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A VARIABLE EXPONENT BOUNDEDNESS

OF THE STEKLOV OPERATOR

YUSUF ZEREN

Abstract. In this paper, a sufficiency condition for boundedness of the Steklov operator

Sh f (x) =
1
h

∫ x+h

x
f (t)dt, h > 0

has been proved in variable exponent Lebesgue space Lp(.)(0,∞) . Here an infinite interval
(0,∞) has been considered with a new decay condition on infinity. A finite interval [0,2π]
case with a local log- regularity condition has been studied previously in order to be applied on
approximation problem.
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