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HERMITE–HADAMARD TYPE INEQUALITIES FOR

MULTIDIMENSIONAL STRONGLY h–CONVEX FUNCTIONS

MENGJIE FENG, JIANMIAO RUAN ∗ AND XINSHENG MA

(Communicated by S. Varošanec)

Abstract. We establish some Hermite-Hadamard type inequalities for strongly h -convex func-
tion on balls and ellipsoids, which extend some known results. Some mappings connected with
these inequalities and related applications are also obtained.

1. Introduction

In 2007, Varos̆anec [26] introduced the concept of h -convexity,which has received
extensive attentions in recent years, see e.g. [3, 10, 15, 19].

DEFINITION 1. Let h : [0,1] → [0,∞) be a given function. We say that f : D →
R , where D is a convex subset of R

n , is h -convex if for any X ,Y ∈ D and α ∈ [0,1] ,

f (αX +(1−α)Y ) � h(α) f (X)+h(1−α) f (Y). (1)

This notion unifies several other classes of convex functions, s-convex functions
(in the second sense) [4], P-functions [22] and Godunova-Levin functions [9], which
are obtained by putting in (1) h(α) = α , h(α) = αs(s ∈ (0,1)) , h(α) = 1 and h(α) =
1/α (0 < α � 1) , respectively.

Strongly convex functions were introduced by Polyak [20] in 1966, and they play
an important role in optimization theory and mathematical economics. Many properties
and applications of them can be found in the literature (see e.g. [14, 16, 17, 18, 20,
23, 25, 27, 28]). In 2011, Angulo, Gimenez, Moros and Nikodem [2] generalized the
classes of strongly convex functions and h -convex functions as follows:

DEFINITION 2. Let h : [0,1] → [0,∞) be a given function and λ > 0 be a con-
stant. We say that f : D → R , where D is a convex subset of R

n , is strongly h -convex
with modulus λ if for any X = (x1,x2, . . . ,xn),Y = (y1,y2, . . . ,yn) ∈ D and α ∈ [0,1] ,

f (αX +(1−α)Y ) � h(α) f (X)+h(1−α) f (Y)−λ α(1−α)|X −Y |2, (2)
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where
|X −Y |2 = (x1− y1)

2 +(x2− y2)
2 + . . .+(xn− yn)

2 .

In particular, if f satisfies (2) with h(α) = α , h(α) = αs(s ∈ (0,1)) , h(α) = 1
and h(α) = 1/α (0 < α � 1) , then f is said to be a strongly convex function, strongly
s-convex function (in the second sense), strongly P-function and a strongly Godunova-
Levin function, respectively.

Convexity and its generalizations have a very important position in pure mathe-
matics and in applications. A famous application of convex functions is the following
Hermite-Hadamard inequality.

THEOREM A. Let f : [a,b]⊂ R → R be a convex function. Then

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
.

In 1999, Dragomir and Fitzpatrick obtained the variant of Hermite-Hadamard’s
inequality for s-convex functions in the second sense.

THEOREM B. [8] Let f : [a,b] ⊂ R → R be a nonnegative s-convex function in
the second sense with 0 < s < 1 . Then

2s−1 f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

s+1
.

In 2008, Sarikaya, Saglam and Yildririm proved the following analogue inequali-
ties for h -convex functions.

THEOREM C. [24] Let f : [a,b] ⊂ R → R be an h-convex function on [a,b] .
Then

1

2h
(

1
2

) f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � [ f (a)+ f (b)]

∫ 1

0
h(x)dx.

In 2011, the authors established the following inequality for strongly h -convex
functions.

THEOREM D. [2] Let f : [a,b] ⊂ R → R be a strongly h-convex function with
modulus λ on [a,b] . Then

1

2h
(

1
2

) [
f

(
a+b

2

)
+

λ
12

(b−a)2
]

� 1
b−a

∫ b

a
f (x)dx

� [ f (a)+ f (b)]
∫ 1

0
h(t)dt− λ

6
(b−a)2.

Meanwhile, there are large number of works dedicated to study Hermite-Hada-
mard’s type inequalities in multidimensional spaces. For instance, some inequalities
for convex type functions on rectangles can be referred to [1, 7, 12], and on disks can
be referred to [5, 6, 13, 29]. The motivation of this paper is to deal with analogue
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inequalities for strongly h -convex functions on balls and ellipsoids. Compared with
the methods taken on rectangles, which used on balls and ellipsoids are much more
complicated.

In the sequel, unless otherwise specified, R
n denotes the Euclidean space of di-

mension n and |E| denotes the Lebesgue measure of a measurable set E ⊂ R
n , dσ(X)

is the arc length (n = 2) or the usual surface measure (n � 3) in general. For any
points X = (x1,x2, . . . ,xn) , Y = (y1,y2, . . . ,yn) ∈ R

n and a,b ∈ R , define the product
of vectors by

X ◦Y = (x1y1,x2y2, . . . ,xnyn) ,

the linear combination of vectors by

aX +bY = (ax1 +by1,ax2 +by2, . . . ,axn +byn) ,

and the norm of X by

|X | =
√

x2
1 + x2

2 + · · ·+ x2
n.

Bn(C,r) and δn(C,r) are the n -dimensional ball and its sphere respectively centered
at the point C = (c1,c2, . . . ,cn) ∈ R

n with radius r > 0. En(C,R) denotes the n -
dimensional ellipsoid centered at the point C = (c1,c2, . . . ,cn) ∈ R

n with semiaxises
R = (r1,r2, · · · ,rn) ∈ R

n , that is

(x1 − c1)2

r2
1

+
(x2 − c2)2

r2
2

+ · · ·+ (xn − cn)2

r2
n

� 1, 0 < r1,r2, . . . ,rn < ∞,

and Sn(C,R) is the sphere of En(C,R) . It is well known that

|Bn(C,r)| = π
n
2 rn

Γ( n
2 +1)

, |δn(C,r)| = nπ
n
2 rn−1

Γ( n
2 +1)

, (3)

|En(C,R)| = π n
2 r1 · · ·rn

Γ( n
2 +1)

, |Sn(C,tR)| = tn−1|Sn(C,R)|, t > 0, (4)

where Γ(·) denotes the Gamma function.
Throughout the paper, we also assume that the functions h in Definition 1 and

Definition 2 are always Lebesgue integrable on [0,1] and are chosen such that h
(

1
2

)
>

0.
Now we recall some known results. In 2000, Dragomir obtained the Hermite-

Hadamard type inequality of convex functions on disks in R
2 [5] and on balls in R

3

[6]. In 2014, Matłoka [13] generalized the conclusions for h -convex functions on disks
in R

2 . In 2019, the authors [29] extended the above results to the more general cases
as follows.

THEOREM E. [29] Let f : Bn(C,r) → R be an h-convex function on Bn(C,r) .
Suppose that h satisfies

1−2nh

(
1
2

)∫ 1

0
tn−1h(1− t)dt > 0. (5)



900 M. FENG, J. RUAN AND X. MA

Then

1

2h
(

1
2

) f (C) � 1
|Bn(C,r)|

∫
Bn(C,r)

f (X)dX � K (n)
|δn(C,r)|

∫
δn(C,r)

f (X)dσ(X),

where

K (n) =
n

∫ 1
0 tn−1h(t)dt

1−2nh
(1

2

)∫ 1
0 tn−1h(1− t)dt

. (6)

THEOREM F. [29] Let f : En(C,R)→R be an h-convex function on the ellipsoid
En(C,R) . Suppose that h satisfies (5). Then

1

2h
(1

2

) f (C) � 1
|En(C,R)|

∫
En(C,R)

f (X)dX � K (n)
|δn(0,1)|

∫
δn(0,1)

f
(
X̃

)
dσ

(
X ′) ,

where K (n) is as in Theorem E and X̃ = R◦X ′+C ∈ Sn(C,R) .
Furthermore, if f � 0 , we have

1
|En(C,R)|

∫
En(C,R)

f (X)dX � F̃ (R)
|Sn(C,R)|

∫
Sn(C,R)

f (X)dσ(X),

where

F̃ (R) =
|Sn(C,R)|

rn−1

Γ( n
2 +1)

nπ
n
2

K (n) and r = min{r1, r2, . . . , rn}. (7)

With these motivations, one of the purposes of this paper is to establish analogues
of the above inequalities for strongly h -convex functions. Now we are in a position to
state our results.

THEOREM 1. Let f : En(C,R)→R be a strongly h-convex function with modulus
λ on the ellipsoid En(C,R) . Suppose that h satisfies (5). Then

1

2h
(1

2

) (
f (C)+

λ |R|2
n+2

)
� 1

|En(C,R)|
∫

En(C,R)
f (X)dX

� K (n)
|δn(0,1)|

∫
δn(0,1)

f
(
X̃

)
dσ

(
X ′)−λK̃ (n)|R|2, (8)

where X̃ = R◦X ′+C ∈ Sn(C,R) , K (n) is defined by (6) in Theorem E and

K̃ (n) =
1+n(n+1)

∫ 1
0 tn−1h(1− t)dt

(n+1)(n+2)
[
1−2nh

(
1
2

)∫ 1
0 tn−1h(1− t)dt

]. (9)

Especially, if f � 0 , we have

1
|En(C,R)|

∫
En(C,R)

f (X)dX � F̃ (R)
|Sn(C,R)|

∫
Sn(C,R)

f (X)dσ(X)−λK̃ (n)|R|2, (10)

where F̃ (R) is defined by (7) in Theorem F.

As a consequence, with the aid of (3), we immediately derive that
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THEOREM 2. Let f : Bn(C,r)→R be a strongly h-convex function with modulus
λ on Bn(C,r) . Suppose that h satisfies (5). Then

1

2h
(

1
2

) (
f (C)+

λnr2

n+2

)
� 1

|Bn(C,r)|
∫

Bn(C,r)
f (X)dX

� K (n)
|δn(C,r)|

∫
δn(C,r)

f (X)dσ(X)−λnK̃ (n)r2, (11)

where K (n) and K̃ (n) are as in Theorem 1.

In particular, letting λ → 0, Theorem 1 and Theorem 2 reduce to Theorem F and
Theorem E respectively.

It is easy to check that (5) holds for h(t) = t . Actually,

1−2nh

(
1
2

)∫ 1

0
tn−1h(1− t)dt = 1−n

∫ 1

0
(tn−1− tn)dt =

n
n+1

> 0.

And, a direct calculation yields that K (n) = 1,K̃ (n) = 2
n(n+2) . These facts show that

COROLLARY 1. If f : En(C,R) → R be a strongly convex function with modulus
λ , then

f (C)+
λ |R|2
n+2

� 1
|En(C,R)|

∫
En(C,R)

f (X)dX �
Γ( n

2 +1)

nπ
n
2

∫
δn(0,1)

f (X̃)dσ(X ′)− 2λ |R|2
n(n+2)

,

where X̃ are as in Theorem 1.
Furthermore, if f is a nonnegative convex function on En(C,R) and r = min{r1, r2,

. . . , rn} , then

1
|En(C,R)|

∫
En(C,R)

f (X)dX �
Γ( n

2 +1)

nπ
n
2 rn−1

∫
Sn(C,R)

f (X)dσ(X)− 2λ |R|2
n(n+2)

.

COROLLARY 2. If f : Bn(C,r) → R be a strongly convex function with modulus
λ , then

f (C)+
λnr2

n+2
� 1

|Bn(C,r)|
∫

Bn(C,r)
f (X)dX � 1

|δn(C,r)|
∫

δn(C,r)
f (X)dσ(X)− 2λ r2

n+2
.

When h(t) = ts, 0 < s < 1, integration by parts implies that

∫ 1

0
tn−1h(1− t)dt =

∫ 1

0
(t −1)n−1tsdt =

(n−1)!
(s+1)(s+2) · · ·(s+n)

. (12)

By (12), Theorem 1 and Theorem 2, we get the following inequalities for s-convex
functions.
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COROLLARY 3. Let f : En(C,R) → R be a strongly s-convex function (in the
second sense) with modulus λ on the ellipsoid En(C,R) . If 0 < s < 1 and

2s(s+1)(s+2) · · ·(s+n) > 2n!, (13)

then

2s

2

(
f (C)+

λ |R|2
n+2

)
� 1

|En(C,R)|
∫

En(C,R)
f (X)dX

� K2

∫
δn(0,1)

f
(
X̃

)
dσ

(
X ′)−λK̃1|R|2,

where X̃ ,r are as in Theorem 1 and

K1 =
n2s(s+1)(s+2) · · ·(s+n−1)
2s(s+1)(s+2) · · ·(s+n)−2n!

, (14)

K̃1 =
2s [(s+1)(s+2) · · ·(s+n)+ (n+1)!]

(n+1)(n+2) [2s(s+1)(s+2) · · ·(s+n)−2n!]
, (15)

K2 =
Γ( n

2 +1)

π
n
2

2sn(s+1)(s+2) · · ·(s+n−1)
2s(s+1)(s+2) · · ·(s+n)−2n!

=
Γ( n

2 +1)

nπ
n
2

K1.

Furthermore, if f � 0 , we have

1
|En(C,R)|

∫
En(C,R)

f (X)dX � F̃(R)
|Sn(C,R)|

∫
Sn(C,R)

f (X)dσ(X)−λK̃1|R|2,

where

F̃(R) =
Γ( n

2 +1)|Sn(C,R)|
nπ

n
2 rn−1

2sn(s+1)(s+2) · · ·(s+n−1)
2s(s+1)(s+2) · · ·(s+n)−2n!

=
|Sn(0,R)|
|δn(0,r)| K1.

COROLLARY 4. Let f : Bn(C,r) → R be a strongly s-convex function (in the
second sense) with modulus λ on Bn(C,r) and K1,K̃1 be the constants defined in
Corollary 3. If 0 < s < 1 and (13) holds, then

2s

2

(
f (C)+

λnr2

n+2

)
� 1

|Bn(C,r)|
∫

Bn(C,r)
f (X)dX

� K1

|δn(C,r)|
∫

δn(C,r)
f (X)dσ(X)−λnK̃1r

2.

The second purpose in this paper is to provide some applications of the Hermite-
Hadamard inequalities for strongly h -convex functions. In [5] and [6], Dragomir stud-
ied some properties of the mappings connected to the Hermite-Hadamard type inequal-
ity of convex function on disks in R

2 and on balls in R
3 . In [13], Matłoka considered

the similar mappings connected to the h -convex function on disks in R
2 . Recently,

the authors [29] extended the above results to the general high-dimension balls and
ellipsoids in R

n .
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THEOREM G. [29] Define the mapping H̃ : [0,1] → R by

H̃(t) =
1

|En(C,R)|
∫

En(C,R)
f (tX +(1− t)C)dX . (16)

If f is an h-convex function on the ellipsoid En(C,R) , then
(i) the function H̃ is an h-convex function on [0,1] ,
(ii) for any t ∈ (0,1] ,

f (C)
2h

(
1
2

) � H̃(t) � H̃(1)
[
h(t)+2h

(
1
2

)
h(1− t)

]
. (17)

THEOREM H. [29] Define the mapping H̃ : [0,1]→ R by

H̃(t) =
1

|Bn(C,r)|
∫

Bn(C,r)
f (tX +(1− t)C)dX . (18)

If f is an h-convex function on the ball Bn(C,r) , then the mapping H̃ enjoys the same
properties as H̃ in Theorem G.

THEOREM I. [29] Define the mapping G̃ : [0,1] → R by

G̃(t) =

⎧⎨
⎩

1
|Sn(C,tR)|

∫
Sn(C,tR)

f (X)dσ(X), t ∈ (0,1],

f (C), t = 0.

(19)

If f is an h-convex function on the ellipsoid En(C,R) and (5) holds, then
(i) the function G̃(t) is an h-convex function on [0,1] ,
(ii) when f � 0 , for any t ∈ (0,1] , H̃(t) � F̃ (R)G̃(t) ,
(iii) when f � 0 , for any t ∈ (0,1] ,

f (C)
2h

(
1
2

)
F̃ (R)

� G̃(t) � G̃(1)
[
h(t)+2h

(
1
2

)
h(1− t)F̃ (R)

]
, (20)

where F̃ (R) is defined by (7) in Theorem F.

THEOREM J. [29] Define the mapping G̃ : [0,1] → R by

G̃(t) =

⎧⎨
⎩

1
|δn(C,tr)|

∫
δn(C,tr)

f (X)dσ(X), t ∈ (0,1],

f (C), t = 0.

(21)

If f is an h-convex function on the ball Bn(C,r) and (5) holds, then
(i) the function G̃(t) is an h-convex function on [0,1] ,
(ii) for any t ∈ (0,1] , H̃(t) � K (n)G̃(t) ,
(iii) for any t ∈ (0,1] ,

f (C)
2h

(1
2

)
K (n)

� G̃(t) � G̃(1)
[
h(t)+2h

(
1
2

)
h(1− t)K (n)

]
. (22)

Now, we will prove some properties of these four mappings assuming that the
function f is strongly h -convex.
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THEOREM 3. If f is a strongly h-convex function with modulus λ on the ellip-
soid En(C,R) and the mapping H̃ : [0,1] → R is defined by (16) in Theorem G, then

(i) H̃ is a strongly h-convex function with modulus λ
n+2 |R|2 on [0,1] ,

(ii) for any t ∈ (0,1] ,

1

2h
(

1
2

) (
f (C)+

λ |R|2t2
n+2

)
(23)

� H̃(t) � H̃(1)
[
h(t)+2h

(
1
2

)
h(1− t)

]
− λ |R|2

n+2
[h(1− t)+ t(1− t)].

As a consequence, we have the following conclusion.

COROLLARY 5. If f is a strongly h-convex function with modulus λ on the
ball Bn(C,r) and the mapping H̃ : [0,1] → R is defined by (18) in Theorem H, then H̃
enjoys the same properties as in Theorem 3 with |R|2 = nr2 .

THEOREM 4. Let the mapping G̃ : [0,1] → R be defined by (19) in Theorem I.
If f is a strongly h-convex function with modulus λ on the ellipsoid En(C,R) and (5)
holds, then

(i) the function G̃(t) is a strongly h-convex function with modulus λ r2 on [0,1] ,
(ii) when f � 0 , for any t ∈ (0,1] , H̃(t)+ λ K̃(n)|R|2t2 � F̃ (R)G̃(t) ,
(iii) when f � 0 , for any t ∈ (0,1] ,

1

2h
(1

2

)
F̃ (R)

[
f (C)+ λK̂ (n)|R|2t2

]
(24)

� G̃(t) � G̃(1)
[
h(t)+2F̃(R)h

(
1
2

)
h(1− t)

]
−λ K̂(n)|R|2h(1− t)−λ r2t(1− t),

where r = min{r1,r2, . . . ,rn} , F̃ (R) , K (n), K̃ (n) are as in Theorem 1 and

K̂ (n) =
1

n+2

[
1+2(n+2)K̃ (n)h

(
1
2

)]
.

THEOREM 5. Let the mapping G̃ : [0,1]→ R be defined by (21) in Theorem J. If
f is a strongly h-convex function with modulus λ on the ball Bn(C,r) and (5) holds,
then

(i) the function G̃(t) is a strongly h-convex function with modulus λ r2 on [0,1] ,
(ii) for any t ∈ (0,1] , H̃(t) � K (n)G̃(t)−λnK̃ (n)r2t2 ,
(iii) for any t ∈ (0,1] ,

f (C)+ λnK̂ (n)r2t2

2h
(

1
2

)
K (n)

� G̃(t) (25)

� G̃(1)
[
h(t)+2K (n)h

(
1
2

)
h(1− t)

]
−λ r2

[
t(1− t)+nK̂ (n)h(1− t)

]
,

where K (n),K̃ (n) and K̂ (n) are as in Theorem 4.



HERMITE-HADAMARD INEQUALITIES FOR h-CONVEX FUNCTIONS 905

2. Proof of the Theorems

2.1. Proof of Theorem 1

(i) The facts of f (C) = f
(

X
2 + 2C−X

2

)
and∫

En(C,R)
f (X)dX =

∫
En(C,R)

f (2C−X)dX

suggest that

f (C) =
1

|En(C,R)|
∫

En(C,R)
f

(
X
2

+
2C−X

2

)
dX

� 1
|En(C,R)|

∫
En(C,R)

[
h

(
1
2

)
f (X)+h

(
1
2

)
f (2C−X)− λ

4
|2(X −C)|2

]
dX

=
2h

( 1
2

)
|En(C,R)|

∫
En(C,R)

f (X)dX − λ
|En(0,R)|

∫
En(0,R)

|X |2dX . (26)

On the other hand,∫
En(0,R)

|X |2 dX =
∫

En(0,R)

(
x2
1 + x2

2 + · · ·+ x2
n

)
dx1dx2 · · ·dxn, (27)

and (4) implies that

∫
En(0,R)

x2
ndx1dx2 · · ·dxn = 2

π
n−1
2

Γ
(

n−1
2 +1

)r1 · · · rn−1

∫ rn

0
x2
n

(
1− x2

n

r2
n

) n−1
2

dxn

= 2
π

n−1
2

Γ
(

n+1
2

) r1 · · · rn−1r
3
n

∫ 1

0
t2(1− t2)

n−1
2 dt

=
π n−1

2

Γ
(

n+1
2

) r1 · · · rn−1r
3
n

∫ 1

0
t

1
2 (1− t)

n−1
2 dt

= r1 · · · rn−1r
3
n

π n−1
2

Γ
(

n+1
2

)B

(
3
2
,
n+1

2

)
,

where B(·, ·) denotes the Beta function. It follows from the basic properties of the
Gamma function and the Beta function that

π
n−1
2

Γ
(

n+1
2

)B

(
3
2
,
n+1

2

)
=

π
n−1
2

Γ
(

n+1
2

) Γ
(

3
2

)
Γ

(
n+1
2

)
Γ

(
n+4
2

) =
π

n
2

2Γ
(

n+4
2

)
=

π n
2

(n+2)Γ
(

n
2 +1

) ,

which tells us that∫
En(0,R)

x2
ndx1dx2 · · ·dxn =

π
n
2

(n+2)Γ
(

n
2 +1

)r1 · · · rn−1r
3
n =

|En(0,R)|
n+2

r2
n . (28)
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With the aid of (27) and similar arguments as in (28), we have

1
|En(0,R)|

∫
En(0,R)

|X |2 dX =
r2
1 + · · ·+ r2

n

n+2
=

|R|2
n+2

. (29)

Therefore, the first part of (8) is obtained by (26) and (29).
(ii) Now we turn to prove the second part of of (8). It is not difficult to see that∫

En(C,R)
f (X)dX

= r1r2 · · · rn

∫
Bn(0,1)

f (R◦X +C)dX

= r1r2 · · · rn

∫ 1

0

∫
δn(0,1)

f
(
t
(
R◦X ′+C

)
+(1− t)C

)
tn−1dσ(X ′)dt

� r1r2 · · · rn

{∫ 1

0
tn−1h(t)dt

∫
δn(0,1)

f
(
R◦X ′+C

)
dσ

(
X ′)

+ f (C)|δn(0,1)|
∫ 1

0
tn−1h(1− t)dt− λ

(n+1)(n+2)

∫
δn(0,1)

∣∣R◦X ′∣∣2 dσ
(
X ′)} .

On the other hand, it follows from (29) that

|R|2
n+2

|En(0,R)| =
∫

En(0,R)
|X |2 dX

= r1r2 · · · rn

∫ 1

0
tn+1dt

∫
δn(0,1)

∣∣R◦X ′∣∣2 dσ
(
X ′)

=
r1r2 · · · rn

n+2

∫
δn(0,1)

∣∣R◦X ′∣∣2 dσ
(
X ′) ,

which means that ∫
δn(0,1)

∣∣R◦X ′∣∣2 dσ
(
X ′) = |Bn(0,1)| |R|2. (30)

Due to (30) and the inequality

f (C) �
2h( 1

2)
|En(C,R)|

∫
En(C,R)

f (X)dX − λ
n+2

|R|2,

we finish the proof of the right part of (8).
(iii) Next we will prove inequality (10). Since f � 0 and r = min{r1,r2, . . . ,rn} ,∫

Sn(C,R)
f (X)dσ(X) =

∫
Sn(0,R)

f (X +C)dσ(X)

�
∫

δn(0,r)
f

(
R
r
◦X +C

)
dσ(X)

= rn−1
∫

δn(0,1)
f
(
R◦X ′+C

)
dσ(X ′).
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That is ∫
δn(0,1)

f
(
X̃

)
dσ

(
X ′) � 1

rn−1

∫
Sn(C,R)

f (X)dσ(X). (31)

By combing (8) and (31) we complete the proof of Theorem 1. �

2.2. Proof of Theorem 3

(i) Let t1, t2 ∈ [0,1], and α,β � 0,α + β = 1. It follows from (29) that

H̃(αt1 + β t2)

=
1

|En(C,R)|
∫

En(C,R)
f (α [t1X +(1− t1)C]+ β [t2X +(1− t2)C])dX

� h(α)
|En(C,R)|

∫
En(C,R)

f (t1X +(1− t1)C)dX +
h(β )

|En(C,R)|
∫

En(C,R)
f (t2X +(1− t2)C)dX

−λ αβ (t1− t2)2

|En(C,R)|
∫

En(C,R)
|X −C|2dX

= h(α)H̃(t1)+h(β )H̃(t2)− λ |R|2
n+2

αβ (t1− t2)2,

which means that H̃ is a strongly h -convex function with modulus λ
n+2 |R|2 on [0,1] .

(ii) For any fixed t ∈ (0,1] , taking the substitution η = (η1,η2, · · · ,ηn) , where
ηi = txi +(1− t)ci , we have

H̃(t) =
1

|En(C,R)|
∫

En(C,R)
f (tX +(1− t)C)dX

=
1

|En(C,R)|
∫

En(C,tR)
f (η)

∣∣∣∣ ∂ (x1,x2, . . . ,xn)
∂ (η1,η2, . . . ,ηn

∣∣∣∣dη

=
1

tn|En(C,R)|
∫

En(C,tR)
f (η)dη

=
1

|En(C,tR)|
∫

En(C,tR)
f (X)dX . (32)

Then Theorem 1 gives us that

1

2h( 1
2)

(
f (C)+

λ
n+2

|R|2t2
)

� H̃(t).

In this way the first part of the inequality (23) is proved.
It follows from the first inequality of (8), the definition of H̃ and (29) that

H̃(t) � h(t)
|En(C,R)|

∫
En(C,R)

f (X)dX +h(1− t) f (C)− λ t(1− t)
|En(C,R)|

∫
En(C,R)

|X −C|2dX

� h(t)H̃(1)+h(1− t)
[
2h

(
1
2

)
H̃(1)− λ

n+2
|R|2

]
− λ t(1− t)

n+2
|R|2

�
[
h(t)+2h

(
1
2

)
h(1− t)

]
H̃(1)− λ |R|2

n+2
[h(1− t)+ t(1− t)],
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which completes the proof. �

2.3. Proof of Theorem 4

For any t ∈ (0,1] , it follows from (4) that

G̃(t) =
1

|Sn(0,tR)|
∫

Sn(0,tR)
f (X +C)dσ(X)

=
1

|Sn(0,R)|
∫

Sn(0,R)
f (tX +C)dσ(X).

(i) Let t1, t2 ∈ [0,1] and α,β � 0, α + β = 1. Then

G̃(αt1 + β t2)

=
1

|Sn(0,R)|
∫

Sn(0,R)
f (α (t1X +C)+ β (t2X +C))dσ(X)

� h(α)
|Sn(0,R)|

∫
Sn(0,R)

f (t1X +C)dσ(X)+
h(β )

|Sn(0,R)|
∫

Sn(0,R)
f (t2X +C)dσ(X)

−λ αβ (t1− t2)
2 1
|Sn(0,R)|

∫
Sn(0,R)

|X |2dσ (X)

� h(α)G̃(t1)+h(β )G̃(t2)−λ r2αβ (t1 − t2)
2 .

This concludes the proof of (i).
(ii) For any given t ∈ (0,1] , the identity (32) provides us that

H̃(t) =
1

|En(C,tR)|
∫

En(C,tR)
f (X)dX .

Since f � 0, by Theorem 1, we claim that

1
|En(C, tR)|

∫
En(C,tR)

f (X)dX � F̃ (tR)
|Sn(C,tR)|

∫
Sn(C,tR)

f (X)dσ(X)−λ K̃(n)t2|R|2.

That is
H̃(t) � F̃ (tR)G̃(t)−λ K̃(n)|R|2t2, t ∈ (0,1],

where

F̃ (tR) =
|Sn(0,tR)|
|δn(0,tr)| K (n).

On the other hand, it is clear from (3) and (4) that

F̃ (tR) = F̃ (R).

This observation implies that

H̃(t) � F̃ (R)G̃(t)−λ K̃(n)|R|2t2 (33)
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holds for all t ∈ (0,1] . We complete the proof of (ii).
(iii) Since the first inequality of (25) is easily reached by Theorem 1, (32) and

(33), it remains to prove the second part of (25).
Recalling that

G̃(t) =
1

|Sn(0,R)|
∫

Sn(0,R)
f (tX +C)dσ(X),

we have

G̃(t) =
1

|Sn(0,R)|
∫

Sn(0,R)
f (t(X +C)+ (1− t)C)dσ(X)

� h(t)
|Sn(0,R)|

∫
Sn(0,R)

f (X +C)dσ(X)+h(1− t) f (C)

−λ t(1− t)
1

|Sn(0,R)|
∫

Sn(0,R)
|X |2dσ(X)

� h(t)G̃(1)+2F̃ (R)h
(

1
2

)
h(1− t)G̃(1)−λ K̃(n)|R|2h(1− t)−λ r2t(1− t)

= G̃(1)
[
h(t)+2F̃(R)h

(
1
2

)
h(1− t)

]
−λ K̃(n)|R|2h(1− t)−λ r2t(1− t),

which completes the proof. �

2.4. Proof of Theorem 5

Since (i) is a special case of Theorem 4 (i), it remains to prove (ii) and (iii). With
the aid of (3), we can arrive at

G̃(t) =
1

|δn(0,1)|
∫

δn(0,1)
f
(
trX ′ +C

)
dσ

(
X ′) . (34)

As a special case of (32), we easily to see that

H̃(t) =
1

|Bn(C,tr)|
∫

Bn(C,tr)
f (X)dX . (35)

Thus Theorem 2 means that

H̃(t) � K (n)
|δn(C,tr)|

∫
δn(C,tr)

f (X)dσ(X)−λnK̃ (n)r2t2

= K (n)G̃(t)−λnK̃ (n)t2r2 (36)

holds for all t ∈ (0,1] , which completes the proof of (ii).
Now we will prove (iii). According to (35), (36) and the first part of (11), we can

deduce that

f (C)+ λn
n+2 t

2r2

2h
(1

2

) � H̃(t) � K (n)G̃(t)−λnK̃ (n)t2r2 (37)
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for all t ∈ (0,1] . Especially,

f (C) � 2h

(
1
2

)
K (n)G̃(1)− λnr2

n+2

[
1+2(n+2)K̃ (n)h

(
1
2

)]

= 2h

(
1
2

)
K (n)G̃(1)−λnK̂ (n)r2. (38)

On the other hand, (34) and (38) tell us that

G̃(t) =
1

|δn(0,1)|
∫

δn(0,1)
f
(
t
(
rX ′ +C

)
+(1− t)C

)
dσ

(
X ′)

� 1
|δn(0,1)|

∫
δn(0,1)

[
h(t) f

(
rX ′ +C

)
+h(1− t) f (C)

]
dσ

(
X ′)−λ t(1− t)r2

= h(t)G̃(1)+h(1− t) f (C)−λ t(1− t)r2

� G̃(1)
[
h(t)+2h

(
1
2

)
h(1− t)K (n)

]
−λ r2t(1− t)−λnK̂ (n)r2h(1− t).

Thus we finish the proof of Theorem 5. �
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[18] K. NIKODEM, J. L. SÁNCHEZ AND L. SÁNCHEZ, Jensen and Hermite-Hadamard inequalities for
strongly convex set-valued maps, Math. Aeterna, 4 (2014), 979–987.
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