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MODULUS OF CONTINUITY OF THE QUANTUM

f –ENTROPY WITH RESPECT TO THE TRACE DISTANCE

IOSIF PINELIS

Abstract. A well-known result due to Fannes is a certain upper bound on the modulus of conti-
nuity of the von Neumann entropy with respect to the trace distance between density matrices;
this distance is the maximum probability of distinguishing between the corresponding quantum
states. Much more recently, Audenaert obtained an exact expression of this modulus of continu-
ity.

In the present note, Audenaert’s result is extended to a broad class of entropy functions
indexed by arbitrary continuous convex functions f in place of the Shannon–von Neumann
function x �→ x log2 x . The proof is based on the Schur majorization.
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