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MAXIMAL OPERATORS OF T MEANS WITH
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NATA GOGOLASHVILI AND GEORGE TEPHNADZE ∗

(Communicated by J. Pečarić)

Abstract. In this paper we prove and discuss some new (Hp,Lp,∞) type inequalities of the max-
imal operators of T means with monotone coefficients with respect to Walsh-Kaczmarz system.
It is also proved that these results are the best possible in a special sense. As applications, both
some well-known and new results are pointed out. In particular, we apply these results to prove
a.e. convergence of such T means.

1. Introduction

Concerning definitions and notations used in this introduction we refer to Sections
2.

In 1948, Šneider [37] introduced the Walsh-Kaczmarz system and showed that the
inequality limsupn→∞ Dκ

n (x)/ logn � C > 0 holds a.e. In 1974 Schipp [32] and Young
[47] proved that the Walsh-Kaczmarz system is a convergence system.

In 1981, Skvortsov [36] showed that the Fejér means with respect to the Walsh-
Kaczmarz system converge uniformly to f for any continuous functions f . Gát [9]
proved that, for any integrable functions, the Fejér means with respect to the Walsh-
Kaczmarz system converges almost everywhere to the function. He showed that the
maximal operator σ∗,κ of Walsh-Kaczmarz-Fejér means is of weak type (1,1) and of
type (p, p) for all 1 < p � ∞ . Gát’s result was generalized by Simon [34], who showed
that the maximal operator σ∗,κ is of type (Hp,Lp) for p > 1/2. In the endpoint case
p = 1/2 Goginava [11] (see also [30, 39, 40, 41]) proved that maximal operator σ∗,κ
of Walsh-Kaczmarz-Fejér means is not of type (H1/2,L1/2) . Weisz [50] showed that
the following is true:

THEOREM W1. The maximal operator σ∗,κ of Walsh-Kaczmarz-Fejér means is
bounded from the Hardy space H1/2 to the space L1/2,∞ .

In [17] Goginava and Nagy proved that the maximal operator R∗,κ of Riesz means
with respect to Walsh-Kaczmarz system is bounded from the Hardy space H1/2 to the
space L1/2,∞ , but is not bounded from the Hardy space Hp to the space Lp, when
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0 < p � 1/2. In [38] it was proved that there exists a martingale f ∈ Hp, (0 < p � 1),
such that the maximal operator L∗,κ of Nörlund logarithmic means with respect to
Walsh-Kaczmarz system is not bounded in the Lebesgue space Lp. The Logarithmic
means with respect to the Walsh and Vilenkin systems systems were studied by Blahota
and Gát [4], Lukkassen, Persson, Tephnadze and Tutberidze [14] (see also [8], [13],
[29], [31], [42], [44] and [46]), Simon [35].

Gát and Goginava [10] proved that the maximal operator σα ,∗,κ of (C,α) (0 < α
< 1) means with respect Walsh-Kaczmarz system is bounded from the Hardy space
H1/(1+α) to the space L1/(1+α),∞ . Goginava and Nagy [12] proved that σα ,∗,κ is not
bounded from the Hardy space H1/(1+α) to the space L1/(1+α) . Móricz and Siddiqi
[19] investigated the approximation properties of some special Nörlund means of Lp

function in norm. These means in the martingale Hardy spaces were discussed in
Blahota, Tephnadze [5, 6]. In [28] and [43] (see also [1, 7, 16]) it was proved some
(Hp,Lp)-type inequalities for the maximal operators of Nörlund means, with respect
to Walsh-Kaczmarz and Vilenkin systems, when 0 < p � 1. In the two dimensional
case approximation properties of Nörlund and Cesáro means were considered by Nagy
[20, 21, 22] and by Nagy and Tephnadze [23, 24, 25, 26, 27]. Some boundedness results
of so called T , Θ and θ means in the Lebesgue and martingale Hardy spaces can be
found in Blahota and Nagy [2], in Blahota, Nagy and Tephnadze [3], Tutberidze [45]
and Weisz [51, 52, 53, 54].

The main aim of this paper is to investigate (Hp,Lp,∞)-type inequalities for the
maximal operators of T means with monotone coefficients of the one-dimensional
Kaczmarz-Fourier series.

This paper is organized as follows: in order not to disturb our discussions later on
some definitions and notations are presented in Section 2. The main results and some
of its consequences can be found in Section 3. For the proofs of the main results we
need some auxiliary results of independent interest. Also these results are presented in
Section 3. The detailed proofs are given in Section 4.

2. Definitions and Notations

Now, we give a brief introduction to the theory of dyadic analysis [33]. Let N+
denote the set of positive integers, N := N+ ∪{0}.

Denote Z2 the discrete cyclic group of order 2, that is Z2 = {0,1}, where the
group operation is the modulo 2 addition and every subset is open. The Haar measure
on Z2 is given such that the measure of a singleton is 1/2. Let G be the complete direct
product of the countable infinite copies of the compact groups Z2. The elements of G
are of the form

x = (x0,x1, . . . ,xk, . . .) , xk = 0,1, (k ∈ N) .

The group operation on G is the coordinate-wise addition, the measure (denoted
by μ ) and the topology are the product measure and topology.The compact Abelian
group G is called the Walsh group. A base for the neighborhoods of G can be given in
the following way:

I0 (x) := G, In (x) := In (x0, . . . ,xn−1) := {y ∈ G : y = (x0, . . . ,xn−1,yn,yn+1, . . .)} ,
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(x ∈ G,n ∈ N) . These sets are called dyadic intervals. Denote by 0 = (0 : i ∈ N) ∈ G
the null element of G. Let In := In (0) , In := G\In (n ∈ N) . Set en := (0, . . . ,0,1,0, . . .)∈
G, the n -th coordinate of which is 1 and the rest are zeros (n ∈ N) .

If n ∈ N , then n =
∞
∑
i=0

ni2i can be written, where ni ∈ {0,1} (i ∈ N) , i. e. n is

expressed in the number system of base 2. Denote |n| := max{ j ∈ N : n j �= 0}, that is
2|n| � n < 2|n|+1.

For k ∈ N and x ∈ G let us denote the k -th Rademacher function, by

rk (x) := (−1)xk .

Now, define the Walsh system w := (wn : n ∈ N) on G as:

wn(x) :=
∞
Π

k=0
rnk
k (x) = r|n| (x)(−1)

|n|−1
∑

k=0
nkxk

(n ∈ N) .

The Walsh-Kaczmarz functions are defined by

κn (x) := r|n| (x)
|n|−1

∏
k=0

(
r|n|−1−k (x)

)nk = r|n| (x) (−1)

|n|−1
∑

k=0
nkx|n|−1−k

.

The Dirichlet kernels are defined by

D0 := 0, Dψ
n :=

n−1

∑
i=0

ψi, (ψ = w or ψ = κ) .

The 2n -th Dirichlet kernels have a closed form (see e.g. [33])

Dw
2n (x) = D2n (x) = Dκ

2n (x) =
{

2n x ∈ In,
0 x /∈ In.

(1)

The norm (or quasi-norm) of the spaces Lp(G) and Lp,∞ (G) are respectively de-
fined by

‖ f‖p
p :=

∫
G
| f |p dμ , ‖ f‖p

Lp,∞(G) := sup
λ>0

λ pμ ( f > λ ) , (0 < p < ∞) .

The partial sums with respect to Walsh and Walsh-Kaczmarz series are defined as
follows:

Sψ
M f :=

M−1

∑
i=0

f̂ (i)ψi, (ψ = w or ψ = κ) .

Let {qk : k � 0} be a sequence of nonnegative numbers. The n -th Nörlund and T
means for a Fourier series of f are respectively defined by

tψ
n f =

1
Qn

n

∑
k=1

qn−kS
ψ
k f , (ψ = w or ψ = κ)
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and

T ψ
n f :=

1
Qn

n−1

∑
k=0

qkS
ψ
k f , (ψ = w or ψ = κ) . (2)

where Qn := ∑n−1
k=0 qk. It is obvious that

T ψ
n f (x) =

∫
G

f (t)Fψ
n (x− t)dμ (t)

where Fψ
n := 1

Qn

n−1
∑

k=0
qkD

ψ
k is called T kernel.

We always assume that {qk : k � 0} be a sequence of nonnegative numbers and
q0 > 0. Then the summability method (2) generated by {qk : k � 0} is regular if and
only if limn→∞ Qn = ∞.

Let consider some class of T means with monotone and bounded sequence {qk :
k ∈ N} , such that

q := lim
n→∞

qn > c > 0.

Then, it easy to check that

qn−1

Qn
= O

(
1
n

)
, as n → ∞. (3)

The n -th Fejér means of a function f is given by

σψ
n f :=

1
n

n

∑
k=1

Sψ
k f , (ψ = w or ψ = κ) .

Fejér kernel is defined in the usual manner

Kψ
n :=

1
n

n

∑
k=1

Dψ
k , (ψ = w or ψ = κ) .

If we invoke Abel transformation

n−1

∑
j=1

a jb j = An−1bn−1−A0b1 +
n−1

∑
j=1

Aj(b j −b j+1), a j = Aj −Aj−1, j = 1, . . . ,m,

for b j = q j , a j = 1 and Aj = j for any j = 0,1, . . . ,n we get the following identity:

Qn := q0 +
n−1

∑
j=1

q j = q0 +
n−2

∑
j=1

(
q j −q j+1

)
j +qn−1(n−1) (4)

Moreover, if use D0 = K0 = 0 for any x ∈ Gm and invoke Abel transformation for
b j = q j , a j = Dj and Aj = jKj for any j = 0,1, . . . ,n−1 we get identity:

Fψ
n =

1
Qn

(
n−2

∑
j=1

(
q j −q j+1

)
jKψ

j +qn−1(n−1)Kψ
n−1

)
. (5)
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The (C,α) -means are defined as

σα ,ψ
n f =

1
Aα

n

n

∑
k=1

Aα−1
n−k Sψ

k f , (ψ = w or ψ = κ) ,

where

Aα
0 = 0, Aα

n =
(α +1) . . . (α +n)

n!
, α �= −1,−2, . . .

It is known that

Aα
n ∼ nα , Aα

n −Aα
n−1 = Aα−1

n ,
n

∑
k=1

Aα−1
n−k = Aα

n .

We also consider ”inverse” (C,α) -means, which is example of T -means:

Uα ,ψ
n f :=

1
Aα

n

n−1

∑
k=0

Aα−1
k Sψ

k f , , (ψ = w or ψ = κ) .

Let β α
n denote the T mean, where{

q0 = 1, qk = kα−1 : k ∈ N+
}

,

that is

Vα ,,ψ
n f :=

1
Qn

n

∑
k=1

kα−1Sψ
k f , (ψ = w or ψ = κ) 0 < α < 1.

The n -th Riesz‘s logarithmic mean Rψ
n and Nörlund logarithmic mean Lψ

n are
defined by

Rψ
n f :=

1
ln

n−1

∑
k=0

Sψ
k f

k
, Lψ

n f :=
1
ln

n−1

∑
k=1

Sψ
k f

n− k
, (ψ = w or ψ = κ)

respectively, where ln := ∑n−1
k=1 1/k.

Up to now we have considered T mean in the case when the sequence {qk : k ∈N}
is bounded but now we consider T means with unbounded sequence {qk : k ∈ N} . Let
α ∈ R+, β ∈ N+ and

log(β ) x :=

β−times︷ ︸︸ ︷
log . . . logx.

If we define the sequence {qk : k ∈ N} by{
q0 = 0 and qk = log(β ) kα : k ∈ N+

}
,

then we get the class of T means:

Bα ,β ,ψ
n f :=

1
Qn

n

∑
k=1

log(β ) kαSψ
k f , (ψ = w or ψ = κ) .
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It is obvious that n
2 log(β ) nα

2α � Qn � n log(β ) nα . It follows that

qn−1

Qn
� c log(β ) (n−1)α

n log(β ) nα
= O

(
1
n

)
→ 0, as n → ∞. (6)

Let us define maximal operator of T means by

T ∗,ψ f := sup
n∈N

|T ψ
n f | , (ψ = w or ψ = κ) .

The well-known example of maximal operator of T means are Fejer and Riesz
logarithmic means σ∗,ψ f and R∗,ψ f .

The σ -algebra generated by the dyadic intervals of measure 2−k will be denoted

by Fk (k ∈ N) . Denote by f =
(

f (n),n ∈ N
)

a martingale with respect to (Fn,n ∈ N)
(for details see, e. g. [48, 49]).

If f ∈ L1 (G) , then it is easy to show that the sequence
(
Sψ

2n f : n ∈ N
)

is a mar-
tingale.

The maximal function of a martingale f is defined by f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

In case f ∈ L1 (G) , the maximal function can also be given by

f ∗ (x) = sup
n∈N

1
μ (In(x))

∣∣∣∣∣∣∣
∫

In(x)

f (u)dμ (u)

∣∣∣∣∣∣∣ , x ∈ G.

For 0 < p < ∞ the Hardy martingale space Hp(G) consists of all martingales for which

‖ f‖Hp
:= ‖ f ∗‖p < ∞.

If f is a martingale, then the Walsh-Fourier and Walsh-Kaczmarz-Fourier coeffi-
cients must be defined in a little bit different way:

f̂ ψ (i) = lim
n→∞

∫
G

f (n)ψidμ , (ψ = w, or ψ = κ) .

The Walsh-Fourier and Walsh-Kaczmarz-Fourier coefficients of f ∈ L1 (G) are
the same as the ones of the martingale

(
Sψ

2n f : n ∈ N
)

obtained from f .
A bounded measurable function a is p-atom, if there exists an interval I , such that∫

I
adμ = 0, ‖a‖∞ � μ (I)−1/p , supp(a) ⊂ I.

Weisz proved that Hardy spaces Hp have atomic characterization. In particular
the following is true:
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PROPOSITION 1. [48] A martingale f =
(

f (n),n ∈ N
)

is in Hp (0 < p � 1) if

and only if there exists sequence (ak,k ∈ N) of p-atoms and a sequence (μk,k ∈ N) , of
real numbers, such that, for every n ∈ N,

∞

∑
k=0

μkS
ψ
2nak = f (n),

∞

∑
k=0

|μk|p < ∞, (ψ = w or ψ = κ). (7)

Moreover,

‖ f‖Hp
� inf

(
∞

∑
k=0

|μk|p
)1/p

,

where the infimum is taken over all decomposition of f of the form (7).

PROPOSITION 2. [48, 49] Suppose that an operator T is quasi-linear and for
some 0 < p < 1

‖T f‖Lp,∞ � cp‖ f‖Hp

and bounded on L∞ or on Lq with 1 < q < ∞. Then T is of weak type-(1,1):

‖T f‖L1,∞
� c‖ f‖1 .

3. Main results and their some consequences

We state our main result concerning the maximal operator of the summation method
(2), which we also show is in a sense sharp.

THEOREM 1. a) The maximal operator T ∗,κ of the summability method (2) with
non-increasing sequence {qk : k � 0}, is bounded from the Hardy space H1/2 to the
space L1/2,∞.

b) (Sharpness) Let 0 < p < 1/2 and {qk : k � 0} is non-decreasing sequence,
satisfying the condition

qn+1

Qn+2
� c

n
, (c � 1) . (8)

Then there exists a martingale f ∈ Hp, such that

sup
n∈N

‖T κ
n f‖Lp,∞

= ∞.

A number of special cases of our results are of particular interest and give both
well-known and new information. We just give the following examples of such T
means with non-increasing sequence {qk : k � 0} :

COROLLARY 1. The maximal operators of Uα ,κ , Vα ,κ and Rκ means are bounded
from the Hardy space H1/2 to the space L1/2,∞ but are not bounded from Hp to the
space Lp,∞, when 0 < p < 1/2.
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COROLLARY 2. Let f ∈ L1 and T κ
n be the T means with non-increasing se-

quence {qk : k � 0} . Then T κ
n f → f , a.e., as n → ∞.

COROLLARY 3. Let f ∈ L1 . Then

Rκ
n f → f , a.e., as n → ∞,

Uα ,κ
n f → f , a.e., as n → ∞,

Vα ,κ
n f → f , a.e., as n → ∞,

Analogously to part a) of Theorem 1 we can also prove similar result for non-
decreasing sequences which is given in part a) of next theorem. Moreover, we also show
that statement in b) above hold also for non-decreasing sequences and now without any
restriction like (8).

THEOREM 2. a) The maximal operator T ∗,κ of the summability method (2) with
non-decreasing sequence {qk : k � 0} satisfying the condition

qn−1

Qn
= O

(
1
n

)
, as n → ∞, (9)

is bounded from the Hardy space H1/2 to the space L1/2,∞.

b) (Sharpness) Let 0 < p < 1/2. For any non-decreasing sequence {qk : k � 0},
there exists a martingale f ∈ Hp, such that

sup
n∈N

‖T κ
n f‖Lp,∞

= ∞.

A number of special cases of our results are of particular interest and give both
well-known and new information. We just give the following examples of such T
means with non-decreasing sequence {qk : k � 0} :

COROLLARY 4. The maximal operator of Bα ,β ,κ means is bounded from the Hardy
space H1/2 to the space L1/2,∞ but is not bounded from Hp to the space Lp,∞, when
0 < p < 1/2.

COROLLARY 5. Let f ∈ L1 and T κ
n be the T means with non-decreasing se-

quence {qk : k � 0} and satisfying condition (9). Then

T κ
n f → f , a.e., as n → ∞.

COROLLARY 6. Let f ∈ L1 . Then Bα ,β ,κ
n f → f , a.e., as n → ∞.
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4. Proofs

Proof of Theorem 1. Let the sequence {qk : k � 0} be non-increasing. By com-
bining (4) with (5) and using Abel transformation we get that

|Tκ
n f | �

∣∣∣∣∣ 1
Qn

n−1

∑
j=1

q jS
κ
j f

∣∣∣∣∣
� 1

Qn

(
n−2

∑
j=1

∣∣q j −q j+1
∣∣ j ∣∣σκ

j f
∣∣+qn−1(n−1) |σκ

n f |
)

� 1
Qn

(
n−2

∑
j=1

(
q j −q j+1

)
j +qn−1(n−1)

)
σ∗,κ f � σ∗,κ f

so that
T ∗,κ f � σ∗,κ f . (10)

If we apply (10) and Theorem W1 we can conclude that the maximal operators
T ∗,κ of all T means with non-increasing sequence {qk : k � 0}, are bounded from the
Hardy space H1/2 to the space L1/2,∞.

Let 0 < p < 1/2 and {αk : k ∈ N} be an increasing sequence of positive integers
such that:

∞

∑
k=0

1/α p
k < ∞, (11)

k−1

∑
η=0

2αη/p

αη
<

2αk/p−1

2αk
, (12)

2αk−1(1/p−1)

αk−1
<

2αk(1/p−1)−4

αk
. (13)

We note that such an increasing sequence {αk : k ∈ N} which satisfies conditions
(11-13) can be constructed.

Let
f (A) = ∑

{k; λk<A}
λkak, (14)

where

λk =
1

αk
and ak = 2αk(1/p−1)(D2αk+1 −D2αk

)
.

By using Proposition 1, it is easy to see that the martingale f =
(

f (1), f (2) . . . f (A) . . .
)

∈ H1/2. Moreover, it is easy to show that

f̂ ( j) =

⎧⎨⎩
2αk(1/p−1)

αk
, if j ∈ {2αk , . . . ,2αk+1−1

}
, k = 0,1,2 . . . ,

0, if j /∈
∞⋃

k=1

{
2αk , . . . ,2αk+1−1

} (15)
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We can write

T κ
2αk +2 f =

1
Q2αk +2

2αk

∑
j=0

q jS
κ
j f +

q2αk+1

Q2αk+2
Sκ

2αk+1 f := I + II. (16)

Let 2αs � j � 2αs+1, where s = 0, . . . ,k−1. Moreover,∣∣Dκ
j −D2αs

∣∣� j−2αs � 2αs, (s ∈ N)

so that, according to (1) and (15), we have that

∣∣Sκ
j f
∣∣ =

∣∣∣∣∣2
αs−1+1−1

∑
v=0

f̂ (v)κv +
j−1

∑
v=2αs

f̂ (v)κv

∣∣∣∣∣ (17)

�
∣∣∣∣∣ s−1

∑
η=0

2αη +1−1

∑
v=2αη

2αη(1/p−1)

αη
κv

∣∣∣∣∣+ 2αs(1/p−1)

αs

∣∣(Dκ
j −D2αs

)∣∣
=

∣∣∣∣∣ s−1

∑
η=0

2αη(1/p−1)

αη

(
D2αη +1 −D2αη

)∣∣∣∣∣+ 2αs(1/p−1)

αs

∣∣(Dκ
j −D2αs

)∣∣
�

s−1

∑
η=0

2αη/p

αη
+

2αs/p

αs
� 2αs−1/p+1

αs−1
+

2αs/p

αs
� 2αk−1/p+1

αk−1
.

Let 2αs−1+1 +1 � j � 2αs , s = 1, . . . ,k. Analogously to (17) we can prove that

∣∣Sκ
j f
∣∣ =

∣∣∣∣∣2
αs−1+1−1

∑
v=0

f̂ (v)ψv

∣∣∣∣∣=
∣∣∣∣∣ s−1

∑
η=0

2αη +1−1

∑
v=2αη

2αη (1/p−1)

αη
κv

∣∣∣∣∣
=

∣∣∣∣∣ s−1

∑
η=0

M1/p−1
αη

αη

(
D2αη +1 −D2αη

)∣∣∣∣∣� 2αs−1/p+1

αs−1
� 2αk−1/p+1

αk−1
.

Hence,

|I| � 1
Q2αk +2

2αk

∑
j=0

q j
∣∣Sκ

j f
∣∣� 2αk−1/p+1

αk−1

1
QMαk +1

2αk

∑
j=0

q j � 2αk−1/p+1

αk−1
. (18)

If we now apply (15) and (17) we get that

|II| =
q2αk+1

Q2αk+2

∣∣∣∣∣2αk(1/p−1)

αk
κ2αk +S2αk f

∣∣∣∣∣ (19)

=
q2αk+1

Q2nk+2

∣∣∣∣∣2αk(1/p−1)

αk
κ2αk +S2αk−1+1 f

∣∣∣∣∣
� q2αk+1

Q2nk+2

(∣∣∣∣∣2αk(1/p−1)

αk
κ2αk

∣∣∣∣∣− ∣∣S2αk−1+1 f
∣∣)

� q2αk+1

Q2αk+2

(
2αk(1/p−1)

αk
− 2αk−1/p+2

αk−1

)
� q2αk+1

Q2αk +2

2αk(1/p−1)−2

αk
.



T MEANS 747

Without lost the generality we may assume that c = 1 in (8). By combining (18)
and (19) we get ∣∣T κ

2αk +2 f
∣∣ � |II|− |I| (20)

� q2αk+1

Q2αk+2

2αk(1/p−1)−2

αk
− 2αk−1/p+1

αk−1

� 2αk(1/p−2)

4αk
− 2αk−1/p+1

αk−1
� 2αk(1/p−2)

16αk
.

On the other hand,

μ

{
x ∈ G :

∣∣Tκ
2αk+2 f (x)

∣∣� 2αk(1/p−2)

16αk

}
= μ (G) = 1. (21)

Let 0 < p < 1/2. Then

2αk(1/p−2)

16αk
·
(

μ

{
x ∈ G :

∣∣∣T κ
Mαk +2 f (x)

∣∣∣� 2αk(1/p−2)

16αk

})1/p

(22)

=
2αk(1/p−2)

16αk
→ ∞, as k → ∞.

The proof is complete.
Proof of Corollary 1. Since Rκ

n ,Uα ,κ
n and Vα ,κ

n are T means with non-increasing
sequence {qk : k � 0}, then the proof is direct consequence of Theorem 1.

Proof of Corollary 2. According to Theorem 1 a) and Proposition 2 we also have
weak (1,1) type inequality and by well-known density argument due to Marcinkiewicz
and Zygmund [15] we have T κ

n f → f , a.e., for all f ∈ L1. Which follows proof of
Corollary 2.

Proof of Corollary 3. Since Rκ
n ,Uα ,κ

n and Vα ,κ
n are T means with non-increasing

sequence {qk : k � 0}, then the proof is direct consequence of Corollary 2.
Proof of Theorem 2. Let the sequence {qk : k � 0} be non-decreasing. By com-

bining (4) with (5) and using Abel transformation we get that

|Tn f | �
∣∣∣∣∣ 1
Qn

n−1

∑
j=1

q jS j f

∣∣∣∣∣
� 1

Qn

(
n−2

∑
j=1

∣∣q j −q j+1
∣∣ j ∣∣σ j f

∣∣+qn−1(n−1) |σn f |
)

� 1
Qn

(
n−2

∑
j=1

− (q j −q j+1
)

j−qn−1(n−1)+2qn−1(n−1)

)
σ∗ f

� 1
Qn

(2qn−1(n−1)−Qn)σ∗ f � cσ∗ f
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so that
T ∗ f � cσ∗ f . (23)

If we apply (23) and Theorem W1 we can conclude that the maximal operators T ∗
is bounded from the Hardy space H1/2 to the space L1/2,∞.

To prove part b) of theorem 2 we use the martingale, defined by (14) where αk

satisfy conditions (11-13). It is easy to show that for every non-increasing sequence
{qk : k � 0} it automatically holds that q2αk+1/Q2αk+2 � c/2αk . According to (16-20)
we can conclude that

∣∣T κ
2αk +2 f

∣∣� |II|− |I| � 2αk(1/p−2)

16αk
.

Analogously to (21) and (22) we then get that supk∈N

∥∥∥T κ
2αk+2 f

∥∥∥
Lp,∞

= ∞ and the

proof is complete.
Proof of Corollary 4. Since Bα ,β ,∗,κ are the T means with non-decreasing se-

quence {qk : k � 0}, then the proof is direct consequence of Theorem 2.
Proof of Corollary 5. According to Proposition 2 we can conclude that T ∗,κ has

weak type-(1,1) and by well-known density argument due to Marcinkiewicz and Zyg-
mund [15] we also have Tκ

n f → f , a.e.. Which follows proof of Corollary 5.
Proof of Corollary 6. Since Bα ,β ,∗,κ are the T means with non-decreasing se-

quence {qk : k � 0}, then the proof is direct consequence of Corollary 5.

RE F ER EN C ES

[1] L. BARAMIDZE, L. E. PERSSON, G. TEPHNADZE AND P. WALL, Srtong summability and Bound-
edness of Maximal operators of Vilenkin-Nörlund means with non-increasing coefficients, J. Inequal.
Appl., 2016, doi:10.1186/s13660-016-1182-1.

[2] I. BLAHOTA AND K. NAGY, Approximation by Θ -means of Walsh-Fourier series, Anal. Math., 44, 1
(2018) 57–71.

[3] I. BLAHOTA, K. NAGY AND G. TEPHNADZE, Approximation by Marcinkiewicz Θ -means of double
Walsh-Fourier series, Math. Inequal. Appl., 22, 3 (2019) 837–853.
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