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Abstract. In this note, we are concerned with the continuity of generalized Riesz potentials
Iρ,μ ,τ f of functions in Morrey spaces LΦ,ν,κ (X) of double phase functionals over bounded non-
doubling metric measure spaces.

1. Introduction

The double phase functional introduced by Zhikov ([27]) is studied intensively by
many mathematichans. Regarding regularity theory of differential equations, Baroni,
Colombo and Mingione [1, 4, 5] studied a double phase functional

Φ̃(x,t) = t p +a(x)tq, x ∈ RN , t � 0

where 1 � p < q , a(·) is non-negative, bounded and Hölder continuous of order θ ∈
(0,1] . We refer to [10, 26] for Calderón-Zygmund estimates, [12, 15] for the Sobolev’s
inequality and e.g. [3, 7, 8, 9] for other double phase problems.

In the present note, relaxing the continuity of a(·) , we consider the case Φ(x, t) is
a double phase functional given by

Φ(x,t) = t p +(b(x)t)q,

where 1 < p < q and b(·) is non-negative, bounded and Hölder continuous of order
θ ∈ (0,1] (cf. [4]).

For 0 < α < N and a locally integrable function f on RN the Riesz potential Iα f
of order α is defined by

Iα f (x) =
∫

RN
|x− y|α−N f (y)dy.

In [13] we discussed the continuity of Riesz potentials Iα f of functions in Morrey
spaces LΦ,ν (RN) of the double phase functionals Φ(x,t) in the case α p < ν < (α +
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θ )p and (α −1)q < ν < αq . We refer to [15, Section 5] for the LΦ case and [14] for
the Lp,ν case.

In the present note we shall extend [13, Theorem 4.1] from the Euclidean case to a
non-doubling metric measure setting. We denote by (X ,d,μ) a metric measure space,
where X is a bounded set, d is a metric on X and μ is a nonnegative complete Borel
regular outer measure on X which is finite in every bounded set. We often write X
instead of (X ,d,μ) . For x ∈ X and r > 0, we denote by B(x,r) the open ball in X
centered at x with radius r and dX = sup{d(x,y) : x,y ∈ X} . We assume that

μ({x}) = 0

for x∈ X and 0 < μ(B(x,r)) < ∞ for x∈ X and r > 0 for simplicity. We do not assume
that μ has a so-called doubling condition. So our results are for non-doubling metric
measure spaces. Recall that a Radon measure μ is said to be doubling if there exists
a constant c0 > 0 such that μ(B(x,2r)) � c0μ(B(x,r)) for all x ∈ supp(μ)(= X) and
r > 0 (see [2]). Otherwise μ is said to be non-doubling. For examples of non-doubling
metric measure spaces we refer to [19, 22].

To obtain general results, we consider the family (ρ) of all functions ρ satisfying
the following conditions: ρ : (0,∞) → (0,∞) is a measurable function such that∫ r

0
ρ(s)

ds
s

< +∞

for all sufficiently small r > 0 and there exists constants 0 < k < 1, 0 < k1 < k2 and
Cρ > 0 such that

sup
kr�s�r

ρ(s) � Cρ

∫ k2r

k1r
ρ(s)

ds
s

(1)

for all r > 0 (e.g. [6, 23]). We do not postulate the doubling condition on ρ .

EXAMPLE 1. If ρ satisfies the doubling condition, that is, there exists a constant
C > 0 such that C−1 � ρ(r)/ρ(s) �C for 1/2 � r/s � 2, then ρ satisfies (1) whenever
k = 1/2 and 2k1 = k2 . If ρ is increasing, then ρ satisfies (1) with k = 1/2, k1 = 1
and k2 = 2. If α > 0 such that

ρ(r) =

{
rα (0 < r < 1)
e−(r−1) (r � 1),

then ρ satisfies (1) with k = 1/2, k1 = 1/4 and k2 = 1/2. See also [18, Lemma 2.5],
[20, 23] and [25, Remark 2.2].

For a function ρ ∈ (ρ) and τ � 1, we define the generalized Riesz potential
Iρ ,μ,τ f of f by

Iρ ,μ,τ f (x) =
∫

X

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))

dμ(y),

where f ∈ L1(X) . We write Iρ ,μ,τ f = Iα ,μ,τ f when ρ(r) = rα for α > 0. If ρ(r) = rα ,
0 < α < N and X = RN with the usual distance and the Lebesgue measure, then Iρ ,μ,τ f
is equal to Iα f . We refer to [21, 24] etc. for the study of Iρ ,μ,τ f .
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Our aim in this note is to discuss the continuity of generalized Riesz potential
Iρ ,μ,τ f of functions f in Morrey spaces LΦ,ν,κ (X) of the double phase functionals
over bounded non-doubling metric measure spaces X (Theorem 1), as an extension of
[13, Theorem 4.1].

2. Statement of the main Theorem

Throughout this paper, let C denote various constants independent of the variables
in question.

For ν > 0, κ � 1 and 1 � p < ∞ , Morrey space Lp,ν,κ(X) is the family of mea-
surable functions f on X satisfying

‖ f‖Lp,ν,κ (X) =

(
sup

x∈X ,0<r<dX

rν

μ(B(x,κr))

∫
B(x,r)

| f (y)|p dμ(y)

)1/p

< ∞

(cf. see [16]).
We consider a function

Φ(x,t) : X × [0,∞)→ [0,∞)

satisfying the following conditions (Φ1) and (Φ2):

(Φ1) Φ( · , t) is measurable on X for each t � 0 and Φ(x, ·) is convex on [0,∞) for
each x ∈ X ;

(Φ2) there exists a constant A1 � 1 such that

A−1
1 � Φ(x,1) � A1 for all x ∈ X .

For ν > 0 and κ � 1, the Musielak-Orlicz-Morrey space LΦ,ν,κ(X) is defined by

LΦ,ν,κ(X)

=

{
f ∈ L1

loc(X) : sup
x∈X ,0<r<dX

rν

μ(B(x,κr))

∫
B(x,r)

Φ
(

y,
| f (y)|

λ

)
dμ(y) < ∞ for some λ > 0

}
.

It is a Banach space with respect to the norm

‖ f‖LΦ,ν,κ (X) = inf

{
λ > 0 : sup

x∈X ,0<r<dX

rν

μ(B(x,κr))

∫
B(x,r)

Φ
(

y,
| f (y)|

λ

)
dμ(y) � 1

}

(see [11, 17]).
In what follows, set

Φ(x,t) = t p +(b(x)t)q,

where 1 � p < q and b(·) is non-negative, bounded and Hölder continuous of order
θ ∈ (0,1] (cf. [4]).

Our result is the following.
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THEOREM 1. Let ρ ∈ (ρ) . Assume that there are constants η > 0, ι � 1 and
C0 > 0 such that∣∣∣∣ ρ(d(x,y))

μ(B(x,τd(x,y)))
− ρ(d(z,y))

μ(B(z,τd(z,y)))

∣∣∣∣� C0

(
d(x,z)
d(x,y)

)η ρ(d(x,y))
μ(B(x, ιd(x,y)))

(2)

whenever d(x,z) � d(x,y)/2. Abbreviate

ψ(r) ≡
∫ 6k2r

0
s−ν/p+θ ρ(s)

ds
s

+
∫ 6k2r

0
s−ν/qρ(s)

ds
s

+ rθ
∫ 4k2dX

2k1r
s−ν/pρ(s)

ds
s

+ rη
∫ 4k2dX

2k1r
s−ν/p−η+θ ρ(s)

ds
s

+ rη
∫ 4k2dX

2k1r
s−ν/q−ηρ(s)

ds
s

for x∈ X and 0 < r � dX , where k1 and k2 are constants in (ρ) . If 1 � κ < min{τ, ι} ,
then there exists a constant C > 0 such that∣∣b(x)Iρ ,μ,τ f (x)−b(z)Iρ ,μ,τ f (z)

∣∣ � Cψ(d(x,z))

for all x,z ∈ X and measurable functions f on X with ‖ f‖LΦ,ν,κ (X) � 1.

When ρ(r) = rα , we obtain the following corollary.

COROLLARY 1. Assume that there are constants η > 0, ι � 1 and C0 > 0 such
that ∣∣∣∣ d(x,y)α

μ(B(x,τd(x,y)))
− d(z,y)α

μ(B(z,τd(z,y)))

∣∣∣∣� C0

(
d(x,z)
d(x,y)

)η d(x,y)α

μ(B(x, ιd(x,y)))
(3)

whenever d(x,z) � d(x,y)/2. Suppose

max{α p,(α −η + θ )p} < ν < (α + θ )p

and
(α −η)q < ν < αq.

If 1 � κ < min{τ, ι} , then there exists a constant C > 0 such that∣∣b(x)Iα ,μ,τ f (x)−b(z)Iα ,μ,τ f (z)
∣∣� C

{
d(x,z)α+θ−ν/p +d(x,z)α−ν/q

}
for all x,z ∈ X and measurable functions f on X with ‖ f‖LΦ,ν,κ (X) � 1.

Compare this with [13, Theorem 4.1] and [15, Theorem 5].

REMARK 1. Assume that there are constants η > 0, ι � 1 and C0 > 0 such that
(3) hollds. Suppose

(α −η)p < ν < α p.

If 1 � κ < min{τ, ι} , then there exists a constant C > 0 such that∣∣Iα ,μ,τ f (x)− Iα ,μ,τ f (z)
∣∣ � Cd(x,z)α−ν/p

for all x,z ∈ X and measurable functions f on X with ‖ f‖Lp,ν,κ (X) � 1. Compare this
with [13, Remark 4.2].
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REMARK 2. The referee kindly suggested that the case of ρ : X × (0,∞)→ (0,∞)
can be treated to discuss the continuity of more general Riesz potentials. But we do not
go into details any more.

3. Proof of Theorem

Before giving a proof of Theorem 1, we prepare the following lemma.

LEMMA 1. Let β ∈ R and ρ ∈ (ρ) . Let f be a nonnegative function on X such
that ‖ f‖Lp,ν,κ (X) � 1. If 1 � κ < τ , then there exist constants C > 0 such that∫

B(x,r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y) � C

∫ 2k2r

0
s−ν/p−β ρ(s)

ds
s

(4)

and ∫
X\B(x,r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y) � C

∫ 4k2dX

k1r
s−ν/p−β ρ(s)

ds
s

(5)

for all x ∈ X and 0 < r � dX , where k1 and k2 are constants in (ρ) .

Proof. Let f be a nonnegative function on X such that ‖ f‖Lp,ν,κ (X) � 1. Take
γ ∈ R such that 1 < γ � min{τ/κ ,1/k,2} . If y ∈ B(x,γ jr) \B(x,γ j−1r) and j ∈ Z ,
then a geometric observation and (1) show

ρ(d(x,y))
μ(B(x,τd(x,y)))d(x,y)β �

max
{
1,γ−β}

μ(B(x,γ j−1τr))(γ j−1r)β sup
γ j−1r�s�γ j r

ρ(s)

�
max

{
1,γ−β}

μ(B(x,γ j−1τr))(γ j−1r)β sup
kγ j r�s�γ j r

ρ(s)

�
Cρ max

{
1,γ−β}

μ(B(x,γ j−1τr))(γ j−1r)β

∫ γ jk2r

γ jk1r
ρ(s)

ds
s

by γ � 1/k . Using γ � τ/κ , we obtain∫
B(x,γ j r)\B(x,γ j−1r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y)

�
Cρ max

{
1,γ−β}

(γ j−1r)β

∫ γ jk2r

γ jk1r
ρ(s)

ds
s
· 1

μ(B(x,γ j−1τr))

∫
B(x,γ j r)

f (y)dμ(y)

�
Cρ max

{
1,γ−β}

(γ j−1r)β

∫ γ jk2r

γ jk1r
ρ(s)

ds
s
· 1

μ(B(x,κγ jr))

∫
B(x,γ j r)

f (y)dμ(y).

By Hölder’s inequality, we have∫
B(x,γ j r)\B(x,γ j−1r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y)

�
Cρ max

{
1,γ−β}

(γ j−1r)β

∫ γ jk2r

γ jk1r
ρ(s)

ds
s

(
1

μ(B(x,κγ jr))

∫
B(x,γ jr)

f (y)p dμ(y)
)1/p
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�
Cρ max

{
1,γ−β}

(γ j−1r)β

∫ γ jk2r

γ jk1r
ρ(s)

ds
s
· (γ jr

)−ν/p

= Cρ max
{

1,γ β
}

(γ jr)−ν/p−β
∫ γ jk2r

γ jk1r
ρ(s)

ds
s

� Cρ max
{

1,γ β
}

max
{

kν/p+β
1 ,kν/p+β

2

}∫ γ jk2r

γ jk1r
s−ν/p−β ρ(s)

ds
s

. (6)

Let j0 be the smallest integer such that k2/k1 � γ j0 . Using (6), we obtain

∫
B(x,r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y)

=
∞

∑
j=0

∫
B(x,γ− j r)\B(x,γ− j−1r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y)

� Cρ max
{

1,γ β
}

max
{

kν/p+β
1 ,kν/p+β

2

} ∞

∑
j=0

∫ γ− jk2r

γ− jk1r
s−ν/p−β ρ(s)

ds
s

� Cρ max
{

1,γ β
}

max
{

kν/p+β
1 ,kν/p+β

2

} ∞

∑
j=0

∫ γ− j+ j0 k1r

γ− jk1r
s−ν/p−β ρ(s)

ds
s

� max
{

1,2β
}

Cρ j0 max
{

kν/p+β
1 ,kν/p+β

2

}∫ 2k2r

0
s−ν/p−β ρ(s)

ds
s

,

which proves (4).

Let j1 be the smallest integer such that dX � γ j1r . If we use (6),

∫
X\B(x,r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y)

�
j1

∑
j=1

∫
B(x,γ jr)\B(x,γ j−1r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)β dμ(y)

� Cρ max
{

1,γ β
}

max
{

kν/p+β
1 ,kν/p+β

2

} j1

∑
j=1

∫ γ jk2r

γ j k1r
s−ν/p−β ρ(s)

ds
s

� Cρ max
{

1,γ β
}

max
{

kν/p+β
1 ,kν/p+β

2

} j1

∑
j=1

∫ γ j+ j0 k1r

γ j k1r
s−ν/p−β ρ(s)

ds
s

� Cρ max
{

1,γ β
}

j0 max
{

kν/p+β
1 ,kν/p+β

2

}∫ 2γ j1k2r

γk1r
s−ν/p−β ρ(s)

ds
s

� max
{

1,2β
}

Cρ j0 max
{

kν/p+β
1 ,kν/p+β

2

}∫ 4k2dX

k1r
s−ν/p−β ρ(s)

ds
s

.

Thus, (5) follows. �
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Proof of Theorem 1. Let f be a nonnegative function on X such that ‖ f‖LΦ,ν,κ (X) �
1. First note from (2) that for x,y ∈ X and r = d(x,z)∣∣b(x)Iρ ,μ,τ f (x)−b(z)Iρ ,μ,τ f (z)

∣∣
� b(x)

∫
B(x,2r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))

dμ(y)

+b(z)
∫

B(x,2r)

ρ(d(z,y)) f (y)
μ(B(z,τd(z,y)))

dμ(y)

+ |b(x)−b(z)|
∫
X\B(x,2r)

ρ(d(z,y)) f (y)
μ(B(z,τd(z,y)))

dμ(y)

+b(x)
∫

X\B(x,2r)

∣∣∣∣ ρ(d(x,y))
μ(B(x,τd(x,y)))

− ρ(d(z,y))
μ(B(z,τd(z,y)))

∣∣∣∣ f (y)dμ(y)

� C

{
b(x)

∫
B(x,3r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))

dμ(y)

+b(z)
∫

B(z,3r)

ρ(d(z,y)) f (y)
μ(B(z,τd(z,y)))

dμ(y)

+ rθ
∫

X\B(z,2r)

ρ(d(z,y)) f (y)
μ(B(z,τd(z,y)))

dμ(y)

+ rηb(x)
∫

X\B(x,2r)

ρ(d(x,y)) f (y)
μ(B(x, ιd(x,y)))d(x,y)η dμ(y)

}
= C{I1(x)+ I1(z)+ I2(z)+ I3(x)} .

For I1(x) , we have

I1(x) �
∫

B(x,3r)

ρ(d(x,y))
μ(B(x,τd(x,y)))

|b(x)−b(y)| f (y)dμ(y)

+
∫

B(x,3r)

ρ(d(x,y))
μ(B(x,τd(x,y)))

b(y) f (y)dμ(y)

� C
∫

B(x,3r)

ρ(d(x,y)) f (y)
μ(B(x,τd(x,y)))d(x,y)−θ dμ(y)+

∫
B(x,3r)

ρ(d(x,y)){b(y) f (y)}
μ(B(x,τd(x,y)))

dμ(y)

= CI11(x)+ I12(x).

By (4), we obtain

I11(x) � C
∫ 6k2r

0
s−ν/p+θ ρ(s)

ds
s

,

and

I12(x) � C
∫ 6k2r

0
s−ν/qρ(s)

ds
s

.

For I2(z) , we have by (5)

I2(z) � Crθ
∫ 4k2dX

2k1r
s−ν/pρ(s)

ds
s

.
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Finally, for I3(x) we have

I3(x) � rη
∫

X\B(x,2r)

ρ(d(x,y))
μ(B(x, ιd(x,y)))d(x,y)η |b(x)−b(y)| f (y)dμ(y)

+ rη
∫

X\B(x,2r)

ρ(d(x,y))
μ(B(x, ιd(x,y)))d(x,y)η b(y) f (y)dμ(y)

� Crη
∫

X\B(x,2r)

ρ(d(x,y)) f (y)
μ(B(x, ιd(x,y)))d(x,y)−θ+η dμ(y)

+ rη
∫

X\B(x,2r)

ρ(d(x,y)){b(y) f (y)}
μ(B(x, ιd(x,y)))d(x,y)η dμ(y)

= CI31(x)+ I32(x).

Note from (5) that

I31(x) � Crη
∫ 4k2dX

2k1r
s−ν/p−η+θ ρ(s)

ds
s

and

I32(x) � Crη
∫ 4k2dX

2k1r
s−ν/q−ηρ(s)

ds
s

.

Collecting these facts, we obtain∣∣b(x)Iρ ,μ,τ f (x)−b(z)Iρ ,μ,τ f (z)
∣∣ � Cψ(r).

Thus this theorem is proved. �
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