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EXTENSIONS OF LEMOS–SOARES TYPE LOG–MAJORIZATION

ZESHENG FENG AND JIAN SHI ∗

(Communicated by J.-C. Bourin)

Abstract. In this paper, we shall obtain extensions of Lemos-Soares log-majorization via Furuta
inequality.

1. Introduction

A capital letter, such as T , stands for an n×n complex matrix.
T > 0 means that T is a positive definite matrix and T � 0 means that T is

a positive semidefinite matrix, respectively. ||T || stands for the spectral norm of T .
A � B means that A−B � 0.

F. Kubo and T. Ando, in [6], introduce the α -power mean of A and B as follows,

A�αB =

⎧⎨
⎩

A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 , A,B > 0, α ∈ [0,1];

lim
ε→0+

(A+ εI)�α(B+ εI). A,B � 0, α ∈ [0,1].

There are many perfect properties on α -power mean. Here we list three of them.
(P1) Monotonicity. If 0 � B � A and 0 � D � C , then B�αD � A�αC .
(P2) Continuity. If A(k) → A and B(k) → B as k → ∞ , then A(k)�αB(k) → A�αB as

k → ∞ .
(P3) Determinantial identity. detA�αB = (detA)1−α(detB)α .
T. Ando and F. Hiai, in [1], introduce the relationship between two positive semidef-

inite matrices A and B , called log-majorization, denoted by A �
(log)

B , if

k

∏
i=1

λi(A) �
k

∏
i=1

λi(B) (k = 1,2, · · · ,n−1)

and
n

∏
i=1

λi(A) =
n

∏
i=1

λi(B) (i.e. detA = detB)
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hold, where λ1(A) � λ2(A) � · · · � λn(A) and λ1(B) � λ2(B) � · · · � λn(B) are the
eigenvalues of A and B , respectively, arranged in decreasing order.

There are many perfect theorems on α -power mean and log-majorization, such as
[3, 7, 8, 10].

Very recently, R. Lemos and G. Soares developed the related theory and obtained
the following result.

THEOREM 1. ([7, 8], Lemos-Soares log-majorization) If A,B � 0 , then

A
1
2 (A�B)B(A�B)A

1
2 ≺
(log)

(A
1
2 BA

1
2 )2

holds.

Theorem 1 was first shown in [7, Theorem 3.3]. It readily implies the correspond-
ing result with AB2A in the right hand considered in [7, 8] according to the famous
Araki-Lieb-Thirring inequality [2].

In this paper, we shall extend Theorem 1 via Furuta inequality.
In order to prove the main results, we first list some useful lemmas such as Furuta

inequality.

LEMMA 1. ([4], Furuta inequality) If A � B � 0 , then for each r � 0 and p � 1 ,

A1+r � (A
r
2 BpA

r
2 )

1+r
p+r

and
(B

r
2 ApB

r
2 )

1+r
p+r � B1+r

hold.

LEMMA 2. ([5, 9], Löwner-Heinz inequality) Let A � B � 0 , then for every 0 �
α � 1 , Aα � Bα holds.

2. Extensions of Lemos-Soares log-majorization

In this section, we shall show extensions of Lemos-Soares log-majorization de-
rived from Furuta inequality.

THEOREM 2. If A,B � 0 , then

A
t
2 (Ar�αBp)Br(Ar�αBp)A

t
2 ≺
(log)

(A
1
2 BA

1
2 )2α p+r

holds for 0 � r � 1 , p � 1 , 0 � 2α � 1+r
p+r , where t = 2α(p+ r)− r .



EXTENSIONS OF LEMOS-SOARES TYPE LOG-MAJORIZATION 991

Proof. Without loss of generality, we may suppose A, B > 0.
By the famous antisymmetric tensor power technique, we only need to prove that

A
1
2 BA

1
2 � I ensures that

A
t
2 (Ar�αBp)Br(Ar�αBp)A

t
2 � I.

It is clear that A
1
2 BA

1
2 � I is equivalent to B � A−1 .

By Furuta inequality, we have

(A− r
2 BpA− r

2 )
1+r
p+r � A−1−r.

By Löwner-Heinz inequality, it follows that

(A− r
2 BpA− r

2 )2α � A−2α(p+r) (2.1)

due to the fact that 0 � 2α(p+r)
1+r � 1.

Thus,

A
t
2 (Ar�αBp)Br(Ar�αBp)A

t
2 �A

t
2 (Ar�αBp)A−r(Ar�αBp)A

t
2

=A
t+r
2 (A− r

2 BpA− r
2 )2αA

t+r
2

�At+r−2α(p+r)

=I.

The first inequality is from Löwner-Heinz inequality and the second inequality is
from (2.1). This completes the proof. �

COROLLARY 1. If A,B � 0 , then

A
t
2 (Ar�αB

1
r )Br(Ar�αB

1
r )A

t
2 ≺
(log)

(A
1
2 BA

1
2 )

2α
r +r

holds for 0 � r � 1 , 0 � 2α � r+r2

1+r2
, where t = 2α( 1

r + r)− r .

Proof. Put p = 1
r in Theorem 2, we can obtain the above result. �

COROLLARY 2. If A,B � 0 , then

A
4α−1

2 (A�αB)B(A�αB)A
4α−1

2 ≺
(log)

(A
1
2 BA

1
2 )2α+1

holds for 0 � α � 1
2 .

Proof. Put r = 1 in Corollary 1, we can obtain the above result. �

REMARK 1. If we put α = 1
2 , Corollary 2 is just Lemos-Soares log-majorization.



992 Z. FENG AND J. SHI

REMARK 2. It doesn’t always hold for 1
2 < α < 1 in Corollary 2. Next, we give

a counterexample. Put A =

⎡
⎣

10 6 3
6 5 2
3 2 1

⎤
⎦ , B =

⎡
⎣

3 3 5
3 4 6
5 6 10

⎤
⎦ and α = 0.9. Then we have

λ1

(
A

4α−1
2 (A�αB)B(A�αB)A

4α−1
2

)
= 1.312835109283645×106

> λ1

(
(A

1
2 BA

1
2 )2α+1

)
= 1.227389551752334×106.
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