1

vp(n), (42)

where

ψq,p(r) = 1−
[

1
C

(
r− p

r

) 1
p
(

r
r−q

) 1
q
]p

> 0.

Proof. First, we prove the Statement (i) and assume that v is a nonincreasing
sequence defined on Z+ . By using the assumption v ∈ Bp,q(C ), we have from (11)
that

(Vq (n))1/q � C (Vp (n))1/p , (43)
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where

Vp (n) :=
1
n

n

∑
k=1

vp (k) , and Vq (n) :=
1
n

n

∑
k=1

vq (k) .

From the inequality (43), we have that

N

∑
n=1

(n)(q/s)−1Vq (n) � C q
N

∑
n=1

(n)(q/s)−1 (Vp (n))q/p . (44)

By setting α = q/s and β = q/p , we have that β > 1 and 0 < α < 1 if q > 0 and
α < 0, β < 0 if q < 0. So the inequality (37) of Lemma 6 works (by replacing g by
vp , α = q/s < 1 and β = q/p > 1), and we get that

N

∑
n=1

(n)(q/s)−1 (Vp (n))q/p �
(

s
s− p

)q/p N

∑
n=1

(n)(q/s)−1vq (n) . (45)

Now by combining (44) and (45), we see that

N

∑
n=1

(n)(q/s)−1Vq (n) � C q
(

s
s− p

)q/p N

∑
n=1

(n)(q/s)−1vq (n) . (46)

By applying Lemma 5 on the left-hand side of (46) with λ = (q/s)−1 < 0 and g = vq ,
we see that

N

∑
n=1

(n)(q/s)−1Vq (n)

� s
(q− s)

[
N

q
s −1

N

∑
n=1

vq (n)−
N

∑
n=1

(n)(q/s)−1vq (n)

]

=
s

(s−q)

[
N

∑
n=1

(n)(q/s)−1vq (n)−N
q
s −1

N

∑
n=1

vq (n)

]
. (47)

From (46) and (47), we have that[
N

∑
n=1

(n)(q/s)−1vq (n)− (N)
q
s−1

N

∑
n=1

vq (n)

]

� C q
(

s−q
s

)(
s

s− p

)q/p N

∑
n=1

(n)(q/s)−1vq (n)

� C q
(

s−q
s

)(
s

s− p

)q/p N

∑
n=1

(n)(q/s)−1vq (n) ,

which leads to[
1−C q

( s−q
s

)(
s

s−p

)q/p
]

N
q
s

N

∑
n=1

(n)(q/s)−1vq (n) � 1
N

N

∑
n=1

vq (n) . (48)
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Let us now introduce the auxiliary function

ϕq,p(s) = 1−C q
(

s−q
s

)(
s

s− p

) q
p

,

which can be written in terms of ω -function as

ϕq,p(s) = 1−
[
C

(
s−q

s

) 1
q
(

s
s− p

) 1
p
]q

= 1−
[

C

ω(p,q,s)

]q

.

Clearly ϕq,p(q) = 1 and as ω(p,q,s) strictly decreases for positive values of s , the
same does ϕq,p(s) , which will be zero for a certain value q∗ > q given by the unique
positive root ν+ to the equation ω(p,q,s) = C . So ϕq,p(q∗) = 0 and

ϕq,p(s) > 0 ⇔ C

ω(p,q,s)
< 1 ⇔

(
s− p

s

) 1
p

> C

(
s−q

s

) 1
q

.

So we have that ϕq,p(s) > 0 in [q,q∗) and from (48), we get that

1

N
q
s

N

∑
n=1

(n)
q
s−1vq (n) � 1

ϕq,p(s)

(
1
N

N

∑
n=1

vq (n)

)
,

which completes the proof of the statement (i) . Now, we consider the Statement (ii)
and assume that v ∈ Bp,q(C ) be a nondecreasing sequence defined on I . Following
similar steps as in the proof of the Statement (i) by using the inequality (38) in Lemma
7 with g = v, we obtain that[

1−C−p
(

r− p
r

)(
r

r−q

) p
q
]

N

∑
n=1

(n)
p
r −1vp � (N)

p
r −1

N

∑
n=1

vp(n). (49)

By setting

ψ p,q(r) =

[
1−C−p

(
r− p

r

)(
r

r−q

) p
q
]

,

we get that

ψ p,q(r) = 1−
[

1
C

(
r− p

r

) 1
p
(

r
r−q

) 1
q
]p

= 1−
[

ω(p,q,r)
C1

]p

.

It is clear that ψ p,q(r) = 1 for r = p and as ω(p,q,r) strictly increases for negative
values of r , the same does ψ p,q(r) , which will be zero for a certain value p∗ < p given
by the unique negative solution ν− to the equation ω(p,q,x) = C . So ψq,q(p∗) = 0,
and

ψ p,q(r) > 0 ⇐⇒ ω(p,q,r)
C

< 1 ⇐⇒
(

r− p
r

) 1
p

> C

(
r−q

r

) 1
q

.
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Hence, as ψ p,q(r) > 0 in (p∗, p] , from (49) we can obtain

1

N
p
r

N

∑
n=1

(n)
p
r −1vp(n) � 1

ψ p,q(r)N

N

∑
n=1

vp(n),

which completes the proof of the Statement (ii). The proof is complete. �
Now, we prove the self-improving properties of the discrete class Bp.q(C ) .

THEOREM 4. Let C > 1 and p, q ∈ R−{0} real numbers such that p < q.
If ν− � p and ν+ � q are the two solutions of the equation (40), then we have the
following:

(1). If pq > 0 and v ∈ Bp,q(C ) be a nonincreasing sequence, then v ∈ Bp,s(Cs)
for any s ∈ R

+ such that q � s < q∗ where q∗ = ν+(p,q,C ) and

Cs = C

[
1

ϕq,p(s)

] 1
q

. (50)

(2). If pq < 0 and v ∈Bp,q(C ) be a nondecreasing sequence, then v ∈Br,q(Dr)
for any r ∈ R

− such that p∗ < r � p where p∗ = ν−(p,q,C ) and

Dr = C

[
1

ψ p,q(r)

]− 1
p

. (51)

Proof. First we prove (1). Let us suppose that p > 0 and q > 0. Since v be a
nonincreasing sequence in Bp,q(C ) , then the sequence v satisfies the conditions of
Lemma 1 and then from the inequality (19) by replacing r with q and noting that
q/s < 1, we get that (

N

∑
n=1

vs(n)

)q/s

�
(

N

∑
n=1

(n)
q
s−1vq(n)

)
.

This implies that

1

N
q
s

(
N

∑
n=1

vs(n)

)q/s

� 1

N
q
s

(
N

∑
n=1

(n)
q
s −1vq(n)

)
. (52)

By combining (41) and (52), we get that

1

N
q
s

(
N

∑
n=1

vs(n)

)q/s

� 1
ϕq,p(s)N

N

∑
n=1

vq (n) ,

and this implies that(
1
N

N

∑
n=1

vs(n)

)1/s

�
(

1
ϕq,p(s)

)1/q
(

1
N

N

∑
n=1

vq (n)

)1/q

.
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Finally, by setting Ks = [1/ϕq,p(s)]
1
q , and applying the Bp,q(C ) condition on the last

inequality, we obtain that

(
1
N

N

∑
n=1

vs(n)

)1/s

� C Ks

(
1
N

N

∑
n=1

vp (n)

) 1
p

. (53)

This implies that v ∈ Bp,s(C Ks) for all values of s such that ϕq,p(s) > 0 or, equiva-
lently, for all s ∈ [q,q∗) with q∗ = ν+(p,q,C ) unique positive solution to the equation
ϕq,p(x) = 0, i.e.

ω(p,q,q∗) = C . (54)

This proves the equation (40) and then proves Statement (1) .
Now, we prove the Statement (2). Let us suppose that p < 0 and q > 0 and

v ∈ Bp,q(C ) be a nonnegative and nondecreasing sequence . Since p < 0, we see that
vp is nonincreasing and then Lemma 1 works for the sequence vp and for r/p < 1, we
have that (

N

∑
n=1

vr(n)

) p
r

�
N

∑
n=1

(n)
p
r −1vp(n). (55)

Then from (42) and (55), we get that

1

N
p
r −1

(
N

∑
n=1

vr(n)

) p
r

�
N

∑
n=1

vp(n).

Taking into account that p < 0, we obtain

[
1

ψ p,q(r)

] 1
p
(

1
N

N

∑
n=1

vp(n)

) 1
p

�
(

1
N

N

∑
n=1

vr(n)

) 1
r

By setting

Kr =
[

1
ψ p,q(r)

] 1
p

,

and applying the Bp,q(C ) condition on the last inequality we conclude that

(
1
N

N

∑
n=1

vq(n)

) 1
q

� C

Kr

(
1
N

N

∑
n=1

vr(n)

) 1
r

. (56)

This implies that v ∈ Br,q(C /Kr) for all values of r such that ψ p,q(r) > 0, or equiva-
lently, for all r ∈ (p∗, p] where p∗ = ν−(p,q,C ) is the unique negative solution of the
equation ψ p,q(x) = 0, i.e., ω(p,q, p∗) = C . This proves the Statement (2) . The proof
is complete. �
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REMARK 2. It is immediate to see that for p = 1, Theorem 4 gives an improve-
ment of a result due to Saker and Krnić [24] for Gehring class G q(C ) = B1,q(C ). In
fact Theorem 4 proves that if v ∈ G q(C ) then then v ∈ G s(Cs) , where s is determined
from the equation (

x
x−1

)−1( x
x−q

) 1
q

= C ,

with a constant given in (50).

REMARK 3. Also for q = 1 and p = 1/(1− p) , we see that Theorem 4 gives a
sharp self-improving property due to Saker, O’Regan and Agarwal [25] for the Muck-

enhoupt class A p(C ) = B1, 1
1−p (C ). In this case, we see that ω(p,q,x) = C becomes

(
x

x−1

)(
(p−1)x

(p−1)x+1

)p−1

= C ,

and then by applying the transform r → 1/(1− x) , we see that r is determined from
the equation

p− r
p−1

(C r)
1

p−1 = 1. (57)

Then Theorem 4 gives a result for Muckenhoupt class and proves that if v ∈ A p(C )
then v ∈ A r(Dr) where r is determined from the equation (57) with a constant given
in (51).

In the following lemma, we will prove that the results proved in Theorem 4 are
optimal.

LEMMA 8. (1). Let ν+ be the unique positive solution of the equation (39). Then
the sequence v(n) = n−1/ν+ satisfies Bp,q(v) < ∞ but Bp,ν+(v) = ∞ if 0 < p < q.

(2). Let ν− be the unique negative solution of the equation (39). Then the se-
quence v(n) = n−1/ν− satisfies Bp,q(v) < ∞ but Bν− ,q(v) = ∞ if p < 0 < q.

(3). If 0 < α < β , then (Bp,q(nα)) <
(
Bp,q(nβ )

)
.

Proof. Consider the interval J = [a,N) ⊂ Z+. From the definition of the norm of
Bp,q(v) , we see that

Bp,q(v) := sup
J⊂Z+

(
1
|J| ∑

n∈J
vq(n)

) 1
q

(
1
|J| ∑

n∈J
vp(n)

) 1
p

� sup
a<N�∞

(
1

N−a

N−1
∑

n=a
vq(n)

) 1
q

(
1

N−a

N−1
∑

n=a
vp(n)

) 1
p

.

(1). We begin to prove the assertion in the first case when 1 < p < q. Let us
consider the sequence v(n) = (n)α such that −1/q < α < 0. Since 0 < p < q , we see
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also that −1/p < α < 0. We start by the summation

Ap =

(
1

N−a

N−1

∑
k=a

(n)pα

) 1
p

By noting that −1/p < α < 0, we see 0 < 1+ pα < 1, and then by employing the
inequality (31) with γ = 1+ pα < 1, we see that

Δ(n)1+pα � (n+1)1+pα −n1+pα � (1+ pα)(n)pα ,

and so we obtain that

Ap =

(
1

N−a

N−1

∑
k=a

(n)pα

) 1
p

� 1

(1+ pα)1/p

(
1

N−a

N−1

∑
k=a

Δ(n)1+pα

) 1
p

=
1

(1+ pα)1/p

1

(N−a)1/p
(N1+pα −a1+pα)1/p. (58)

So, we have that

Ap � 1

(1+ pα)1/p

1

(N−a)
1
p

(N1+pα −a1+pα)1/p. (59)

Also, one can prove that

Bq =

(
1

N−a

N−1

∑
k=a

(n)qα

) 1
q

� 1

(1+qα)1/q

1

(N−a)1/q
(N1+qα −a1+qα)1/q. (60)

By combining(59) and (60), we have that

Bq

Ap
� (1+ pα)1/p

(1+qα)1/q

(N−a)1−1/q (N1+qα −a1+qα)1/q(N1+α −a1+α)−1

(N−a)1−1/p (N1+pα −a1+pα)1/p(N1+α −a1+α)−1
.

Denote t = N/a > 1, we see that

(N1+pα −a1+pα)1/p (N−a)1−
1
p (N1+α −a1+α)−1

= (t−1)1−
1
p (t1+pα −1)1/p(t1+α −1)−1.

We define
ζ (t, p,α) = (t−1)1−

1
p (t1+pα −1)1/p(t1+α −1)−1,

for t > 1, p > 1 and α > −1/p. Now, by using Lemma 2.2 in [16], we see that

sup
t>1

ζ (t, p,α) = 1.
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Also one can get that

sup
t>1

ζ (t,q,α) = sup
t>1

(N1+qα −a1+qα)1/p (N−a)1−
1
q (N1+α −a1+α)−1

= sup
t>1

(t−1)1−
1
q (t1+qα −1)1/q(t1+α −1)−1 = 1.

This gives us that

(Bp,q(nα)) = Ψ(p,q,α) =
(1+ pα)1/p

(1+qα)1/q
.

This means that v(n) = nα belongs to the class Bp,q(C ) for −1/q < α < 0 with
the constant in the right hand side C =Ψ(p,q,α). From Theorem 4 v(n) = nα also
belongs to Bp,s(C ) class for q � s < ν+ and clearly α = −1/ν+ is the upper bound
of those values for which the which Bp,q -norm is finite but v(n) = n−1/ν+ does not
belong to Bp,ν+(C ) .

(2). Now, we prove the assertion in this case when p < 0 < q. Let us consider the
sequence v(n) = nα such that 0 < α <−1/p. Since p < 0 < q , we see that α >−1/q.
We start by the summation

Ap =

(
1

N−a

N−1

∑
k=a

(n)pα

) 1
p

,

where −1 < pα < 0 and then 0 < pα +1 < 1. So as in the first case, we have that

A∗
p � 1

(1+ pα)1/p

1

(N−a)1/p
(N1+pα −a1+pα)1/p. (61)

Also, since α > 0 and q > 0, we see that qα +1 > 1, and then we get that

nqα � 1
(qα +1)

Δ(n)qα+1,

and then

B∗
q =

(
1

N−a

N−1

∑
k=a

(n)qα

)1/q

� 1

(qα +1)1/q

(
1

N−a

N−1

∑
k=a

Δ(n)qα+1

)1/q

=
1

(qα +1)1/q
(N1+qα −a1+qα)1/q. (62)

So as in the proof of the first case, by combining (61) and (62), we have also that

(Bp,q(nα)) =
(1+ pα)1/p

(1+qα)1/q
= Ψ(p,q,α).

Arguing in the same way as in the first case, we deduce that v(n) = nα belongs to the
class Bp,q(C ) for 0 < α <−1/p with the constant in the right hand side C =Ψ(p,q,α).
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From Theorem 4 v(n) = nα also belongs to Bs,q(C ) class for ν− � s < p and clearly
α =−1/ν− is the lower bound of those values for which the which Bp,q -norm is finite
but v(n) = n−1/ν− does not belong to Bν− ,q(C ) . This proves the second case.

(3). By defining the function F(x) by

F(x) =
(1+ px)1/p

(1+qx)1/q
,

we see that

F
′
(x) =

d
dx

(1+ px)1/p

(1+qx)1/q
=

(px+1)
1
p

(qx+1)
1
q

[
1

(px+1)
− 1

(qx+1)

]

=
(px+1)

1
p

(qx+1)
1
q

[
(q− p)x

(px+1)(qx+1)

]
> 0, for x > 0.

So that F is an increasing function for x > 0 and q > p > 0, and then we have that
F(α) < F(β ) if 0 < α < β . This completes the proof of (3). The proof is com-
plete. �
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