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NUMERICAL RADIUS IN HILBERT C∗–MODULES
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Abstract. Utilizing the linking algebra of a Hilbert C∗ -module
(
V ,‖·‖) , we introduce Ω(x) as

a definition of numerical radius for an element x ∈ V and then show that Ω(·) is a norm on V
such that 1

2 ‖x‖ � Ω(x) � ‖x‖ . In addition, we obtain an equivalent condition for Ω(x) = 1
2 ‖x‖ .

Moreover, we present a refinement of the triangle inequality for the norm Ω(·) . Some other
related results are also discussed.

1. Introduction

The notion of Hilbert C∗ -module is a natural generalization of that of Hilbert space
arising under replacement of the field of scalars C by a C∗ -algebra. This concept plays
a significant role in the theory of operator algebras, quantum groups, noncommutative
geometry and K -theory; see [10, 11].

Let us give that some necessary background and set up our notation. An element
a in a C∗ -algebra A is called positive (we write 0 � a ) if a = b∗b for some b ∈ A .
For an element a of A , we denote by

Rea =
1
2
(a+a∗), Ima =

1
2i

(a−a∗)

the real and the imaginary part of a . By A ′ we denote the dual space of A . A positive
linear functional of A is a map ϕ ∈ A ′ such that 0 � ϕ(a) whenever 0 � a . The set
of all states of A , that is, the set of all positive linear functionals of A of norm 1,
is denoted by S (A ) . An inner product module over A is a (left) A -module V
equipped with an A -valued inner product 〈·, ·〉 , which is C-linear and A -linear in the
first variable and has the properties 〈x,y〉∗ = 〈y,x〉 as well as 0 � 〈x,x〉 with equality if
and only if x = 0. The A -module V is called a Hilbert A -module if it is complete

with respect to the norm ‖x‖ = ‖〈x,x〉‖ 1
2 . In a Hilbert A -module V we have the

following version of the Cauchy–Schwarz inequality:

〈y,x〉〈x,y〉 � ‖x‖2〈y,y〉, (x,y ∈ V ). (1)

Every C∗ -algebra A can be regarded as a Hilbert C∗ -module over itself where the
inner product is defined by 〈a,b〉= a∗b . Let V and W be two Hilbert A -modules. A
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mapping T : V −→W is called adjointable if there exists a mapping S : W −→V such
that 〈Tx,y〉= 〈x,Sy〉 for all x∈V ,y∈W . The unique mapping S is denoted by T ∗ and
is called the adjoint operator of T . The space B(V ,W ) of all adjointable maps between
Hilbert A -modules V and W is a Banach space, while B(V ) := B(V ,V ) is a C∗ -
algebra. By K(V ,W ) we denote the closed linear subspace of B(V ,W ) spanned by{

θx,y : x∈W ,y∈V
}

, where θx,y is defined by θx,y(z) = x〈y,z〉 . Elements of K(V ,W )
are often referred to as “compact” operators. We write K(V ) for K(V ,V ) . Given a
Hilbert A -module V , the linking algebra L(V ) is defined as the matrix algebra of the
form

L(V ) =
[

K(A ) K(V ,A )
K(A ,V ) K(V )

]
.

Then L(V ) has a canonical embedding as a closed subalgebra of the adjointable oper-
ators on the Hilbert A -module A ⊕V via[

X Y
Z W

][
a
x

]
=
[
Xa+Yx
Za+Wx

]

which makes L(V ) a C∗ -algebra (cf. [15], Lemma 2.32 and Corollary 3.21). Each
x ∈ V induces the maps rx ∈ B(A ,V ) and lx ∈ B(V ,A ) given by rx(a) = xa and
lx(y) = 〈x,y〉 , respectively, such that r∗x = lx . The map x 
→ rx is an isometric linear
isomorphism of V to K(A ,V ) and x 
→ lx is an isometric conjugate linear isomor-
phism of V to K(V ,A ) . Further, every a ∈ A induces the map Ta ∈ K(A ) given
by Ta(b) = ab . The map a 
→ Ta defines an isomorphism between C∗ -algebras A and
K(A ) . Therefore, we may write

L(V ) =
{[

Ta ly
rx T

]
: a ∈ A , x,y ∈ V , T ∈ K(V )

}
,

and identify the C∗ -subalgebras of compact operators with the corresponding corners
in the linking algebra: K(A ) = K(A ⊕0)⊆ K(A ⊕V ) = L(V ) and K(V ) = K(0⊕
V ) ⊆ K(A ⊕V ) = L(V ) . We refer the reader to [10, 11] for more information on
Hilbert C∗ -modules and linking algebras.

Now, let B(H ) denote the C∗ -algebra of all bounded linear operators on a com-
plex Hilbert space H with inner product [·, ·] . The numerical range of an element
A ∈ B(H ) is defined

W (A) := {[Aξ ,ξ ] : ξ ∈ H ,‖ξ‖ = 1} .

It is known that W (A) is a nonempty bounded convex subset of C (not necessarily
closed). This concept is useful in studying linear operators and have attracted the atten-
tion of many authors in the last few decades (e.g., see [8], and references therein). The
numerical radius of A is given by

w(A) = sup{|[Aξ ,ξ ]| : ξ ∈ H ,‖ξ‖ = 1} .
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It is known that w(·) is a norm on B(H ) and satisfies

1
2
‖A‖ � w(A) � ‖A‖

for each A ∈ B(H ) . Some generalizations of the numerical radius A ∈ B(H ) can be
found in [2, 22].

In the next section, we first utilize the linking algebra L(V ) of a Hilbert A -
module V to introduce Φ(x) as a definition of numerical range for an arbitrary element
x ∈ V . We then use this set to define numerical radius of x and denote it by Ω(x) . In
particular, we show that Ω(·) is a norm on V , which is equivalent to the norm ‖·‖ and
the following inequalities hold for every x ∈ V :

1
2
‖x‖ � Ω(x) � ‖x‖. (2)

We also establish an inequality that refines the first inequality in (2). In addition, we

prove that Ω(x) = 1
2‖x‖ if and only if ‖x‖ =

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥ for all complex unit λ .

Furthermore, for x ∈ V and a ∈ A we prove that

Ω(xa± xa∗) � 2‖a±a∗‖Ω(x).

We finally present a refinement of the triangle inequality for the norm Ω(·) .

2. Main results

We start our work with the following definition.

DEFINITION 1. Let V be a Hilbert A -module and let L(V ) be the linking alge-
bra of V . The numerical range of x ∈ V is defined as the set

Φ(x) :=
{

ϕ
([

0 0
rx 0

])
: ϕ ∈ S

(
L(V )

)}
.

Next, we present some properties of the numerical range in Hilbert C∗ -modules.

THEOREM 1. Let x and y be elements of a Hilbert A -module V and let α ∈ C .
Then

(i) Φ(αx) = αΦ(x) (homogeneous).

(ii) Φ(x+ y)⊆ Φ(x)+ Φ(y) (subadditive).

(iii) Φ(x) is a nonempty compact convex subset of C .
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Proof. Let L(V ) be the linking algebra of V . For every a ∈ A , we have

rαx(a) = (αx)a = α(xa) =
(
αrx
)
(a)

and

rx+y(a) = (x+ y)a = xa+ ya =
(
rx + ry

)
(a).

Hence rαx = αrx and rx+y = rx + ry . Thus (i) and (ii) follow easily from the definition.
We now prove (iii). Since the existence of states on L(V ) is guaranteed by the

Hahn–Banach theorem, we have Φ(x) �= /0 . The convexity of Φ(x) is an easy con-
sequence of the fact that a convex combination of two states is also a state. As for
the compactness, note that the set S

(
L(V )

)
is a weak*-closed subset of the unit ball{

ϕ ∈ L
′
(V ) : ‖ϕ‖ � 1

}
of L

′
(V ) . Since, by the Banach–Alaoglu theorem, the lat-

ter is weak*-compact, the same is true for S
(
L(V )

)
. Hence Φ(x) , the image of

the weak*-continuous mapping ϕ 
→ ϕ
([

0 0
rx 0

])
for ϕ ∈ S

(
L(V )

)
, is compact in

C . �

REMARK 1. It is known that the set of all states of a unital C∗ -algebra A ⊆
B(H ) is a weak*-closed convex hull of the set of all vector states of A , i.e., the
states of A of the form A → [Aξ ,ξ ] for some unit vector ξ in H . Also, for the
Hilbert module V = B(H ) over the C∗ -algebra B(H ) is well known to be valid
K(B(H )) = K(V ,B(H )) = K(B(H ),V ) = K(V ) = B(H ) (see [5, Remark 1.13]),
so all corners in the linking algebra L(V ) are equal to B(H ) . Hence, for A ∈ B(H ) ,
we have Φ(A) = W (A) .

Now, we are in a position to introduce numerical radius for elements of a Hilbert
C∗ -module. Some other related topics can be found in [3, 6, 12, 16, 17, 19].

DEFINITION 2. Let V be a Hilbert A -module and let L(V ) be the linking alge-
bra of V . The numerical radius of an element x ∈ V is defined as

Ω(x) := sup

{∣∣∣∣ϕ
([

0 0
rx 0

])∣∣∣∣ : ϕ ∈ S
(
L(V )

)}
.

In the following theorem, we prove that Ω(·) is a norm on Hilbert C∗ -module V ,
which is equivalent to the norm ‖·‖ .

THEOREM 2. Let V be a Hilbert A -module. Then Ω(·) is a norm on V and
the following inequalities hold for every x ∈ V :

1
2
‖x‖ � Ω(x) � ‖x‖.
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Proof. Let L(V ) be the linking algebra of V . Let x∈ V . Clearly, Ω(x) � 0. Let

us now suppose Ω(x) = 0. Then, by Definition 2,

[
0 0
rx 0

]
= 0. Since

∥∥∥∥
[

0 0
rx 0

]∥∥∥∥= ‖x‖ ,

we get ‖x‖ = 0 and therefore, x = 0. Further, by Theorem 1 (i)-(ii), for y,z ∈ V and
α ∈ C we have Ω(αy) = |α|Ω(y) and Ω(y+ z) � Ω(y)+ Ω(z) . Thus Ω(·) is a norm
on V .

On the other hands, for every ϕ ∈ S
(
L(V )

)
, we have∣∣∣∣ϕ

([
0 0
rx 0

])∣∣∣∣�
∥∥∥∥
[

0 0
rx 0

]∥∥∥∥= ‖x‖.

So, by taking the supremum over ϕ ∈ S
(
L(V )

)
in the above inequality, we deduce

that

Ω(x) � ‖x‖. (3)

Now let

[
0 0
rx 0

]
= Re

([
0 0
rx 0

])
+ i Im

([
0 0
rx 0

])
be the Cartesian decomposition of[

0 0
rx 0

]
. By [13, Theorem 3.3.6], there exist ϕ1,ϕ2 ∈ S

(
L(V )

)
such that

∣∣∣∣ϕ1

(
Re

([
0 0
rx 0

]))∣∣∣∣=
∥∥∥∥Re

([
0 0
rx 0

])∥∥∥∥ (4)

and ∣∣∣∣ϕ2

(
Im

([
0 0
rx 0

]))∣∣∣∣=
∥∥∥∥ Im

([
0 0
rx 0

])∥∥∥∥. (5)

Therefore, by (4) and (5), we have

1
2
‖x‖ =

1
2

∥∥∥∥
[

0 0
rx 0

]∥∥∥∥
� 1

2

∥∥∥∥Re

([
0 0
rx 0

])∥∥∥∥+
1
2

∥∥∥∥ Im

([
0 0
rx 0

])∥∥∥∥
=

1
2

∣∣∣∣ϕ1

(
Re

([
0 0
rx 0

]))∣∣∣∣+ 1
2

∣∣∣∣ϕ2

(
Im

([
0 0
rx 0

]))∣∣∣∣
=

1
4

∣∣∣∣ϕ1

([
0 0
rx 0

])
+ ϕ1

([
0 0
rx 0

])∣∣∣∣+ 1
4

∣∣∣∣ϕ2

([
0 0
rx 0

])
−ϕ2

([
0 0
rx 0

])∣∣∣∣
� 1

2

∣∣∣∣ϕ1

([
0 0
rx 0

])∣∣∣∣+ 1
2

∣∣∣∣ϕ2

([
0 0
rx 0

])∣∣∣∣� 1
2

Ω(x)+
1
2

Ω(x) = Ω(x),

whence

1
2
‖x‖ � Ω(x). (6)
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From (3) and (6), we deduce the desired result. �

For A ∈ B(H ) , we note that (see [20]) w(A) = sup
λ∈T

∥∥Re(λA)
∥∥ . Here, as usual, T

is the unit circle of the complex plane C . This motivates the following result.

THEOREM 3. Let V be a Hilbert A -module and let L(V ) be the linking algebra
of V . Then

Ω(x) =
1
2

sup
λ∈T

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥,
for every x ∈ V .

Proof. Let x ∈ V . First, we show that

sup
λ∈T

∣∣∣∣Re

(
λ ϕ
([

0 0
rx 0

]))∣∣∣∣=
∣∣∣∣ϕ
([

0 0
rx 0

])∣∣∣∣ (7)

for every ϕ ∈ S
(
L(V )

)
.

Let ϕ ∈S
(
L(V )

)
. We may assume that ϕ

([
0 0
rx 0

])
�= 0, otherwise (7) trivially

holds. Put

λ0 =
ϕ
([

0 0
rx 0

])
∣∣∣∣ϕ
([

0 0
rx 0

])∣∣∣∣
.

Then we have ∣∣∣∣ϕ
([

0 0
rx 0

])∣∣∣∣=
∣∣∣∣Re

(
λ0ϕ

([
0 0
rx 0

]))∣∣∣∣
� sup

λ∈T

∣∣∣∣Re

(
λ ϕ
([

0 0
rx 0

]))∣∣∣∣
� sup

λ∈T

∣∣∣∣λ ϕ
([

0 0
rx 0

])∣∣∣∣=
∣∣∣∣ϕ
([

0 0
rx 0

])∣∣∣∣ ,
and hence (7) holds.

Now, since

[
0 λ lx

λ rx 0

]
is self adjoint for any λ ∈ T , by [13, Theorem 3.3.6], we

obtain ∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥= sup
ϕ∈S (L(V ))

∣∣∣∣ϕ
([

0 λ lx
λ rx 0

])∣∣∣∣. (8)
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Therefore,

sup
λ∈T

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥ (8)
= sup

λ∈T

sup
ϕ∈S (L(V ))

∣∣∣∣ϕ
([

0 λ lx
λ rx 0

])∣∣∣∣
= 2 sup

λ∈T

sup
ϕ∈S (L(V ))

∣∣∣∣ϕ
(

Re

(
λ
[

0 0
rx 0

]))∣∣∣∣
= 2 sup

λ∈T

sup
ϕ∈S (L(V ))

∣∣∣∣Re

(
λ ϕ
([

0 0
rx 0

]))∣∣∣∣
= 2 sup

ϕ∈S (L(V ))
sup
λ∈T

∣∣∣∣Re

(
λ ϕ
([

0 0
rx 0

]))∣∣∣∣
(7)
= 2 sup

ϕ∈S (L(V ))

∣∣∣∣ϕ
([

0 0
rx 0

])∣∣∣∣= 2Ω(x).

Thus

1
2

sup
λ∈T

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥= Ω(x). �

We can obtain a refinement of inequality (6) as follows.

THEOREM 4. Let V be a Hilbert A -module and let L(V ) be the linking algebra
of V . For x ∈ V the following inequality holds:

1
8

(
4‖x‖+2|Γ−Γ′|+ Δ + Δ′

)
� Ω(x),

where Γ = max

{
‖x‖,

∥∥∥∥
[

0 lx
rx 0

]∥∥∥∥
}

, Γ′ = max

{
‖x‖,

∥∥∥∥
[

0 −lx
rx 0

]∥∥∥∥
}

, Δ =
∣∣∣∣‖x‖−

∥∥∥∥
[

0 lx
rx 0

]∥∥∥∥
∣∣∣∣

and Δ′ =
∣∣∣∣‖x‖−

∥∥∥∥
[

0 −lx
rx 0

]∥∥∥∥
∣∣∣∣ .

Proof. Since Ω(x) = 1
2 sup

λ∈T

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥ , by taking λ = 1 and λ = i , we have

Ω(x) � 1
2

∥∥∥∥
[

0 lx
rx 0

]∥∥∥∥ and Ω(x) � 1
2

∥∥∥∥
[

0 −lx
rx 0

]∥∥∥∥. (9)

So, by (6) and (9) we have Ω(x) � 1
2 max{Γ,Γ′} . Therefore,

Ω(x) � Γ+ Γ′

4
+

|Γ−Γ′|
4

=
1
4

(
1
2

(
‖x‖+

∥∥∥∥
[

0 lx
rx 0

]∥∥∥∥
)

+
1
2

Δ
)

+
1
4

(
1
2

(
‖x‖+

∥∥∥∥
[

0 −lx
rx 0

]∥∥∥∥
)

+
1
2

Δ′
)

+
|Γ−Γ′|

4
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=
1
8

(∥∥∥∥
[

0 lx
rx 0

]∥∥∥∥+
∥∥∥∥
[

0 −lx
rx 0

]∥∥∥∥
)

+
1
4
‖x‖+

Δ + Δ′

8
+

|Γ−Γ′|
4

� 1
8

∥∥∥∥
[

0 lx
rx 0

]
+
[
0 −lx
rx 0

]∥∥∥∥+
1
4
‖x‖+

Δ + Δ′

8
+

|Γ−Γ′|
4

=
1
4

∥∥∥∥
[
0 0
rx 0

]∥∥∥∥+
1
4
‖x‖+

Δ + Δ′

8
+

|Γ−Γ′|
4

=
1
4
‖x‖+

1
4
‖x‖+

Δ + Δ′

8
+

|Γ−Γ′|
4

=
1
2
‖x‖+

Δ + Δ′

8
+

|Γ−Γ′|
4

.

Thus

1
2
‖x‖+

Δ + Δ′

8
+

|Γ−Γ′|
4

� Ω(x). �

In the following result, we state a necessary and sufficient condition for the equal-
ity case in the inequality (6).

COROLLARY 1. Let V be a Hilbert A -module and let L(V ) be the linking al-

gebra of V . Let x ∈ V . Then Ω(x) = 1
2‖x‖ if and only if ‖x‖ =

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥ for all

λ ∈ T .

Proof. Let us first suppose that Ω(x) = 1
2‖x‖ . For every λ ∈ T then we have

Ω(λx) = 1
2‖λx‖ . Therefore, by Theorem 4, we obtain

Δ =
∣∣∣∣‖λx‖−

∥∥∥∥
[

0 lλ x
rλ x 0

]∥∥∥∥
∣∣∣∣= 0.

From this it follows that ‖x‖ =
∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥ .

Conversely, if ‖x‖ =
∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥ for all λ ∈ T , then

1
2

sup
λ∈T

∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥=
1
2
‖x‖,

and so, by Theorem 3, Ω(x) = 1
2‖x‖ . �

For every a ∈ A and x ∈ V , by the inequalities (3) and (6), we have

Ω(xa+ xa∗) � ‖xa+ xa∗‖ � 2‖a‖‖x‖ � 4‖a‖Ω(x),

and hence

Ω(xa+ xa∗) � 4‖a‖Ω(x). (10)

In the following theorem, we improve the inequality (10).
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THEOREM 5. Let V be a Hilbert A -module. Let a ∈ A and x ∈ V . Then

Ω(xa+ xa∗) � 2‖a+a∗‖Ω(x).

Proof. Let L(V ) be the linking algebra of V . For every b ∈ A and y ∈ V , we
have

rxa(b) = (xa)b = x(ab) = x(Ta(b)) = rxTa(b)

and

lxa(y) = 〈xa,y〉 = a∗〈x,y〉 = a∗(lx(y)) = Ta∗ lx(y).

Hence rxa = rxTa and lxa = Ta∗ lx . Now, let λ ∈ T . Therefore,∥∥∥∥
[

0 λ l(xa+xa∗)
λ r(xa+xa∗) 0

]∥∥∥∥=
∥∥∥∥
[

0 λ (Ta∗ lx +Talx)
λ (rxTa + rxTa∗) 0

]∥∥∥∥
=
∥∥∥∥
[

0 λTa+a∗ lx
λ rxTa+a∗ 0

]∥∥∥∥
=
∥∥∥∥
[

0 λ lx
λ rx 0

][
Ta+a∗ 0

0 0

]
+
[
Ta+a∗ 0

0 0

][
0 λ lx

λ rx 0

]∥∥∥∥
� 2

∥∥∥∥
[
Ta+a∗ 0

0 0

]∥∥∥∥
∥∥∥∥
[

0 λ lx
λ rx 0

]∥∥∥∥
� 4‖a+a∗‖Ω(x),

and so

1
2

∥∥∥∥
[

0 λ l(xa+xa∗)
λ r(xa+xa∗) 0

]∥∥∥∥� 2‖a+a∗‖Ω(x).

Taking the supremum over λ ∈ T in the above inequality, we deduce that

Ω(xa+ xa∗) � 2‖a+a∗‖Ω(x). �

As an immediate consequence of Theorem 5, we have the following result.

COROLLARY 2. Let V be a Hilbert A -module and let a ∈ A and x ∈ V . If
xa = xa∗ , then

Ω(xa) � ‖a+a∗‖Ω(x).

REMARK 2. Let V be a Hilbert A -module and let a ∈ A and x ∈ V . Replace
a by ia in Theorem 5, to obtain Ω(xa− xa∗) � 2‖a−a∗‖Ω(x) . Thus

Ω(xa± xa∗) � 2‖a±a∗‖Ω(x).
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In what follows, r(a) stands for the spectral radius of an arbitrary element a in a
C∗ -algebra A . It is well known that for every a ∈ A , we have r(a) � ‖a‖ and that
equality holds in this inequality if a is normal. The following lemma gives us a spectral
radius inequality for sums of elements in C∗ -algebras.

LEMMA 1. [21, Lemma 3.5] Let A be a C∗ -algebra and let a,b ∈ A . Then

r(a+b) �
∥∥∥∥∥
[

‖a‖ ‖ab‖1/2

‖ab‖1/2 ‖b‖

]∥∥∥∥∥.
Now, we present a refinement of the triangle inequality for the numerical radius in

Hilbert C∗ -modules. We use some ideas of [1, Theorem 3.4]. We refer the reader to
[4, 7, 14, 18] for more information on the triangle inequality.

THEOREM 6. Let V be a Hilbert A -module and let L(V ) be the linking algebra
of V . Let x,y ∈ V . Then

Ω(x+ y) �

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

Ω(x) 1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

Ω(y)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

� Ω(x)+ Ω(y).

Proof. Let λ ∈ T . Put a =
[

0 λ lx
λ rx 0

]
and b =

[
0 λ ly

λ ry 0

]
. Then

‖a‖ � 2Ω(x) and ‖b‖� 2Ω(y).

Also, for every c ∈ A and z ∈ V , we have

lxry(c) = lx(yc) = 〈x,yc〉 = 〈x,y〉c = T〈x,y〉(c)

and

rxly(z) = rx(〈y,z〉) = x〈y,z〉 = θx,y(z).

Thus lxry = T〈x,y〉 and rxly = θx,y . Therefore, ab =
[
T〈x,y〉 0

0 θx,y

]
and hence,

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥= ‖ab‖� ‖a‖‖b‖ � 4Ω(x)Ω(y). (11)

Since

[
0 λ l(x+y)

λ r(x+y) 0

]
is a self adjoint element of C∗ -algebra L(V ) , we have

∥∥∥∥
[

0 λ l(x+y)
λ r(x+y) 0

]∥∥∥∥= r

([
0 λ l(x+y)

λ r(x+y) 0

])
.
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Therefore, by Lemma 1, we obtain∥∥∥∥
[

0 λ l(x+y)
λ r(x+y) 0

]∥∥∥∥= r

([
0 λ l(x+y)

λ r(x+y) 0

])
= r(a+b)

�
∥∥∥∥
[ ‖a‖ ‖ab‖1/2

‖ab‖1/2 ‖b‖
]∥∥∥∥.

So, by the norm monotonicity of matrices with nonnegative entries (see, e.g., [9, p.
491]), we get

∥∥∥∥
[

0 λ l(x+y)
λ r(x+y) 0

]∥∥∥∥�

∥∥∥∥∥∥∥
⎡
⎢⎣ sup

λ∈T

‖a‖ sup
λ∈T

‖ab‖1/2

sup
λ∈T

‖ab‖1/2 sup
λ∈T

‖b‖

⎤
⎥⎦
∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

2Ω(x)
∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

2Ω(y)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
.

Therefore, for every λ ∈ T we have

1
2

∥∥∥∥
[

0 λ l(x+y)
λ r(x+y) 0

]∥∥∥∥�

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

Ω(x) 1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

Ω(y)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
,

whence

Ω(x+ y) �

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

Ω(x) 1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

Ω(y)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
. (12)

On the other hand, by (11), we have∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

Ω(x) 1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

Ω(y)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

=
1
2

(
Ω(x)+ Ω(y)+

√
(Ω(x)−Ω(y))2 +

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
)

(13)

� 1
2

(
Ω(x)+ Ω(y)+

√
(Ω(x)−Ω(y))2 +4Ω(x)Ω(y)

)
= Ω(x)+ Ω(y).



1028 A. ZAMANI

Thus ∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

Ω(x) 1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

1
2

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥
1/2

Ω(y)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

� Ω(x)+ Ω(y),

and the proof is completed. �

As a consequence of Theorem 6, we have the following result.

COROLLARY 3. Let V be a Hilbert A -module, and x,y ∈ V . If Ω(x + y) =
Ω(x)+ Ω(y) , then

Ω(x)Ω(y) =
1
4

∥∥∥∥
[
T〈x,y〉 0

0 θx,y

]∥∥∥∥.

In particular, Ω(x) = 1
2

∥∥∥∥
[
T〈x,x〉 0

0 θx,x

]∥∥∥∥
1/2

.

The following lemma must be known to specialists. For the sake of completeness
we include the proof.

LEMMA 2. Let V be a Hilbert A -module, and x,y ∈ V . Then

∥∥θx,y
∥∥=

∥∥∥〈x,x〉1/2〈y,y〉1/2
∥∥∥ .

Proof. We may assume that x,y �= 0 otherwise the identity trivially holds. We
have

∥∥∥∥∥∥θx,y

⎛
⎝ y〈x,x〉1/2∥∥∥y〈x,x〉1/2

∥∥∥
⎞
⎠
∥∥∥∥∥∥

2

=

∥∥∥x〈y,y〉〈x,x〉1/2
∥∥∥2

∥∥∥y〈x,x〉1/2
∥∥∥2

=

∥∥∥〈x,x〉1/2〈y,y〉〈x,x〉〈y,y〉〈x,x〉1/2
∥∥∥∥∥∥〈x,x〉1/2〈y,y〉〈x,x〉1/2

∥∥∥
=
∥∥∥〈x,x〉1/2〈y,y〉〈x,x〉1/2

∥∥∥=
∥∥∥〈x,x〉1/2〈y,y〉1/2

∥∥∥2
,

and so ∥∥∥∥∥∥θx,y

⎛
⎝ y〈x,x〉1/2∥∥∥y〈x,x〉1/2

∥∥∥
⎞
⎠
∥∥∥∥∥∥=

∥∥∥〈x,x〉1/2〈y,y〉1/2
∥∥∥ .
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Hence ∥∥θx,y
∥∥�

∥∥∥〈x,x〉1/2〈y,y〉1/2
∥∥∥ . (14)

On the other hand, let z ∈ V with ‖z‖ = 1. By (1) we have 〈y,z〉〈z,y〉 � 〈y,y〉 and
hence by Theorem 2.2.5(2) of [13] it follows that

〈x,x〉1/2〈y,z〉〈z,y〉〈x,x〉1/2 � 〈x,x〉1/2〈y,y〉〈x,x〉1/2.

So, [13, Theorem 2.2.5(3)] implies∥∥∥〈x,x〉1/2〈y,z〉〈z,y〉〈x,x〉1/2
∥∥∥�

∥∥∥〈x,x〉1/2〈y,y〉〈x,x〉1/2
∥∥∥ . (15)

Therefore, ∥∥θx,y(z)
∥∥= ‖x〈y,z〉‖

= ‖〈z,y〉〈x,x〉〈y,z〉‖1/2

=
∥∥∥〈x,x〉1/2〈y,z〉〈z,y〉〈x,x〉1/2

∥∥∥1/2

(15)
�
∥∥∥〈x,x〉1/2〈y,y〉〈x,x〉1/2

∥∥∥1/2
=
∥∥∥〈x,x〉1/2〈y,y〉1/2

∥∥∥ ,

whence ∥∥θx,y
∥∥�

∥∥∥〈x,x〉1/2〈y,y〉1/2
∥∥∥ . (16)

Utilizing (14) and (16), we conclude that
∥∥θx,y

∥∥=
∥∥∥〈x,x〉1/2〈y,y〉1/2

∥∥∥ . �

We close this paper with the following result.

COROLLARY 4. Let V be a Hilbert A -module, and x,y ∈ V . If 〈x,y〉 = 0 , then

Ω(x+ y) � 1
2

(
Ω(x)+ Ω(y)+

√
(Ω(x)−Ω(y))2 +

∥∥∥〈x,x〉1/2〈y,y〉1/2
∥∥∥
)

� Ω(x)+ Ω(y).

Proof. Since 〈x,y〉 = 0, we have T〈x,y〉 = 0. Hence from (12), (13) and Lemma 2
we deduce the desired result. �
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