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MODULUS OF CONTINUITY OF THE QUANTUM
f-ENTROPY WITH RESPECT TO THE TRACE DISTANCE

T10SIF PINELIS

(Communicated by J. Pecari¢)

Abstract. A well-known result due to Fannes is a certain upper bound on the modulus of conti-
nuity of the von Neumann entropy with respect to the trace distance between density matrices;
this distance is the maximum probability of distinguishing between the corresponding quantum
states. Much more recently, Audenaert obtained an exact expression of this modulus of continu-
ity.

In the present note, Audenaert’s result is extended to a broad class of entropy functions
indexed by arbitrary continuous convex functions f in place of the Shannon—-von Neumann
function x — xlog, x. The proof is based on the Schur majorization.

1. Summary and discussion

Let p and o be two density matrices of a finite dimension d > 2, that is, two
positive-semidefinite Hermitian linear operators of trace 1 acting on a d-dimensional
Hilbert space 7. The trace distance between p and o is

I(p,0):=7ulp—o|=3 2| ilp —0)| = Y max (0, 4(p - 0)). (1.1)

i=1 i=1

Here and in what follows, as usual, tr denotes the trace, A;(7) > --- > A4(7T) are the
eigenvalues of a Hermitian linear operator T on ¢, and, for any real-valued function
f defined on the spectrum of 7, the action of f on 7 is defined by the formula

given the spectral decomposition 7 = Y% | A;(7)P;(t) of 7, with appropriate orthogonal
projectors Pi(1), so that Y% | P;(7) is the identity operator on .7 ; in particular, |7| =
Ty Ai(T)|P(T).
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One may also write
T(p,0) =sgptr(P(p—a)), (1.2)

where the supremum is taken over all orthogonal projectors P of the Hilbert space .77 ;
cf. e.g. [13, Ch. 9]. Thus, in view of Gleason’s theorem [7], which states that any nat-
ural assignment of probabilities to measurement outcomes must follow the Born rule,
one sees that the trace distance T(p, o) is the maximum probability of distinguishing
between the two quantum states given by p and ©.

By the norm inequality or by (1.2), 0 < T(p,0) < 1. Moreover, it is easy to see
that T(p,o) can take any value in the interval [0,1]. Indeed, suppose e.g. that the
operators p and o are commuting, with the same eigenbasis and the corresponding
eigenvalues p; and g; given by the formulas p| :=¢, po=1—1¢, g1 :=1—1t, go =t,
and p3 = q3 = pqs = qq4 = 0. Then, letting ¢ vary from 0 to 1/2, we see that

T(p,0) =7 Zk 1 |pk — gx| will continuously vary from 1 to 0.

The von Neumann entropy of a density matrix p is

S(p) == —tr(plog, p),

with Olog, 0 := 0. Audenaert [2] showed that
IS(p) — S(0)| < Ag(e) = h(e) + elogy(d — 1), (13)

where
=T(p,o) (1.4)

and
h(e) := —¢elog, e — (1 —¢€)log, (1 —¢).

As pointed out in [2], the upper bound A, (€) on |S(p) —S(0)] is better (that is, smaller)
than the well-known bound due to Fannes [5, 13]. Moreover, as was noted in [2], the
bound A;(g) on |S(p) —S(0o)] is the best possible one in terms of € and d.

In this note, inequality (1.3) is extended to general continuous convex functions of
density matrices instead of the convex function p — plog, p, as follows:

THEOREM 1. Take any continuous convex function f: [0,1] — R and consider
the corresponding generalized f-entropy

S¢(p):=—1trf(p) (1.5)
of a density matrix p. Then
1S¢(p) = Sr(0)| < Arale) (1.6)
= ()= f(1=8) = (=D (f(5) - ).

The bound As.4(€) on |S¢(p) —Sy(0)| is exact for each € € [0,1], as it is attazned by
IS¢(p) —Sy(0)| for some density matrices p and & such that T(p,G)
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The necessary proofs will be given in Section 2.

In the particular case when f(p) = plnp (with f(0) = 0), the exact bound Ay.,(€)
coincides with the Audenauert bound A4(€).

Almost immediately from Theorem 1, we obtain the following.

COROLLARY 2. The modulus of continuity of the generalized f-entropy S¢(-)
with respect to the trace distance is given by the formula

sup  [Sp(p)—=Sp(o)|= ~ max  [S¢(p)—Ss(0)]
(p,0): T(p,0)<e (p.0): T(p,o)<e

= Apq(min(e, 1 — 1))
forall € €0,1].

The von Neumann entropy is a special case of the generalized f-entropy, with
f(x) =xlog, x. Another special case of the generalized f -entropy is the Tsallis entropy
[17,6, 18] (0%

_L—u(p

Tsa(p) := o—1

forreal o > 1, corresponding to the continuous convex function f* given by the formula
f(x):=(x*—x)/(0x—1) forreal x € [0, 1]. The special case of the Tsallis entropy with
o =2 is also known as the Gini—Simpson index [11] or the Gibbs—Martin/Blau index
[4] or the expected heterozygosity [16]. The Tsallis entropy Tsq(p) is related with the
Renyi entropy

._ logy tr(p®)

Ra(p) == —a

by the strictly increasing one-to-one transformation given by the formula

1 — 2(1=®)Ra(p)

Tsa(p) = o—1

In the non-quantum case, that is, for a “probability distribution” (py, ..., py) with
nonnegative pip,...,pg such that p; + ...+ ps = 1, the notion of the f-entropy
— 275:1 f(pr), again for a convex function f, was considered in [1].

The special case of Theorem 1 corresponding to the Tsallis entropy was obtained
in [19], by a different method, involving probabilistic coupling.

In the following corollary, obtained from Theorem 1 mainly by simple rescaling,
the unit-trace condition on p and o is dropped. The resulting statement may be of
some convenience. It will actually be used in the proof of Theorem 1.

COROLLARY 3. Let p and o be two positive-semidefinite Hermitian linear op-
erators of the same trace t acting on a Hilbert space of a finite dimension d > 2. Take
any continuous convex function f: [0,t] — R. Then € € [0,] and

1S1(p) = S1(0)| < Ara(e) == (1) = =€) = (@=1)(f( 75 ) (), (1.7)

with Sy, T, and € still as defined in (1.5), (1.1), and (1.4). Also, A.f.q4(€) is nonde-
creasing in t andin d.
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REMARK 4. Just as the bound Ar.4(€) = Ay.r,4(€) is exact in the setting of The-
orem 1, the bound A;..4(€) is exact in the slightly more general setting of Corollary 3.
However, somewhat surprisingly and in contrast with the last sentence in Corollary 3,
Ay.£.4(€) is not monotonic in € € [0,7], for any real # > 0, as can be easily seen from
the proofs of Corollaries 3 and 2.

2. Proofs

First here, let us deduce Corollary 3 from Theorem 1 or, more specifically, from
inequality (1.6):

Proof of Corollary 3. That € € [0,¢] follows by the norm inequality. If 7 =0 then
p = 6 =0 and hence € =0, so that inequality (1.7) is trivial. Assume now that > 0.
Let p:=p/t, 6:=0/t, &:=T(p,6)=¢/t,and f(u):= f(tu) for all real u. Then
trp=1=tréd, Sf(p) = Sf(ﬁ), Sf(G) = S‘f(CNF), and Af;d(é) = A,;f;d(S). So, (1.7) is
obtained by using (1.6) with p, &, &, and f instead of p, o, €, and f, respectively.
The last sentence in Corollary 3 follows by the convexity of f.

Proof of Theorem 1. We shall prove inequality (1.6) by induction on d.

By approximation, without loss of generality (wlog) the function f is strictly con-
vex and differentiable.

The proof uses the powerful majorization tool; cf. e.g. [12, Definition A.1]. For

any natural n, we say that a vector @ = (ay,...,a,) € R” majorizes (in the Schur sense)
a vector b = (by,...,b,) € R" and write a 3= b if for the corresponding decreasing
rearrangements a' = (@p.1,...,dn,) and bt = (b,.1,...,b,,) of the vectors a and b

we have Y api = Y} by and ¥ api > ¥ by forall j=1,....n—1. One
may note here that
(y;j = max minga; 2.1
J€Snj 1€/
for j € [n]:={1,...,n}, where _#, ; denotes the set of all subsets of cardinality j of
the set [n]; cf. e.g. [14, formula (8.2)].
As in [2], we now invoke the fundamental double inequality

SIpt =gt =g <e=T(p,0) <e' =3 llp" =41, (2.2)
where || - || is the ¢! norm on R?, p! is the vector of the eigenvalues py,...,py of
p sorted in the ascending order, and ¢' is the vector of the eigenvalues ¢y, ...,qq of

o sorted in the descending order. The double inequality (2.2) is a special, trace-norm
case of the corresponding more general result for unitarily invariant norms; see e.g. the
double inequality [3, (IV.62)].

Note that for £ € (0,1) the derivative in € of Ar.4(e) is f'(1—€)— f'(75) =0
if 1 —&> 75,
Similarly, Ar.4(€) is nonincreasing in € € [1 — %, 1]. Now it follows by (2.2) that

thatis, if € <1 — %. So, Ay.4(€) is nondecreasing in € € [0,1 — é]

Af;d(é‘) Z min (Af;d(su),Af;d (SH)) . (23)
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(The argument presented in this paragraph is missing in [2].)

At this point, let us “forget” the definition of € in (1.4) and, instead, take any
€€ (0,1).

In view of (2.3), to prove inequality (1.6), it is enough to show that

?

Dy(p,q) < Aral€) (2.4)
forall (p,q) € Py,e, where
d d
Ds(p.q) =Y, f(pi) = Y. f(ai), (2.5)
1 1
Pie :={(p.q) € Ps: E(p.q) =€},
P;:=8,;%x84,

d

Sai={p=(p1,.pa) €0, =)": T pi=1},
1

1 d
E(p.q) = §2|Pi—qz'|~
1

In the case d = 2, take any (p,q) € Py, so that p = (a,1 —a) € S; and g =
(b,1—0b) € S; for some a and b in [0,1] such that € = E(p,q) = |a — b|. Wlog,
a>b,and hence € = E(p,q) = a—b > 0. Therefore and because f is convex,

D¢(p.q) =[f(a) = f(b)] = [f(1 =b) = f(1 —a)]
=[f(a) - fla—g)]-[f(1-a+e)— f(1—a)]
<) = fa—e)]=[f(e) = f(O)]=Ara(e).
Thus, in the case d = 2, (2.4) holds and hence (1.6) holds. This establishes the basis of

the induction mentioned in the very beginning of the proof of Theorem 1.
Assume now that d > 3. By continuity and compactness, there is a maximizer

(p,q) € Pge of Dy.

In what follows, it is assumed by default that (p,q) € P;.e is such a maximizer;
in particular, we have E(p,q) = €.

Wlog, for some & € [d] we have
p,-}qiforizl,...,k, (26)
pi<gifori=k+1,....,d, 2.7)
qi1 = 2 qk. (2.8)
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So,
k d
e=>(pi—q)= Y, (qi—pi)
i=1 i=k+1
Let now
pli=qi+¢€and p;:=¢q;fori=2,... k. (2.9)
Then the vector (pj,...,p;) majorizes (in the Schur sense) the vector (pi,...,pk).

To see why this is true, note first that, by (2.9), (2.8), and (2.6), p}., = p] =q1+¢€
and pi; = qri = q; < p; for i =2,... k. Moreover, by (2.1) and (2.6), gx.; < py.; for
all i € [£]. So,

k k
2 2 qri < 2 pr:i forall j € [k]. (2.10)
i=j+1 i=j+1 i=j+1
Also,
k k k k
S pii= 2P =atet Y ai= Y pi (2.11)
i=1 i=1 i=2 i=1

By (2.11) and (2.10), T, pt.. =35 pi and 37, pi, > 37| pi; forall j € [k]. Thus,
indeed (p7,...,p;) = (P1,---,Pk)-

Therefore and because f is continuous and convex, we have YX f(p7) = 3% f(p),
in view of the equivalence of items (i) and (iv) in [12, Theorem A.3]. Also, by (2.9),
pi = q; forall i € [k]. So, if we replace pi,...,p; respectively by pj,...,p;, then
condition (2.6) will continue to hold, as well as the other conditions imposed above on
p=(p1,...,Pa), whereas the value of Dy, as defined in (2.5), may only increase after
this replacement.

So, wlog (p1,...,pk) = (p},---,py)- Then, by (2.9) and (2.7),

p1>gqp and p; < g forall i=2,....d, (2.12)
and hence
d
e=pi1—q1 =2 (qi—p)- (2.13)
2
Take any permutation 7: [d] — [d] such that (1) = 1. Let pr:= (pr(1),---: Pr(a))
and similarly define gr. Then clearly E(pr,qz) = E(p,q), Df(pr,qz) = (p,q),
and condition (2.12) holds with (py,¢x) in place of (p,q) whenever it holds for (p,q).

Let us refer to this as the permutation invariance (of E, D¢, and (2.12)).

Suppose now for a moment that p; = g; for some i € [d]; by the permutation invari-
ance, wlog i =d, so that p; = g4 =: c¢. Let p and ¢ be two positive-semidefinite Her-
mitian linear operators acting on a Hilbert space of the finite dimension d — 1 > 2, with
the same eigenbasis and with the eigenvalues py,...,ps—; for p and qy,...,q4— for
o.Thentrp=tra=1—cand T(p,0)=p1—q1 =33 ' (qi—pi) = 33(qi —pi) = €,
with € as in (2.13). So, by Corollary 3 (which is, specifically, a corollary of inequality
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(1.6)) and the induction mentioned in the beginning of the proof of Theorem 1,

d—1

d d d—1
D(pa)| = | X5 = X @] = | E 100) - 3. 5(a)

=1[8¢(p) = Sr(0)| S A1—ipa-1(€) < Arpa(€) = Apa(e).

So, (2.4) follows if p; = g; for some i € [d].
Thus, we may and will henceforth assume that all inequalities in (2.12) are strict:

p1>qi and p; < g; forall i € [d]\ {1}. (2.14)

Suppose next that there are two distinct numbers j and & in [d]\ {1} such that
p;j >0 and p; > 0. By the permutation invariance, wlog p> > p3 > 0. Replace now
p=(p1,...,pq) by p:=(p1,p2+1t,p3—1,pa,...,pa), where ¢t >0 is close enough to
0 — more specifically, one may take here any 7 € (0, min[p3,g2 — p2]). Then (p,q) € P,
and, by the condition p; < g; for i € [d]\ {1} in (2.14), E(p,q) = E(p,q) = €, so that
(P.q) € Pye. Also, by the strict convexity of f, we have Dy(p,q) > Dy(p,q), which
contradicts the assumption that (p,q) € Py, is a maximizer of Dy.

So, pi, > 0 for at most one i, € [d]\ {1}, and, by the permutation invariance,
wlog 7. =2, so that

p=(p1,p2,0,...,0). (2.15)
Further, using the convexity of the function f and Jensen’s inequality, we see that
S f(ai) > (d—2)f(75 3L 54i). So, wlog g3 =+ =qq.

Furthermore, if ¢ # ¢3, replace g by §:= (q1,(1 —1)g2 +1tq3,(1 —1)g3 +1q,
q4,---,qq) for a small enough ¢ € (0,1). Then, in view of the condition p; < ¢; for
i€ [d\{1}in(2.14), (p,q) € Pse, but D¢(p,4) > D¢(p,q), a contradiction.

Thus, g2 = g3 =+ = g4, so that, in view of (2.15) and (2.13), for some x € [0, 1]
we have

p=P(x) = (x,1—x,0,...,0), q:Q@%=<x—&l_x+£ 1—x+8)

d—1 777 d—1
(2.16)
Moreover, condition p; < ¢» in (2.14) can now be rewritten as
l1—x+¢
and inequality (2.4) can be rewritten as
l—x+e\®
hx) = () = fle—g) + f(1—x) = (@d= Df (=) <h(),  @18)
which follows because
l—u+e
W)= [f () = fu=e)+ |1 (=) = (1—u)] >0 (2.19)
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for u € [x,1], in view of the convexity of f and condition (2.17) (which implies

1;+Jlr8>1—u forall u € [x,1]).

This completes the proof of the inequality in (1.6).

To complete the entire proof of Theorem 1, it remains to note that the bound
Arq(€) on [Sp(p) —Sy(o)]| is attained, for each € € [0,1], when the density ma-
trices p and o have a common eigenbasis with respective d-tuples of eigenvalues
p=(p1,...,pa) = P(1) and q¢ = (q1,...,94) = Q(1) with P and Q as defined in
(2.16). O

Proof of Corollary 2. This follows immediately from Theorem 1 and the observa-
tion, made in the paragraph containing inequality (2.3), that Ay.4(€) is nondecreasing
in £ € [0,1— 1] and nonincreasingin e € [1 — 1 1]. O
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