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EXACT CONVERSES TO A REVERSE AM—GM INEQUALITY,
WITH APPLICATIONS TO SUMS OF INDEPENDENT
RANDOM VARIABLES AND (SUPER)MARTINGALES
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(Communicated by C. P. Niculescu)

Abstract. For every given real value of the ratio t := Ax/Gx > 1 of the arithmetic and geo-
metric means of a positive random variable X and every real v > 0, exact upper bounds on the
right- and left-tail probabilities P(X/Gx > v) and P(X/Gx < v) are obtained, in terms of u
and v. In particular, these bounds imply that X /Gx — 1 in probability as Ay /Gx | 1. Such a
result may be viewed as a converse to a reverse Jensen inequality for the strictly concave func-
tion f = In, whereas the well-known Cantelli and Chebyshev inequalities may be viewed as
converses to a reverse Jensen inequality for the strictly concave quadratic function f(x) = —x2.
As applications of the mentioned new results, improvements of the Markov, Bernstein—Chernoff,
sub-Gaussian, and Bennett—Hoeffding probability inequalities are given.

1. Introduction

Let X be a positive random variable (r.v.). One can define the arithmetic and
geometric means of X as follows:

Ax :=EX and Gy :=expElnX, (1.1)

assuming that EX and EInX exist and are finite.
Consider the special case when, for given positive real numbers xi,...,x,, the
distribution of the r.v. X is defined by the formula

n

Ef(X)= % Y f(xi) forany function f: R — R. (1.2)
i=1

(So, in the case when the numbers x,...,x, are pairwise distinct, any suchr.v. X takes
each of the values xi,...,x, with probability % ) In this case,

Ay —EX =M T i Gy = expEInX = i, (1.3)

n
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Thus, the definitions (1.1) of the arithmetic and geometric means of a r.v. X generalize
the usual definitions of the arithmetic and geometric means of finitely many positive
real numbers.

Since any bounded positive r.v. can be approximated in distribution by uniformly
bounded r.v.’s each taking finitely many positive real values with equal probabilities,
the exact bounds to be stated in Theorem 2.1 will remain exact in an appropriate sense
if one considers only the r.v.’s with such discrete uniform distributions.

The arithmetic mean—geometric mean (AM—-GM) inequality

Ax > Gx (1.4
is a special case (with f =In) of Jensen’s inequality
FEX) > Ef(X) (15)

for concave functions f.

Clearly, if the r.v. X is constant almost surely (a.s.) — that is, if P(X =¢) =1
for some real ¢ > 0, then the Jensen inequality (1.5) and, in particular, the AM-GM
inequality (1.4) turn into the equalities. Therefore, one may expect that, if the r.v. X is
close to a constant in some sense, then both sides of the Jensen inequality will be close
to each other and, in particular, the arithmetic and geometric means of the r.v. X will
be close to each other.

There are indeed a large number of theorems in this vein, called reverse Jensen
inequalities; see e.g. [3]. Usually, in such theorems the condition of X being close
to a constant is that the values of X are in a bounded interval [my,Myx], which latter
may be thought of as small, with the conclusion that the difference f(EX)— E f(X)
between the left- and right-hand sides of the Jensen inequality (1.5) is small if the
interval [myx,Myx] is small. Somewhat related results were obtained in [10].

Note further that, if the function f is strictly concave, then the equality in (1.5)
implies that the r.v. X is a.s. constant. Therefore, it appears natural to inquire whether
statements of the following form hold: If the two sides of the Jensen inequality (1.5)
with a strictly concave function f are close to each other, then the r.v. X is close to a
constant in some sense. Such a statement may be referred to as a converse to a reverse
Jensen inequality.

Converses to reverse Jensen inequalities are very well known and very widely used
in the case when f(x) = —x?. Then the difference between the left- and right-hand sides
of (1.5) is 6% := VarX, the variance of X . In this case, one has Cantelli’s inequality

2
o
PX-—uz>e)VPX—u<—-¢)< —— 1.6
(ue)(u8>62+62 (1.6)
and Chebyshev’s inequality
o?
P(‘X_m>8)<8—2 (1.7)

for all real € > 0, where g := EX € R and aV b := max(a,b). The Cantelli and
Chebyshev bounds are exact in their terms. In particular, (1.6) turns into the equality
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when P(X = pu+¢) =¢?/(0?>+¢&?)=1—P(X = u—0?/¢e) or when P(X = u —
g)=¢€?/(0%+¢€%)=1-P(X = u+0?/e), whereas (1.7) turns into the equality when
PX=u+e)=PX=u—¢)=1/2.

So, for any given real € > 0, if f(x) = —x2 and the difference 02 between the
left- and right-hand sides of (1.5) is small enough, then X deviates from the constant
1 with a however small probability. Thus, the Cantelli and Chebyshev inequalities are
indeed converses to a reverse Jensen inequality for f(x) = —x>.

In this paper, we shall provide converses to reverse Jensen inequalities for f =In,
that is, converses to reverse AM—GM inequalities. This case appears to be the next
in importance after the Chebyshev—Cantelli “quadratic” case of f(x) = —x? — see the
applications to the so-called exponential bounds on the tails of the distributions of sums
of independent r.v.’s in Section 3; here one may also note e.g. [2, Lemma 3.9]. Just as
the Cantelli and Chebyshev bounds, our bounds are exact in their own terms. However,
the case of f = In is much more difficult than that of f(x) = —x?.

2. Basic results and discussion

The main result of this paper is as follows.

THEOREM 2.1. Let X be a positive r.v. with finite EX and EInX. Suppose that
P(X =c) < 1 for each real ¢, so that

Ax
=—>1. 2.1
u Gx > (2.1
Then
(1)
P (i 2\/) < puyi=pyi= S (0,1) foreach ve(u,=) (2.2)
Gx H V—2Zy ’ ’
and
X
P (— < v) <py,€(0,1) foreach ve(0,1), (2.3)
Gx

where, for each v € ([, ), 2, = zy,, is the only root z € (0,1) of the equation
F(z) :=Fu(z) = (v—u)lnz+ (U —2)Inv=0 2.4
and, for each v € (0,1), z, = zy,, is the only root z € (UL, ) of equation (2.4).

(II) For each v € (l,°0) and for each v € (0,1), the upper bound p, in the corre-
sponding inequalities in (2.2) and (2.3) is exact, as it is attained when

PX=v)=p,=1-PX=g), (2.5)

and for such a r.v. X the condition Ax /Gx = [ holds — cf. (2.1).
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(111) We have

pu(v):= sup P (GL > v) =1 foreach ve (—eo, ] (2.6)

Ax /Gx=u X
and
X
Au(v):i= sup P (— < v) =1 foreach ve][l,), 2.7)
Ax /Gx=u Gx

where supy G, —, denotes the supremum over all positive r.v’s X with finite
EX and EInX and with Ax/Gx = . In particular, for each v € [1,1], the
exact upper bound on either one of the two tail probabilities, P (GX—X > v) and

[ (GX—X < v), is 1, it is not attained, though.

(IV) One also has the following simple (but not exact) upper bounds on P (GX—X > v)
and P (é(—x < v) :

X . u—1
—>2v) < =qy = D E—— »*° .
P(GX/V>\q”’V q mm(l v—l—lnv) foreach vel,) (2.8)
(with qy :=1) and
X
P(—<v><qv foreach v e (0,u]. (2.9)
Gx

(V) The condition | := Ax /Gx in (2.1) can be replaced by the Ax /Gx < UL.

REMARK 2.2. Part (II) of Theorem 2.1 shows that, as in the cases of the Can-
telli and Chebyshev inequalities, the “extreme” r.v.’s X providing the attainment in our
inequalities (2.2) and (2.3) take only two values.

REMARK 2.3. Inequalities (2.8) and (2.9) imply concentration of the r.v. X near
its (say) geometric mean Gy when the arithmetic mean Ay is close to Gx. More
precisely, we have X /Gy — 1 in probability as 4 = Ax/Gx | 1. Thus, Theorem 2.1
indeed provides converses to the reverse Jensen inequality for f =In.

Pvs Qv
1.0 -ne

0.8 |
! \
1

0.6 | ! n=1.01
1

0.4 ! |

0.2 y W
y

0.0 v

Figure 1: Graphs {(v,py): 0 <v < 3} (solid) and {(v,qv): 0 < v < 3} (dashed) for u = 1.1
(left) and = 1.01 (right), with p, =1 for v € [1,1].
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Remark 2.3 is illustrated in Figure 1.

At least in the case when the distribution of the r.v. X /Gy is highly concentrated
(that is, when p is close to 1), the simple bound g, on the tails of the distribution of
the r.v. X/Gx is not too far from the exact bound p, when v is somewhat close to 1
but g, < 1 (so that v is not too close to 1). More precisely, we have the following
proposition:

PROPOSITION 2.4. Suppose that [t and v both go to 1 in any way such that
v E (U,o0)U(0,1) and q, is less than 1. Then

4y
1+qy

Dy - 0. (2.10)

PROPOSITION 2.5. For v € (,o)U(0,1), one has the following expression for
the root z,, of equation (2.4):

e—ﬂ/fv
=gy = 5y (~ ). .11)
where
g, = _H 2.12)
Inv
1 ifve(0,1),

and Wy, is the kth branch of Lambert’s W function [4], so that
(i) forallt € (—1,) and u € (—1/e,0), we have te' =u <= t =Wy(u);
(ii) forall t € (—eo,—1) and u € (—1/e,0), we have te' =u <= t =W_1(u).
3. Applications: Improvements of Markov’s bound and exponential bounds on

the tails of the distributions of sums of independent r.v.’s and
(super)martingales

3.1. Improvements of the Markov bound and of the Bernstein—Chernoff bound

By Markov’s inequality, with u as in Theorem 2.1,
X I3
P(5->v) <t 31
Gr v . 3.D
for all real v > O (this inequality is nontrivial only if v > ).

The bound py , = HZo
v

in (2.2) is a (best possible) improvement of the Markov
v

bound B in (3.1) — because z,(< 1) < 4 < v. Even though Markov’s inequality is
v
well-known (and easy to see) to be exact in its terms, the just mentioned improvement
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has been possible by taking into account that the geometric mean of the r.v. X /Gy is
1. This improvement over Markov’s inequality may be dramatic in some cases. Indeed,
whene.g. (> 1) isclose to 1 while v(> 1) is notclose to 1, then even the suboptimal
bound i

v—1—Inv
inequality (2.3) is a best possible, and in some settings dramatic, improvement of the

corresponding left-tail Markov inequality.
Take now any r.v. ¥ with

in (2.8) will be much less than the Markov bound E. Similarly,
v

EY =0, (3.2)

any real number y, and any positive real number A . The so-called Bernstein—Chernoff
inequality

EelY
>vy)<
P(Y =z Y) S Ty (3.3)
is a particular case of Markov’s inequality (3.1), with
X:=e and v:i=eM. (3.4)

Also, the condition (3.2) implies that here
Gy =1.

Actually, the Bernstein—Chernoff inequality (3.3) is, not only a special case of Markov’s
inequality (3.1), but of course also a restatement of (3.1). In particular, just as Markov’s
inequality (3.1) does not take into account the fact that the geometric mean of X /Gy is
1, the Bernstein—Chernoff inequality (3.3) does not take condition (3.2) into account.

Therefore, one can use Theorem 2.1 to improve, not only Markov’s inequality
(3.1), but also its equivalent, the Bernstein—Chernoff inequality (3.3).

When the r.v. Y has an additional structure, one can obtain an upper bound B(1)
on Ee* | and then infj >0 e~*B(2) will be an upper bound — referred to as an expo-
nential bound — on the tail probability P(Y > y). A general approach to obtaining best
possible exponential bounds of this kind, along with a number of specific results, in the
case when Y is the sum of independent r.v.’s was presented in [12]. Details on what has
been said in this paragraph are provided in the following two subsections.

3.2. Improvements of the exponential bound in the sub-Gaussian case

Suppose that
Y=Y +...+Y,, (3.5)

where Y7,...,Y, are independent zero-mean r.v.’s.
In this subsection, we will consider the particularly simple case when the Y;’s are
sub-Gaussian, that is, when
Eetti < 4?07/ (3.6)

for some positive real numbers oy, ...,0y, all i € [n] :={1,...,n},andreal A > 0. If
Y; ~ N(0, Giz) for all i € [n], then the sub-Gaussianity condition (3.6) holds with the
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equality sign. Also, for instance, (3.6) holds when |Y;| < o; for all i € [n]; cf. e.g. [6,
inequality (4.16)].
The constants Giz in (3.6) are referred to as (obviously, never unique) sub-Gaussian
proxy variances of the corresponding r.v.’s Y;. Clearly then,
o’:=0l+...+o’ (3.7)
is a sub-Gaussian proxy variance of the sum Y:

EetY < 47072 (3.8)

forall real A > 0.
Take any real y > 0. Then, by (3.3),

022 A2

>y) < i - — S
PY>y) < Ang) o Ty Pi(t):=e , (3.9)
where
A’y::y/627 li:Y/@
and o :=Vo2.

Using Theorem 2.1, one can immediately improve the upper bound e /2 on
P(Y >y) in (3.9):

PROPOSITION 3.1. Forall real y > 0,

— 2w —
P(Y >y) <Ps(t) == puw = e " w22 pp), (3.10)
/ Vi = Zyy vy Vi
where
Ly = M2 = Q0N P2 Gy = 0 (3.11)

and zy, is as defined in part (1) of Theorem 2.1 or, equivalently, as in formula (2.11).

Concerning the inequality in (3.10), recall the reasoning in the second paragraph
of Subsection 3.1.

So, the bound P»(¢) on P(Y > ) in (3.10) improves the bound P (¢) in (3.9) for
all real 7 > 0 or, equivalently, for all real y > 0. To get the bound P;(z), we borrowed
12622

ety

the minimizer A, of the bound on P(Y > y) and used A, in the definitions of

12622
U, and v, in (3.11). While this choice of A4 is optimal for the Markov bound ¢

ety
it will not be optimal for the better bound of the form p,, , based on Theorem 2.1.
So, we can improve the bound P5(¢) on P(Y > y) — and thus further improve the

bound P (¢) — by avoiding the mentioned borrowing, as follows:
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PROPOSITION 3.2. Forall real y >0,
P(Y >y) < Pop(y) := Popt(0,y) := inf P ), (3.12)

where -
ty =% and vy(A) =M. (3.13)

The drawback of the optimal bound Pyy(y) is that its expression in (3.12) is im-
plicit; also, in distinction with the simpler bounds Py (r) and P>(t), Popt(y) = Popt(0,¥)
will depend on o,y not only through the simple ratio t = y/c.

On the other hand, clearly we can use the simple bound g, in (2.8) to immedi-
ately get the following:

PROPOSITION 3.3. Forall real y >0,
o o T S e/2—1
P(Y >y) < Ps5(t) == qy,» = min <1» m) = min <17 m)» (3.14)
where L; and v; are as in (3.11).

We see that the bound P3(z) is quite explicit and almost as simple as the bound
Pi(t) = ¢/ in (3.9). Moreover, a simple algebra shows that P3(r) < P;(r) (for a real
t > 0)if and only if 1+7* < etz/z, that is, if and only if

£> 1=\ /20 (— 1/(2ve)) ~ 1= 1585 .,

where, as in Proposition 2.5, W, denotes the kth branch of Lambert’s W function.
Also, Py(t.) = P3(t.) = 0.284..., which is substantially greater than commonly used
values of the level of significance in statistical testing. So, the bound Ps(¢) is an im-
provement of the bound Py (z) for values of ¢ relevant in statistics.

(Parts of) the graphs of the ratios of the bounds P> (¢) in (3.10), Ps(¢) in (3.14),
and Py (0, 01) in (3.12) with 0 = 6 to the baseline sub-Gaussian bound P (¢) in (3.9)
are shown in Figure 2.

3.3. Improvements of the Bennett—Hoeffding exponential bound

It is seen from Figure 2 that the new bounds P> and Pz, and even the opti-
mal bound Py, provide only relatively limited improvements over the baseline sub-
Gaussian bound P; .

In this subsection, it will be shown that the corresponding improvements over the
well-known and widely used Bennett—Hoeffding exponential bound can be arbitrarily
large (in a relative sense) in certain settings.

Here it is still assumed that (3.5) holds, with independent zero-meanr.v.’s Y1,...,Y;.
However, instead of the sub-Gaussian condition (3.6), we now assume that

Yi<b
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ratios

1 1 1 1 f
0 1 2 3 4

Figure 2:  Graphs {(t,Py(t)/Pi(2)): 0 <t < 4} (thin), {(t,P3(t)/Pi(r)): 0 <t <
4,P5(1) /Py (1) < 1.08} (dashed), and {(t,Pop(6,61)/P1(1)): 0 <t <4} (thick).
for some real b > 0 and all i € [n]. We will also use notation (3.7), but now with

07 :=VarY; =EY?,

rather with Giz being a sub-Gaussian proxy variance of Y;.
It follows e.g. from [12, Theorem 2] that, under the above conditions on
Y,Y|,...,Y,, the best possible upper bound on Ee*Y is given by the inequality

2

o
Ee < pigp(h) = exp{ﬁ(e“— 1 —?Lb)}7
for each real A > 0. Thus, we have the Markov bound on P(Y > y):
Uo b(l)
vy(4)

where vy (1) = e, asin (3.13). Minimizing the latter bound on P(Y >y) in A >0,
we get

P(Y >y) < Psu(y,0,b) := % (3.15)
where | by ;
Mopi= 5 In <1 + g>7
so that 2 ,
os(hon) =exp{ 17 (1+ )]} (3.16)
and
vy(ﬁ%m;,):exp{%ln(l—!—%)}. (3.17)

The bound Pgn(y,0,b) on P(Y >y) in (3.15) is the famous and widely used Ben-
nett [ 1]-Hoeffding [6] bound.
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Since the Bennett—Hoeffding (BH) bound is a species of the Markov bound, it
can be improved using Theorem 2.1, just as the sub-Gaussian bound was improved in
Propositions 3.1, 3.2, and 3.3 of Subsection 3.2. Here we will only consider the simplest
of such improvements of the BH bound, based on (2.8) (cf. (3.14)), even though this
improvement is not the best possible:

PROPOSITION 3.4. Forall real y > 0,

”G,b(ly,o,b) -1 )

> < = i
P(Y > ) < Peni(y,0,b) :=min (1, R s e

(3.18)

where L p(Ay o p) and vy(Ay s p) are as in (3.16) and (3.17).
Suppose now that

2
o .
E:C and b—yéefc/c,

where ¢ and C are positive real numbers. Then pg;(Ay o) < exp{3} =€ and

vy(Ayop) = €€, so that

Peni(y,0,0) sl €
Peu(y,0,b) ~ e &€—1-C’

because AL is increasing in 4 > 0 and ;—" is decreasingin v > 1. So, the ratio
Psh,1(y,0,0)/Pau(y,0,b) of the improved BH bound Pgp 1 (y, 0,5b) to the original BH
bound Pgy(y,0,b) can be however small if ¢ is small enough and C is bounded away
from 0. Conditions with C not small and ¢ not large arise in settings when possibly
heavy tails of the distributions of the Y/s must be appropriately truncated — see e.g.
[5, 11].

The results of Subsections 3.2 and 3.3 can be extended to the case when the Y/s
are (super)martingale-differences; cf. e.g. [8, Section §].

4. Proofs

Proof of Theorem 2.1. This proof is implicitly based on a duality argument; see
e.g. [7,9].

Note that the probabilities P (GX—X >v) and P (GX—X < v) will not change if we
replace there X by X /u, for any positive real u. So, without loss of generality we may
and shall assume that Gy = 1, that is,

ElnX =0, 4.1

so that the probabilities P (&~ > v) and P (4= < v) become simply P(X > v) and
P(X <v).
Take now any positive real v and any positive real z # v, and for all real x > 0 let

g(x) :=ax—blnx+c,
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where

a:=a(z) = 2(—/;;7 b:=b(z):=az, c:=c(z):= azlné

h(r):=1—r+rlnr, r:=z/v.

Note that the function /4 is convex on (0,c), with #(1) =0 =#(1). So, h >0 on
(0,%0)\ {1} and hence a > 0 and b > 0. Therefore, the function g is convex on (0,e0).
Moreover,

g(z)=¢'(z)=0 and g(v)=1.

So, if 0 < z < v, then g(x) > I{x > v} for all real x > 0, where I{-} denotes the
indicator. Hence, in view of (4.1),

P(X>v)<Eg(X)=aEX—-bElmX+c=au+c

S (4.2)
=R,(v):= p—ztzne if 0<z<w
y—z+zlnz—zInv

Similarly, if 0 < v < z, then g(x) > I{x < v} for all real x > 0, whence
P(X <v)<R,(v) if 0<v<z 4.3)

Recalling the conditions t > 1 in (2.1) and g; = | in the statement of part (IV) of
Theorem 2.1, as well as the fact that no probability can exceed 1, and then substituting
1 for z in (4.2) and (4.3), we get part (IV) of Theorem 2.1.

To prove part (I) of Theorem 2.1, consider separately the two cases: v € (l,)
and v e (0,1).

If v € (i, o0), then the function F: (0,o0) — R is concave, with F(0+) = —co <0
and F(1) = (u—1)Inv > 0 (since v > u > 1). So, indeed there is exactly one root
z=12 € (0,1) of equation (2.4). Next, from the equality F(z,) =0 we get Inz, =
(L —z)In(v)/(u —v). Substituting this expression for Inz, into the expression for
R.(v) in (4.2) and recalling the definition of p, in (2.2), we get

R, (V) = Dv- 4.4)

Therefore and because here
O<z, <l<u<y, 4.5)

we see that the inequality in (2.2) follows by (4.2).

The case v € (0,1) is similar (to the case v € (i,e0)). Indeed, if v € (0,1), then
the function F: (0,e0) — R is convex, with F(u) = (v—pu)Inu <0 (since i > 1) and
F(eo—) =00> 0 (since v > 1 > 1). So, indeed there is exactly one root z =z, € (1, °0)
of equation (2.4). Of course, equality (4.4) holds for v € (0,1) as well. Therefore and
because here

O<v<li<u<z, (4.6)

we see that the inequality in (2.3) follows by (4.3).
Also, in view of (4.5) and (4.6), in either one of the cases v € (i,e) and v € (0,1),

U is strictly between v and z,, whence p, = K=o o 0,1).
y—

vV
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Thus, part (I) of Theorem 2.1 is proved.

To prove part (II) of Theorem 2.1, note first that, in view of the just proved in-
clusion p, € (0,1), there does exist a r.v. X as in (2.5). For such a r.v. X, we have
Ay =EX =y and InGy = ElnX = %
condition Ay /Gx = i holds. Also, again in view of (4.5) and (4.6), we have z, < v if

€ (U,0), and z, > v if v € (0,1). So, for any r.v. X as in (2.5), the inequalities in
(2.2) and (2.3) turn into the equalities; that is, the upper bound p, in the inequalities
in (2.2) and (2.3) is exact, as it is attained for X as in (2.5). This proves part (II) of
Theorem 2.1.

Next, consider part (IIT) of Theorem 2.1. Note that the function p, is nonincreas-
ingon R and p, <1 on R. Also, by part (II) of Theorem 2.1 and the definition of p,
in (2.2), for v € (u,0) we have py(v) =p, — 1 as v | u, because p > 1 and z, < 1.
So, pu(u+)=1andhence 1 > p;(v) > pu(u+) =1 forall v € (—oo, u]. This proves
(2.6).

Further, the function M is nondecreasing on R and /lu <1 on R. Also, by
part (I) of Theorem 2.1, for v € (0,1) we have A,(v) = p,. Let now v 1 1. Then
|(v—p)lnz,| is bounded away from O, because g > 1 and z, > . So, in view of
(2.4) and the condition F(z,) =0, |( —z,)Inv| is bounded away from 0. So, for v T 1
we have z, — e and hence A,(v) = p, — 1, again by the definition of p, in (2.2).
Therefore, A, (1—) =1 and hence 1 > A, (v) > A4(1—) =1 for all v € [1,e0). This
proves (2.7).

Concerning the last, non-attainment clause in part (III) of Theorem 2.1: If P ( >

v) =1 for some v € [1, u], then P (GX—X > 1) = 1, which implies that P(X = Gx) =1,
which contradicts the inequality in (2.1). Similarly, if P (&= <v) for some v & [1,u],

= 0, by the definition of z,, so that the

e

then P (5. X < u) =1, which implies that AX =EZ X < u, with the strict inequality

AX <u (contradlctmg the definition of t in (2 1)) unless P ( = [.1) = 1. But the lat-
ter equality implies P(X = ¢) = 1 for some real ¢ > 0, which contradlcts the inequality
in (2.1) (since the function In is strictly concave).

Thus, for each v € [1, u], the exact upper bound, 1, on either one of the two tail
probabilities, P( >v) and P (— < v), is not attained.

Finally, concerning part (V) of Theorem 2.1: Given only the condition Ax/Gx < u
(which means that EX < u when (4.1) is assumed), the second equality sign in (4.2)
can be replaced by <, since a > 0. So, the inequality P(X > v) < R;(v) will continue
to hold when 0 < z < v. Similarly, (4.3) will continue to hold.

Theorem 2.1 is now completely proved. [

Proof of Proposition 2.4. For brevity, let

P =Dv, q:=(qv, Z:=2,

and then
Ou:=pn—1[0, 8:=v-1-0, 8&:=z—1,
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so that, by (2.4), (2.2), (2.8), and the condition ¢, < 1,

(8, — Ou)In(1+06,)+ (8 — 8.)In(1+6,) =0, 4.7
)
P=5—5 (4.8)
Vv 2z
and
_ Ou Su
1= s, “Im(1+4,) " 82/2
whence

8y ~q82/2=0(5,). (4.9)

Therefore, 6, — 8y ~ 6, ~ In(1+6,) and hence (4.7) implies In(1+6;) ~ &, — dy.
Since &, — 0, it follows that §, — 0. (Otherwise, without loss of generality we have
In(1+ &;) ~ O, which implies §; — 0, since In(1 +u) < u for all u € (—1,)\ {0}
and In(1+u) fuasu| —1oru—co.)

Now (4.7) and (4.9) yield

; 52 2 2
(8- zzivu)) (8.~ z+2(1)> + (zfivm -5 (8- 2+62(1)> =0, (4.10)

which simplies to

(1-¢9)d, &7 q6; _
(l+2+0(1))(52_2+0(1)>+(2—|—0(1)_6Z>_0 @10
and then to
82— (1—q)(1+0(1))8,8, — g(1+0(1))82 =0. (4.12)

Also, by part (I) of Theorem 2.1, 6,8, < 0. So, “solving” the “quadratic” equation
(4.12), we get

& (1—g)(1+o(1)) — /(1 —g)*(1+0(1)) +4g(1+0(1))

oy 2
(1-g)(1+0(1)) = (1+q)(1+0(1))

= > =—qg+o(l).

Now (2.10) follows by (4.8) and (4.9). O

The proof of Proposition 2.5 is based in part on the following lemmas.

LEMMA 4.1. We have Z, € (0,0) forall v € (1,o)U(0,1). Also,

zv{<v ifve (1), (4.13)

>v  ifve(0,1).
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LEMMA 4.2. For v € (i,)U(0,1),

G
Ha) = 20 o, (4.14)
v—1
where
Gu(v):=F(E)=ulnv+(v—pu)ln vlmfl +u—v,

with 7, asin (2.12).

LEMMA 4.3. We have Z, € (0,0) forall v € (1,o)U(0,1). Also,

<Z, ifve (”v‘x’)7
ZV{> z, ifve(0,1). (4.15)

Proof of Lemma 4.1. That Z, € (0,0) for all v € (i,e0) U (0,1) follows imme-
diately from the definition of Z, in (2.12) and the condition u > 1. Next, for each
v € (U,e0)U(0,1), each of the two inequalities in (4.13) can be rewritten as /(v) > 0,
where

I(v):=vinv—v+pu.

The function [ is convex on (0,00), with [(1)=u—1>0 and /(1) =0. So, I[(v) >0
for v € (0,1)U(1,e) and hence for v € (i,0) U (0,1), which completes the proof of
Lemma4.1. O

Proof of Lemma 4.2. Note first that the partial derivative of G (v) in u is Inv —
InZ,. So, by Lemma 4.1, G, (v) is increasing in i € [1,v) if v € (1,e0) and decreasing
in u € [l,e0) if v € (0,1). It follows that Gy (v) > Gi(v) if v € (1,e0) and Gy (v) <
Gi(v) if ve (0,1).

So, to complete the proof of Lemma 4.2, it is enough to show that

1 1
HO) i=H (V)= —— +Ine——1>0 ifve (0,1)U(l,o). (4.16)
v—1 Inv
We have L | .
H(v) = (v—1—Inv)(vlny—v+1)

(v—1)2vinv ’

which is easily seen to be of the same sign as v— 1 forall v € (0,1)U(1,e0). So, H(v)
is decreasing in v € (0,1) and increasing in v € (1,0). Also, H(1+)=H(1—) =0.
Thus, (4.16) is true, which completes the proof of Lemma 4.2. [

Proof of Lemma 4.3. Consider first the case v € (i,e°). Then, as was noted in
the proof of part (I) of Theorem 2.1, the function F: (0,o) — R is concave. Also,
F(v) =0 and, by the definition of z, in part (I) of Theorem 2.1, F(z,) = 0. Further,
by Lemma 4.2, F(Z,) > 0. Therefore and in view of the concavity of F, Z, is strictly
between v and z,. But, by Lemma 4.1, here Z, < v. So, the first inequality in (4.15) is
proved.
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The second case, with v € (0,1), is treated similarly. In this case, the function
F: (0,00) — R is convex and, by Lemma 4.2, F(Z,) < 0. Here we still have F(v) =0
and F(z,) =0, whence again Z, is strictly between v and z,. But, by Lemma 4.1, here
Z, > v. So, the second inequality in (4.15) is proved as well. [

Proof of Proposition 2.5. Take any v € (l,0) U (0,1). By the definition of z, in
part (I) of Theorem 2.1, F(z,) =0, thatis, (v—pu)Inz,+ (U —z,) Inv= 0. Dividing the
latter equality by v — u and recalling the definition of Z, in (2.12), rewrite the defining

condition on z, as
Ing— 22— K& (4.17)
ZV ZV
Exponentiating both sides of (4.17) and then dividing the resulting expressions by —%,,
rewrite (4.17) as

Hy
e = Uy,

where
» e*lJ/Zv

—— and u,i=———.
Zv ZV

1y =

Note also that e’ € (—1/e,0) for t € (—eo, —1)U(—1,0). So, in view of the description
of the branches Wy and W_; of Lambert’s W function given at the end of the statement
of Proposition 2.5, it remains to check that 7, € (—1,0) if v € (it,00) and t, € (—o0,—1)
if v € (0,1); but these conditions on #, follow immediately by Lemma 4.3. Proposi-
tion 2.5 is proved. [J
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