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AN APPLICATION OF THE AFFINE SHORTENING FLOW

JIANBO FANG ∗ , YUNLONG YANG AND FANGWEI CHEN

Abstract. In this paper, using the affine curve shortening flow, we prove the following inequality:
if C is a smooth closed and convex curve with affine perimeter L and enclosed area A , then

μmax � L

2A
,

where μmax is the maximum affine curvature of C .
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