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ON WEIGHTED HARDY INEQUALITY WITH

TWO–DIMENSIONAL RECTANGULAR OPERATOR

–– EXTENSION OF THE E. SAWYER THEOREM

VLADIMIR D. STEPANOV ∗ AND ELENA P. USHAKOVA

Abstract. A characterization is obtained for those pairs of weights v and w on R
2
+ , for which the

two–dimensional rectangular integration operator is bounded from a weighted Lebesgue space
Lp

v (R2
+) to Lq

w(R2
+) for 1 < p < q < ∞ , which is an essential complement to E. Sawyer’s result

[13] given for 1 < p � q < ∞ . Besides, we demonstrate that the E. Sawyer theorem is actual if
p = q only, for p < q the criterion is the finiteness of the Muckenhoupt-type constant. The case
q < p is also discussed.
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