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EXACT CONVERSES TO A REVERSE AM––GM INEQUALITY,

WITH APPLICATIONS TO SUMS OF INDEPENDENT

RANDOM VARIABLES AND (SUPER)MARTINGALES

IOSIF PINELIS

Abstract. For every given real value of the ratio μ := AX/GX > 1 of the arithmetic and geo-
metric means of a positive random variable X and every real v > 0 , exact upper bounds on the
right- and left-tail probabilities P(X/GX � v) and P(X/GX � v) are obtained, in terms of μ
and v . In particular, these bounds imply that X/GX → 1 in probability as AX/GX ↓ 1 . Such a
result may be viewed as a converse to a reverse Jensen inequality for the strictly concave func-
tion f = ln , whereas the well-known Cantelli and Chebyshev inequalities may be viewed as
converses to a reverse Jensen inequality for the strictly concave quadratic function f (x) ≡−x2 .
As applications of the mentioned new results, improvements of the Markov, Bernstein–Chernoff,
sub-Gaussian, and Bennett–Hoeffding probability inequalities are given.
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