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MAXIMAL OPERATORS OF T MEANS WITH
RESPECT TO WALSH-KACZMARZ SYSTEM

NATA GOGOLASHVILI AND GEORGE TEPHNADZE *

(Communicated by J. Pecari¢)

Abstract. In this paper we prove and discuss some new (Hp,L,..) type inequalities of the max-
imal operators of 7" means with monotone coefficients with respect to Walsh-Kaczmarz system.
It is also proved that these results are the best possible in a special sense. As applications, both
some well-known and new results are pointed out. In particular, we apply these results to prove
a.e. convergence of such 7' means.

1. Introduction

Concerning definitions and notations used in this introduction we refer to Sections
2.

In 1948, Sneider [37] introduced the Walsh-Kaczmarz system and showed that the
inequality limsup,_.., D¥(x)/logn > C > 0 holds a.e. In 1974 Schipp [32] and Young
[47] proved that the Walsh-Kaczmarz system is a convergence system.

In 1981, Skvortsov [36] showed that the Fejér means with respect to the Walsh-
Kaczmarz system converge uniformly to f for any continuous functions f. Gat [9]
proved that, for any integrable functions, the Fejér means with respect to the Walsh-
Kaczmarz system converges almost everywhere to the function. He showed that the
maximal operator 6** of Walsh-Kaczmarz-Fejér means is of weak type (1,1) and of
type (p,p) forall 1 < p <eo. Git’s result was generalized by Simon [34], who showed
that the maximal operator 6** is of type (H,,L,) for p > 1/2. In the endpoint case
p = 1/2 Goginava [11] (see also [30, 39, 40, 41]) proved that maximal operator ¢™**
of Walsh-Kaczmarz-Fejér means is not of type (H, /2Ly /2). Weisz [50] showed that
the following is true:

THEOREM W 1. The maximal operator 6** of Walsh-Kaczmarz-Fejér means is
bounded from the Hardy space H; to the space Ly ...

In [17] Goginava and Nagy proved that the maximal operator R** of Riesz means
with respect to Walsh-Kaczmarz system is bounded from the Hardy space H|/; to the
space L3 .., but is not bounded from the Hardy space H) to the space L,, when
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0 < p < 1/2.1In[38] it was proved that there exists a martingale f € H,, (0 <p < 1),
such that the maximal operator L** of Norlund logarithmic means with respect to
Walsh-Kaczmarz system is not bounded in the Lebesgue space L,. The Logarithmic
means with respect to the Walsh and Vilenkin systems systems were studied by Blahota
and Gat [4], Lukkassen, Persson, Tephnadze and Tutberidze [14] (see also [&], [13],
[29], [31], [42], [44] and [46]), Simon [35].

Git and Goginava [ 10] proved that the maximal operator 6*** of (C,a) (0 <
< 1) means with respect Walsh-Kaczmarz system is bounded from the Hardy space
Hy/(11q) to the space Ly/(11q4).- Goginava and Nagy [12] proved that *** is not
bounded from the Hardy space Hj (1) to the space L1, 4). Moricz and Siddiqi
[19] investigated the approximation properties of some special Norlund means of L,
function in norm. These means in the martingale Hardy spaces were discussed in
Blahota, Tephnadze [5, 6]. In [28] and [43] (see also [1, 7, 16]) it was proved some
(Hp,Lp)-type inequalities for the maximal operators of Nérlund means, with respect
to Walsh-Kaczmarz and Vilenkin systems, when 0 < p < 1. In the two dimensional
case approximation properties of Norlund and Cesdro means were considered by Nagy
[20, 21, 22] and by Nagy and Tephnadze [23, 24, 25, 26, 27]. Some boundedness results
of so called 7, ® and 0 means in the Lebesgue and martingale Hardy spaces can be
found in Blahota and Nagy [2], in Blahota, Nagy and Tephnadze [3], Tutberidze [45]
and Weisz [51, 52, 53, 54].

The main aim of this paper is to investigate (H,, L, .)-type inequalities for the
maximal operators of 7 means with monotone coefficients of the one-dimensional
Kaczmarz-Fourier series.

This paper is organized as follows: in order not to disturb our discussions later on
some definitions and notations are presented in Section 2. The main results and some
of its consequences can be found in Section 3. For the proofs of the main results we
need some auxiliary results of independent interest. Also these results are presented in
Section 3. The detailed proofs are given in Section 4.

2. Definitions and Notations

Now, we give a brief introduction to the theory of dyadic analysis [33]. Let N
denote the set of positive integers, N := N, U{0}.

Denote Z, the discrete cyclic group of order 2, that is Z, = {0,1}, where the
group operation is the modulo 2 addition and every subset is open. The Haar measure
on Z, is given such that the measure of a singleton is 1/2. Let G be the complete direct
product of the countable infinite copies of the compact groups Z,. The elements of G
are of the form

X = (X0, X1,y Xpy--.), Xx=0,1, (k€N).

The group operation on G is the coordinate-wise addition, the measure (denoted
by t) and the topology are the product measure and topology.The compact Abelian
group G is called the Walsh group. A base for the neighborhoods of G can be given in
the following way:

Iy(x): =G, Li(x):=ILx0,...,%—1):={yE€G:y=(X05-- s Xn—1,YnsVnt1s---)}»
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(x € G,n €N). These sets are called dyadic intervals. Denote by 0 = (0:i€N) € G
the null element of G. Let I, :=1,(0), I, := G\I, (n €N). Set e, := (0,...,0,1,0,...) €
G, the n-th coordinate of which is 1 and the rest are zeros (n € N).

If n €N, then n= ¥ n;2" can be written, where n; € {0,1} (i €N),i. e. nis

i=0

expressed in the number system of base 2. Denote |n| := max{j € N: n; # 0}, thatis
2 < < 2,

For k € N and x € G let us denote the k-th Rademacher function, by

re(x) i=(—1)"%.
Now, define the Walsh system w := (w, :n € N) on G as:

|n|—1
X Xy

W (1) 1= T () =y () (1) 50 (neN).

The Walsh-Kaczmarz functions are defined by

1 nj-1
X

Kn (%) 1= 7y (x H(’\n\lk )™ =y () (—1) =0

The Dirichlet kernels are defined by
n—1
Dy:=0, DY:=> v, (y=wory=x).
i=0
The 2" -th Dirichlet kernels have a closed form (see e.g. [33])

DY (¥) = Dys (x) = DSy (x) = {3 er W

The norm (or quasi-norm) of the spaces L,(G) and L, .. (G) are respectively de-
fined by

1= [ 117, A1, gy = sopAPu (£ > 4), (0<p<es).
>

The partial sums with respect to Walsh and Walsh-Kaczmarz series are defined as
follows:

Syf = Zf Dy, (y=wory=x).

Let {gx : k > 0} be a sequence of nonnegative numbers. The n-th Norlund and T
means for a Fourier series of f are respectively defined by

n an kS fv (W:WOY‘I/:K)
T o5
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and
lnl

TV f = EqkSﬁ (y=wory=x). )
”kO

where Q, := ZZ;(I) qi- Itis obvious that

1Y S /f OEY (x—0)du (1)

n—1
where F := QL > quZ/ is called T kernel.
" k=0

We always assume that {g; : k > 0} be a sequence of nonnegative numbers and
go > 0. Then the summability method (2) generated by {g : k > 0} is regular if and
only if lim;_.. Q) = oo.

Let consider some class of T means with monotone and bounded sequence {¢ :
k € N}, such that

q::nlglgoqn >c>0.

Then, it easy to check that

anl_ 1 oo
E—O(ﬂ),asn . (3)

The n-th Fejér means of a function f is given by
ve._ L ow
offi=—28f (y=wory=x).
k=1
Fejér kernel is defined in the usual manner
I &
==-YD!, (y=wory=k).
=1
If we invoke Abel transformation
n—1 n—1
Zajbj :Anflbnfl —A()bl + ZAj(bj —bJur]), aj :Aj —Aj',l, j: l,...,m7
j=1 j=1
for bj=gqj,aj=1and A; = j forany j=0,1,...,n we get the following identity:

On:=qo+ 26]1 ro+2( —qj+1) j+qn-1(n—1) 4)
Jj=1

Moreover, if use Dy = Ky = 0 for any x € G,, and invoke Abel transformation for
bj=gqj,aj=Djand A; = jK; forany j=0,1,...,n—1 we get identity:

Ef o, (2( ~qj+1) JK] +qn-1(n I)K,‘f’l). (5)
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The (C, o) -means are defined as

1 &
G,?’Wf:A—QEAa 1SWf7 (W:WOFW:K),
n k=1

where .
o N4
ag =0, ac_ ot '( ) 12
n!
It is known that
n
AL ~n® AY—AZ  =AFT Y AT =AY
k=1

We also consider inverse” (C, o) -means, which is example of 7 -means:
1 "= 1

USVf=—NA¢ISVf,, (y=wory=x).

n k=0

Let B% denote the T mean, where

{CIO:L qk:ka_l:keN-‘r}a

that is

1 n
Vnawlllf::Q_EkO‘*lSZ/f, (y=wory=x) O<a<l.
=1

The n-th Riesz‘s logarithmic mean RY and Nérlund logarithmic mean LY are
defined by

17= 1SW lnISll/
RYf =3 L ! L=k L (y=wory=x)
hiZ k hiSn—k’

respectively, where [, := ZZ;% 1/k.

Up to now we have considered T mean in the case when the sequence {g; : k € N}
is bounded but now we consider 7" means with unbounded sequence {g : k € N}. Let
(XER+7 ﬁ €N+ and

B—times
—
log(ﬁ)x :=log...logx.
If we define the sequence {g; : k € N} by

{q():O and qk:10g<ﬁ>k°‘:keN+},

then we get the class of T means:

BOBY .= QL S 10gP koSl f, (y=wory=x).
n k=1
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It is obvious that 2 log <0, < nlog (B) n Tt follows that
gn1 _ clogP) (n—1)* <1>
< =0|-)—0, as n— oo, (6)
On nlogP) pe n

Let us define maximal operator of 7 means by
TVfi=sup|TYVf],  (y=wory=k).
neN

The well-known example of maximal operator of 7 means are Fejer and Riesz
logarithmic means o™V f and R*V f.

The o -algebra generated by the dyadic intervals of measure 2% will be denoted
by F; (k€ N). Denote by f = < f" e N) a martingale with respect to (F,,n € N)
(for details see, e. g. [48, 49]).

If f € L (G), then it is easy to show that the sequence (SY,f:n € N) is a mar-
tingale.

£

The maximal function of a martingale f is defined by f* = sup
neN

In case f € L; (G), the maximal function can also be given by

£ (x) = sup ——— /f e

neN ,U

For 0 < p < oo the Hardy martingale space H,(G) consists of all martingales for which

11, = 171, < o=

If f is a martingale, then the Walsh-Fourier and Walsh-Kaczmarz-Fourier coeffi-
cients must be defined in a little bit different way:

FY ) =lim [ fPyidu, (y=w, ory=x).
G

The Walsh-Fourier and Walsh-Kaczmarz-Fourier coefficients of f € L (G) are
the same as the ones of the martingale (S;’fl fine N) obtained from f.
A bounded measurable function a is p-atom, if there exists an interval /, such that

/ad“ =0, all.<um)™", supp(a)C1
1

Weisz proved that Hardy spaces H, have atomic characterization. In particular
the following is true:
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PROPOSITION 1. [48] A martingale f = (f(”),n € N) isin Hy(0<p<1) if

and only if there exists sequence (a,k € N) of p-atoms and a sequence (U, k € N), of
real numbers, such that, for every n € N,

S owSmar=f", Y |ml” <, (y=wor y=x). (7
k=0 k=0

Moreover,

- 1/p
11, minf<z um) ,
k=0

where the infimum is taken over all decomposition of f of the form (7).

PROPOSITION 2. [48, 49] Suppose that an operator T is quasi-linear and for
some 0 < p <1

HTfHLpM <6 ||fHHp

and bounded on L. or on Ly with 1 < q <eo. Then T is of weak type-(1,1):

1T, <celfll-

3. Main results and their some consequences

We state our main result concerning the maximal operator of the summation method
(2), which we also show is in a sense sharp.

THEOREM 1. a) The maximal operator T** of the summability method (2) with
non-increasing sequence {qy : k > 0}, is bounded from the Hardy space H\ /2 to the
space Ly 3 .

b) (Sharpness) Let 0 < p < 1/2 and {qy : k > 0} is non-decreasing sequence,
satisfying the condition

dn+1 c
—2=—, (c=1). 3)
Oni2 n ( )

Then there exists a martingale f € H,, such that
sup [T ]|, =oe.
neN '

A number of special cases of our results are of particular interest and give both
well-known and new information. We just give the following examples of such T
means with non-increasing sequence {g; : k >0} :

COROLLARY 1. The maximal operators of U**, V** and R* means are bounded
Jfrom the Hardy space H\/, to the space Ly .. but are not bounded from H, to the
space Ly ., when 0 < p < 1/2.
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COROLLARY 2. Let f € Ly and T, be the T means with non-increasing se-
quence {qr:k>0}. Then TXf — f, ae, as n— oo.

COROLLARY 3. Let f € Ly. Then

RYf— f, ae, as n— oo,
U f — f, ae, as n— oo,

VEIKf — f, ae, as n— oo,

Analogously to part a) of Theorem | we can also prove similar result for non-
decreasing sequences which is given in part a) of next theorem. Moreover, we also show
that statement in b) above hold also for non-decreasing sequences and now without any
restriction like (8).

THEOREM 2. a) The maximal operator T** of the summability method (2) with
non-decreasing sequence {qy : k > 0} satisfying the condition

- 1
%:0(2), as n— oo, 9)

is bounded from the Hardy space H\ ), to the space Ly 3 .
b) (Sharpness) Let 0 < p < 1/2. For any non-decreasing sequence {q; : k > 0},
there exists a martingale f € Hp, such that

upl[Tfl, = o
neN '

A number of special cases of our results are of particular interest and give both
well-known and new information. We just give the following examples of such T
means with non-decreasing sequence {g; : k >0} :

COROLLARY 4. The maximal operator of B%PB-X means is bounded from the Hardy

space Hy, to the space Ly, .. but is not bounded from H), to the space Lp ., when
0<p<l1/2

COROLLARY 5. Let f € Ly and T,) be the T means with non-decreasing se-
quence {qy : k >0} and satisfying condition (9). Then

TKf— f, ae, as n— oo.

COROLLARY 6. Let f € Ly. Then Bff’ﬁ’Kf—>f, a.e., as n-— oo,
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4. Proofs

Proof of Theorem 1. Let the sequence {gy : k > 0} be non-increasing. By com-
bining (4) with (5) and using Abel transformation we get that

T /] <

lnfl
_Zq.SKf
an:1 17

1 n—2
< Q—< ’qj—qj'+1’f|0ff|+qn1(n—1)|0,ff|>
no\ j=

;

If we apply (10) and Theorem W1 we can conclude that the maximal operators
T*¥ of all T means with non-increasing sequence {g; : k > 0}, are bounded from the
Hardy space H\; to the space Ly/; ..

Let 0 < p < 1/2 and {0y : k € N} be an increasing sequence of positive integers
such that:

T
[ye) —

<

S

1

(a;—qj+1) j+an1(n— 1)) o f<onrf

so that
T f < o™ f. (10)

Y 1/af < oo (11)
k=0

k—1 Zan/p Zock/pfl

< ; (12)
=0 204,

204—1(1/p=1)  poy(1/p—1)—4
<

(13)
O—1 O

We note that such an increasing sequence {oy : k € N} which satisfies conditions
(11-13) can be constructed.
Let

A=Y ha, (14)

{k; Ak <A}

where

1
M = ;k and a; = 204(1/p=1) (D2ock+l _D2ak) .

By using Proposition 1, it is easy to see that the martingale f = (f(l) SR A )
€ Hy ;. Moreover, it is easy to show that

- 2"‘“;/:’”, if je{2%,... 2% 1} k=0,1,2...,

T=1,, it j¢ U (2%, 20t 1)
k=1

15)
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‘We can write

2%

Eq,SKf+ 22 it S f =L (16)

Let 2% < j < 2%*! where s =0,...,k— 1. Moreover,

Ty o f = ——
2% +2 Q20‘A+2

DY —Dyes | < j—2% <2%, (sEN)
so that, according to (1) and (15), we have that
201111 -1
|S5f] = 2 fs+ Y f)s (17)
y=20s
s—=120 1 500 (1/p—1) as(1/p—1)
pom(1/p— 2 p
<3y P 2 (05 o)
n=0 y=2%n n s
5—21 2o (1/p=1) ( ) pos(1/p—1) ’( . )
= D,op+1 — Do +———|(D; — Dyos
n=o 9 2 2 0Ol !
s—1 Zan/p Za.;/p 206571/174-1 2%/17 zak—l/P""l
< + < <
n=0 On Ol Os—1 0Ol Olk—1

Let 2%+t 41 < j<2%, s=1,...,k. Analogously to (17) we can prove that

. %1t s=1291 1 5oy (1/p-1)
sifl= X fowml=Y Y
v=0 n=0 y=2% gl
sl p/r! 20s-1/p+1 o041 /p+1
= aTI (Dzan+l _Dzar,) < g
n=o o Os—1 Olf—1
Hence,
2% oy_1/p+1 2% oy_1/p+1
2 %1 1 2
Il < S* _— i —. 18
< Qo 1o qu| < -1 Oy, +1 Zf)qj Ok—1 (19
If we now apply (15) and (17) we get that
@41 204(1/p—1

11| = Kyo, SHo 19
11| Orr 1 o 20 4+ Sooy f (19)

C]20k+1 zak(l/p_l)

= KHe S o
Qoo O 2t Sy ]
q2ak+l zak(l/p_l)
2 K(Xv - S (04
Ori 12 ( o 2% | 2 k—1+1f|

(073 O—1

L D% 204(1/p=1) B 20k—1/p+2 o D 20x(1/p—1)=2
~ Qs T Qo Ol
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Without lost the generality we may assume that ¢ = 1 in (8). By combining (18)
and (19) we get

|\ Ty o f| = 11| = 1| (20)
Qo+ 20(1/p—1)=2 g0y /p+1
- Oy o O O—1
20k(1/p=2)  pou_/p+1  oy(l/p=2)
- 4oy - O—1 - 1604
On the other hand,
20x(1/p=2)
u{xeczyTZ'amf(x)pTO‘]< =u(G)=1. Q1)
Let 0 < p < 1/2. Then
20x(1/p=2) . 204 (1/p=2) e
o (F {70 Bl 0] g @
20x(1/p=2) L
160y T mEee

The proof is complete.

Proof of Corollary 1. Since RS, Uy"* and V" are T means with non-increasing
sequence {gy : k > 0}, then the proof is direct consequence of Theorem 1.

Proof of Corollary 2. According to Theorem 1 a) and Proposition 2 we also have
weak (1,1) type inequality and by well-known density argument due to Marcinkiewicz
and Zygmund [15] we have T)f — f, a.e., for all f € L;. Which follows proof of
Corollary 2.

Proof of Corollary 3. Since R¥,U;"* and V,;"* are T means with non-increasing
sequence {gy : k > 0}, then the proof is direct consequence of Corollary 2.

Proof of Theorem 2. Let the sequence {gy : k > 0} be non-decreasing. By com-
bining (4) with (5) and using Abel transformation we get that

IT.f| <

1 n—1
—2.4;Sif
0, =

1 n—2
< Q—< }qj—qj+1}J'|fo|+qn_1(n—1)an|>

< QL (Z —(qj—qj+1) j—qn-1(n—1)+2g,—1(n— 1)) o'f
no\ j=1

< QL (2gur(n—1)— Q) 6" f < co*f

S -
N -
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so that
T f<co*f. (23)

If we apply (23) and Theorem W1 we can conclude that the maximal operators 7
is bounded from the Hardy space H /; to the space L3 ...

To prove part b) of theorem 2 we use the martingale, defined by (14) where oy
satisfy conditions (11-13). It is easy to show that for every non-increasing sequence
{qx : k = 0} it automatically holds that g,q+1/Q,e+2 = ¢/2%. According to (16-20)
we can conclude that

204 (1/p=2)

[T of | 2 | =11 > —em—

Analogously to (21) and (22) we then get that sup;cy HT;&k 1 f HL = oo and the
P

proof is complete.

Proof of Corollary 4. Since B®B*X are the T means with non-decreasing se-
quence {gy : k > 0}, then the proof is direct consequence of Theorem 2.

Proof of Corollary 5. According to Proposition 2 we can conclude that 7" has
weak type-(1,1) and by well-known density argument due to Marcinkiewicz and Zyg-
mund [15] we also have T, f — f, a.e.. Which follows proof of Corollary 5.

Proof of Corollary 6. Since B*P** are the T means with non-decreasing se-
quence {gy : k > 0}, then the proof is direct consequence of Corollary 5.
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