athematical
nequalities
& Papplications

Volume 24, Number 4 (2021), 1017-1030 doi:10.7153/mia-2021-24-71

NUMERICAL RADIUS IN HILBERT C*-MODULES

ALI ZAMANI

(Communicated by I. Peric)

Abstract. Utilizing the linking algebra of a Hilbert C*-module (7, ]|-||), we introduce Q(x) as
a definition of numerical radius for an element x € #* and then show that Q(-) is a norm on ¥
such that J [lx|| < Q(x) < [|x]|. In addition, we obtain an equivalent condition for Q(x) = 1 ||x] .
Moreover, we present a refinement of the triangle inequality for the norm Q(-). Some other
related results are also discussed.

1. Introduction

The notion of Hilbert C* -module is a natural generalization of that of Hilbert space
arising under replacement of the field of scalars C by a C* -algebra. This concept plays
a significant role in the theory of operator algebras, quantum groups, noncommutative
geometry and K -theory; see [10, 11].

Let us give that some necessary background and set up our notation. An element
a in a C*-algebra o7 is called positive (we write 0 < @) if @ = b*b for some b € o7 .
For an element a of <7, we denote by

1 1
Rea = E(a—i—a*), Ima = Z(a—a*)

the real and the imaginary part of a. By 27’ we denote the dual space of 7. A positive
linear functional of &7 is a map @ € </ such that 0 < ¢(a) whenever 0 < a. The set
of all states of 7, that is, the set of all positive linear functionals of .7 of norm 1,
is denoted by (7). An inner product module over & is a (left) < -module ¥
equipped with an .o -valued inner product (-, -), which is C-linear and 7 -linear in the
first variable and has the properties (x,y)* = (y,x) as well as 0 < (x,x) with equality if
and only if x =0. The .&/-module ¥ is called a Hilbert ./ -module if it is complete

with respect to the norm ||x|| = || (xpc)Hé . In a Hilbert </ -module ¥ we have the
following version of the Cauchy—Schwarz inequality:
Gy <Py, (ye?). ()

Every C*-algebra <7 can be regarded as a Hilbert C*-module over itself where the
inner product is defined by (a,b) =a*b. Let ¥ and # be two Hilbert <7 -modules. A

Mathematics subject classification (2020): 46L05, 47A30, 47A12, 46B20.
Keywords and phrases: C* -algebra, Hilbert C* -module, linking algebra, numerical range, numerical
radius, inequality.
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mapping T : 7 — W is called adjointable if there exists a mapping S : #" — ¥ such
that (Tx,y) = (x,Sy) forall x€ ¥,y € # . The unique mapping S is denoted by 7* and
is called the adjoint operator of T'. The space B(?', %) of all adjointable maps between
Hilbert <7 -modules ¥ and # is a Banach space, while B(?") :=B(¥,¥) isa C*-
algebra. By K(¥,%#") we denote the closed linear subspace of B(¥,#') spanned by
{6y :xe# ,ye ¥}, where 6, is defined by 0, ,(z) =x(y,z). Elements of K(¥, %)
are often referred to as “compact” operators. We write K(7") for K(¥,7"). Given a
Hilbert <7 -module ¥, the linking algebra IL(7") is defined as the matrix algebra of the
form

_ | K&) K7, )
100 =iy %05 )
Then L(¥) has a canonical embedding as a closed subalgebra of the adjointable oper-
ators on the Hilbert &7 -module & & ¥ via

XY||al |Xa+Yx

[Z W} [x} o [Za+Wx]
which makes L(7") a C*-algebra (cf. [15], Lemma 2.32 and Corollary 3.21). Each
x € ¥ induces the maps r, € B(«/,¥) and I, € B(¥',«7) given by ry(a) = xa and
Li(y) = (x,y), respectively, such that 7} =[,. The map x +— ry is an isometric linear
isomorphism of ¥ to K(7,¥’) and x +— [, is an isometric conjugate linear isomor-
phism of ¥ to K(7,<7). Further, every a € < induces the map T, € K(«/) given

by T,(b) = ab. The map a — T, defines an isomorphism between C* -algebras <7 and
K(&). Therefore, we may write

L(%):HZ lﬂ :ae;z%,x,ye”f/,TeK(”f/)},

and identify the C*-subalgebras of compact operators with the corresponding corners
in the linking algebra: K(&/) =K(& ®0) CK(« @ ¥ ) =L(¥) and K(¥) =K(0®
V) CK(o @ ¥)=L(¥). We refer the reader to [10, 11] for more information on
Hilbert C*-modules and linking algebras.

Now, let B(#) denote the C*-algebra of all bounded linear operators on a com-
plex Hilbert space .7 with inner product [-,-]. The numerical range of an element
A € B(H) is defined

W(A):={[Ag,¢]: § e 2, [Ig] =1}

It is known that W(A) is a nonempty bounded convex subset of C (not necessarily
closed). This concept is useful in studying linear operators and have attracted the atten-
tion of many authors in the last few decades (e.g., see [8], and references therein). The
numerical radius of A is given by

w(A) = sup{[[A,¢]: § € A, [l =1}
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It is known that w(-) is a norm on B(.7¢’) and satisfies
1
Slall<wa) <A

for each A € B(.#). Some generalizations of the numerical radius A € B(.7¢") can be
found in [2, 22].

In the next section, we first utilize the linking algebra L(¥") of a Hilbert < -
module ¥ to introduce ®(x) as a definition of numerical range for an arbitrary element
x € 7. We then use this set to define numerical radius of x and denote it by Q(x). In
particular, we show that Q(-) is a norm on ¥, which is equivalent to the norm ||-|| and
the following inequalities hold for every x € 7 :

1
el <) < . @
We also establish an inequality that refines the first inequality in (2). In addition, we

0 Al
Ary O

Q(xa £ xa*) < 2||a+a*||Q(x).

prove that Q(x) = 1x|| if and only if [|x|| = for all complex unit A.

Furthermore, for x € ¥ and a € &/ we prove that

We finally present a refinement of the triangle inequality for the norm Q(-).

2. Main results

We start our work with the following definition.

DEFINITION 1. Let ¥ be a Hilbert .7 -module and let I.(¥") be the linking alge-
bra of ¥'. The numerical range of x € ¥ is defined as the set

D(x) = {(p (L? SD e y(L(%))}.

Next, we present some properties of the numerical range in Hilbert C*-modules.

THEOREM 1. Let x and y be elements of a Hilbert <7 -module ¥V and let o € C.
Then

(i) ®(ox) = o®(x) (homogeneous).
(ii) ®(x+y) C O(x)+ D(y) (subadditive).

(iii) ®(x) is a nonempty compact convex subset of C.
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Proof. Let L(7") be the linking algebra of ¥ . For every a € <7, we have
rax(a) = (ox)a = a(xa) = (ary)(a)
and
repy(a) = (x+y)a=xa+ya= (re+ry)(a).

Hence roy = o7y and ryyy = ry+1y. Thus (i) and (ii) follow easily from the definition.

We now prove (iii). Since the existence of states on L.(¥") is guaranteed by the
Hahn-Banach theorem, we have ®(x) # 0. The convexity of ®(x) is an easy con-
sequence of the fact that a convex combination of two states is also a state. As for
the compactness, note that the set .7 (L(“i/)) is a weak*-closed subset of the unit ball

{(p el (¥): ||lo| < 1} of L'(#). Since, by the Banach-Alaoglu theorem, the lat-

ter is weak*-compact, the same is true for .%(IL(#)). Hence ®(x), the image of

the weak*-continuous mapping ¢ — @ ([? 8]) for ¢ € #(IL(¥)), is compact in
X

C.

REMARK 1. It is known that the set of all states of a unital C*-algebra &/ C
B(s7) is a weak*-closed convex hull of the set of all vector states of 7, i.e., the
states of &7 of the form A — [A&,&] for some unit vector £ in 7. Also, for the
Hilbert module ¥ = B(7#) over the C*-algebra B(.7") is well known to be valid
KB(2))=K(7,B(#)) =KB(2),7)=K(¥) =B() (see [5, Remark 1.13]),
so all corners in the linking algebra IL(7") are equal to B(%#). Hence, for A € B(.%7),
we have ®(A) =W(A).

Now, we are in a position to introduce numerical radius for elements of a Hilbert
C*-module. Some other related topics can be found in [3, 6, 12, 16, 17, 19].

DEFINITION 2. Let ¥ be a Hilbert .« -module and let (%) be the linking alge-
bra of ¥ . The numerical radius of an element x € ¥ is defined as

A1) R}

In the following theorem, we prove that Q(-) is a norm on Hilbert C* -module 7",
which is equivalent to the norm ||-|.

THEOREM 2. Let ¥ be a Hilbert o/ -module. Then Q(-) is a norm on ¥ and
the following inequalities hold for every x € V' :

1
Sl < Q) < |
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Proof. Let (') be the linking algebraof #". Let x € #". Clearly, Q(x) > 0. Let
0 O] = 0. Since [O O}
e 0 ’ e 0
we get ||x|| = 0 and therefore, x = 0. Further, by Theorem 1 (i)-(ii), for y,z € ¥ and
o € C we have Q(ay) = |a|Q(y) and Q(y+2z) < Q(y) +Q(z). Thus Q(-) is a norm
on ¥ .

On the other hands, for every ¢ € .7 (LL(¥)), we have

S

So, by taking the supremum over ¢ € .% (]L(”I/ )) in the above inequality, we deduce
that

us now suppose Q(x) = 0. Then, by Definition 2, [ = ||x||,

Q(x) < xl- 3)
Now let 00 = Re 00 +ilm 00 be the Cartesian decomposition of
e 0 e 0 e 0
;) 8] . By [13, Theorem 3.3.6], there exist @1, @, € .7 (IL(¥)) such that
X

o (v (]| e (o] ¢
e (m([na])| = (o)) s

Therefore, by (4) and (5), we have
<1 R _
<slre([re) ]2l ([29])

and

—

r—
SO
oo

=%<»1<Re<_rxo]>)\ 3o (m([24])))
e (o) (2 D) e (8 - (28]
<o (2 sl ([20])] <3000 3000 -0

whence

1
Sl < Q). ©)
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From (3) and (6), we deduce the desired result. [
For A € B(#), we note that (see [20]) w(A) = sup||Re(AA)||. Here, as usual, T
AeT

is the unit circle of the complex plane C. This motivates the following result.

THEOREM 3. Let ¥ be a Hilbert < -module and let 1.(*¥') be the linking algebra

of V. Then
1 0 Al
ot = g |0 %

)

forevery xe V.

Proof. Let x € ¥ . First, we show that

(2o ()| Je (o)) "

forevery @ € /(L(V)).
Let ¢ €. (L(7)). We may assume that ¢ ( i) 8} ) # 0, otherwise (7) trivially
holds. Put )

sup
A€T

Then we have

and hence (7) holds. B
Now, since [ 7L0r /lolx} is self adjoint for any A € T, by [13, Theorem 3.3.6], we
X

obtain

0 Al
’ q)ey(m(v/))‘ Are 0
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Therefore,
o2 8, o125)
retl| [A7x 0 AeToes (L(¥)) Ars 0
o o G2
AeTpe.s(L(V)) rx 0
oo o (23]
AEToes (L(¥)) s 0
o oo (23)
0eF (L(¥))AET rx 0
Do sup <P<[0 OD’:ZQ(’C)
peS(L(Y)) 0
Thus
1 0 ALl
0] L, ]| <o o

We can obtain a refinement of inequality (6) as follows.

THEOREM 4. Let V" be a Hilbert <f -module and let 1.(*¥') be the linking algebra
of V. For x € V the following inequality holds:

1
< (4l +2r =T+ 8+ 4) < Q(),
0 lx Y 0 _lx
o=
0 —,
re O ’

0 Al

Ary O

Proof. Since Q(x) = Jsup
’ and Q(x) >

where T’ = max { [|x],

(U
po= {12

and N = |x|| —

, by taking A = 1 and A =i, we have

0 —I
re O

AET

01,
re O

Qx) > 5

N =

’ . C))

So, by (6) and (9) we have Q(x) > max{F I} . Therefore,
T+ [T-T
Q(x) =

0 [

e O

-3l g-1
3G

r-r|
A/ |
)+ae) -
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1 /|70 1, 0 —1, 1 A+A  T—T
=(|L o)l +[ 15 ) a5+
L[]0 L 0 —I, 1 A+A  |T-T|

/§er0}+[rx0] Tkl =
L|[[o 0O 1 A+A  |T-T
—z[ ]H g+ A2 T
TN N A Ll
g 8 4
1 A+A  T-T
Thus
1 A+A  T-T
2||)CH+ 3 + 2 <Qx). O

In the following result, we state a necessary and sufficient condition for the equal-
ity case in the inequality (6).

COROLLARY 1. Let ¥ be a Hilbert <7 -module and let 1.(V') be the linking al-

gebraof V. Let x € V. Then Q(x) = }||x|| if and only if ||x|| = H [ 0 Al } Sor all
AeT.

Proof. Let us first suppose that Q(x) = 3||x||. For every A € T then we have
Q(Ax) = 1||Ax]||. Therefore, by Theorem 4, we obtain

0 Iy,
px 0

_ \nm -

|-

From this it follows that ||x|| = H [ 0 A(f ]
0 ux]

forall A €T, then

0 Al
Ary O
and so, by Theorem 3, Q(x) = 3||x[|. O
For every a € & and x € ¥, by the inequalities (3) and (6), we have

Ary O

1S up
Z)Le’ll‘

Conversely, if ||x|| = H [

= EHXH7

Q(xa+xa") < ||xa+xa*|| < 2|all[|x[| < 4|al|Q(x),
and hence
Q(xa+xa*) < 4||a||Q(x). (10)

In the following theorem, we improve the inequality (10).
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THEOREM 5. Let V" be a Hilbert <7 -module. Let a € </ and x € V. Then

Q(xa+xa*) < 2||a+a*]|Q(x).

Proof. Let IL(7) be the linking algebra of ¥. Forevery b € «/ and y € ¥, we
have

ra(b) = (xa)b = x(ab) = x(T,(b)) = r Ty (b)
and

La(y) = (xa,y) = a*(x,y) = a"(I:(y)) = T 1 (y)-

Hence ry, = r,T, and [, = T+L,. Now, let A € T. Therefore,

0 Il(qurxu") _ [ 0 I(Ta" I+ Talx)
)Lr(xa-&-xa*) 0 _A, (rxTa + rxTa*) 0

T o AL [Tusa O 4 [Tara O] [ O Al
__erO 0 0 0 0| |Ar, O

a+a* 0 0 le
Ary O

4Ha—|—a*||Q(

. [ 0 ITqua* lx:|
xrx a+a* 0

N
L

and so

1 0 Miugivar) .
Z o .
ZH |:A‘r(xa+xa*) O \2Ha+a HQ(X)

Taking the supremum over A € T in the above inequality, we deduce that

Qxa+xa*) <2|la+a"|Qx). O

As an immediate consequence of Theorem 5, we have the following result.

COROLLARY 2. Let ¥ be a Hilbert </ -module and let a € o/ and x € V. If
xa = xa*, then

Q(xa) < [la+a" Q).

REMARK 2. Let ¥ be a Hilbert .« -module and let a € &/ and x € ¥ . Replace
a by ia in Theorem 5, to obtain Q(xa —xa*) < 2|la — a*||Q(x). Thus

Q(xa+xa*) <2||a+a*]|Q(x).
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In what follows, r(a) stands for the spectral radius of an arbitrary element « in a
C*-algebra o . It is well known that for every a € 7, we have r(a) < ||a|| and that
equality holds in this inequality if @ is normal. The following lemma gives us a spectral
radius inequality for sums of elements in C*-algebras.

LEMMA 1. [21, Lemma 3.5] Let </ be a C*-algebra and let a,b € <f . Then

1/2
lall llabl'” |||
lab]'? ]
Now, we present a refinement of the triangle inequality for the numerical radius in

Hilbert C*-modules. We use some ideas of [1, Theorem 3.4]. We refer the reader to
[4, 7, 14, 18] for more information on the triangle inequality.

rla+Db) <

THEOREM 6. Let V" be a Hilbert < -module and let 1.(¥") be the linking algebra
of V. Let x,y € V. Then

1/2

Qx+y) < 12 ) < Qx) +Q(y).

o AL [0 aL]
Proof. Let A € T. Put a= Lll’x 0 ] and b = [kry 0| . Then

lal <20()  and 5] <2€Q().
Also, for every ¢ € & and z € ¥, we have
Lry(c) = Le(ye) = (x,yc) = (x,y)c = Tjy ) (c)
and
rely(2) = r((1,2) = x(,2) = 01y (2).-

Tieyy O

0 QX,J and hence,

Thus lyry = T}y ,y and ryly = Oy, . Therefore, ab = [

T, 0
[T o ]| = vt < et < 4000 an
Xy

0

Since
|:A’ T(x+y)

M("”)] is a self adjoint element of C*-algebra IL(7"), we have

s, ™51 = o, 57])
Ar(ery O Ar(ery) O '
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Therefore, by Lemma 1, we obtain

v, ™57 =, 57])
Ay 0 Ay 0
=r(a+b)

{ lal] ab”z]
lab]|'/||b]

So, by the norm monotonicity of matrices with nonnegative entries (see, e.g., [9, p.
491]), we get

0o T suplla  sup|jab]'’?
M) 0 supllab||'*  sup||b|
LAeT A€T
1/2
20(x) H {T%’y) egy]
= 1/2
Tieyy O
o) 200
Therefore, for every A € T we have
1/2
Q(x) 1| [Ty O
T 0 ]| < 21 0 6y
A,I"(Xer 0 h 1 T<x.v> 0 1/2 Q ’
2 |: 0 exy] ()
whence
1/2
Q(x) ! [T<8y> 90} !
Q(x+y) < 01 Y . (12)
1 (x.y)
4% g | )

On the other hand, by (11), we have

1/2
Ty O
0 6,

L
2
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Thus

1/2

Q(X) % |:T<6y> 90 ]
12 - <Qx) +Q(y),
T, 0
(x,y)
" o

Q(y)
and the proof is completed. [J

L
2

As a consequence of Theorem 6, we have the following result.

COROLLARY 3. Let ¥ be a Hilbert <7 -module, and x,y € V. If Q(x+y) =
Q(x) +Q(y), then

awao =5 || o |

T< 1) 0
0 ex,x

The following lemma must be known to specialists. For the sake of completeness
we include the proof.

1/2
In particular, Q(x) = 1

LEMMA 2. Let ¥V be a Hilbert </ -module, and x,y € V. Then

||6x7y’|:H< W12, 1/2H

Proof. We may assume that x,y # 0 otherwise the identity trivially holds. We
have

o2 wawww”f
Hy 1/2H Hy<x’x>l/2H2

1/2<

v e ) )|
H <x,x>l/2<)’:)’> {x,x) 1/2H

H< )2 3) (x,) 1/2H = H X, X) 1/2<yy>1/2‘2

x, x)

)

and so

y<x,x>1/2

]

I = |02 ).
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Hence
1/2 1/2
6]l > [ 20 (14

On the other hand, let z € ¥ with ||z]| = 1. By (1) we have (y,z){(z,y) < (y,y) and
hence by Theorem 2.2.5(2) of [13] it follows that

(r,2) 2 (0, 2) (2, 9) (e, ) 2 < )2 () ) 2

So, [13, Theorem 2.2.5(3)] implies

60 202 ) e 2 < ) 20 ) 2. (1)
Therefore,
18y @[] = 2]
= [[(&3) (e.x) (3, 2)]| 2
= e 0 ey
< 2o 2 = e 2o 2]
whence

S R B (16)

Utilizing (14) and (16), we conclude that ||6,|| = H(x7x 12y, 1/2H

We close this paper with the following result.

COROLLARY 4. Let ¥ be a Hilbert <7 -module, and x,y € ¥ . If (x,y) =0, then

Q@+w<§(am+aomwﬂmw—QwV+W&xW ”ﬂ)

< Q) +Q(y).

Proof. Since (x,y) =0, we have T,y = 0. Hence from (12), (13) and Lemma 2
we deduce the desired result. [

Acknowledgement. The author would like to thank the referee for her/his valuable
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to the author.



1030 A. ZAMANI

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]

[17]
[18]

[19]
[20]
[21]

[22]

REFERENCES

A. ABU-OMAR AND F. KITTANEH, Notes on some spectral radius and numerical radius inequalities,
Studia Math. 227 (2015), no. 2, 97-109.

A. ABU-OMAR AND F. KITTANEH, A generalization of the numerical radius, Linear Algebra Appl.
569 (2019), 323-334.

A. F. ALBIDEEWI AND M. MABRUK, On maps compressing the numerical range between C*-
algebras, Adv. Oper. Theory 2 (2) (2017), 108-113.

A. AL-NATOOR AND W. AUDEH, Refinement of triangle inequality for the Schatten p-norm,
Adv. Oper. Theory 5 (2020), no. 4, 1635-1645.

D. BAKIC AND B. GULJAS, On a class of module maps of Hilbert C*-modules, Math. Commun. 7
(2) (2002), 177-192.

L. CARVALHO, C. DIOGO AND S. MENDES, The star-center of the quaternionic numerical range,
Linear Algebra Appl. 603 (2020), 166-185.

R. ESKANDARI, M. S. MOSLEHIAN AND D. POPOVICI, Operator equalities and charac-
terizations of orthogonality in pre-Hilbert C*-modules, Proc. Edinburgh Math. Soc. (2021),
doi:10.1017/S0013091521000341.

K. E. GUSTAFSON AND D. K. M. RAO, Numerical range. The field of values of linear operators and
matrices, Universitext. Springer-Verlag, New York, 1997.

R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
E. C. LANCE, Hilbert C* -modules. A Toolkit for Operator Algebraists, London Mathematical Society
Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995.

V. M. MANUILOV AND E. V. TROITSKY, Hilbert C*-modules, In: Translations of Mathematical
Monographs 226, American Mathematical Society, Providence, RI, 2005.

M. MEHRAZIN, M. AMYARI AND M. E. OMIDVAR, A new type of numerical radius of operators on
Hilbert C* -module, Rend. Circ. Mat. Palermo (2) 69 (2020), no. 1, 29-37.

G.J. MURPHY, C* -Algebras and Operator Theory, Academic Press, New York, 1990.

D. PopoviCl, Norm equalities in pre-Hilbert C* -modules, Linear Algebra Appl. 436 (2012), no. 1,
59-70.

I. RAEBURN AND D. P. WILLIAMS, Morita equivalence and continuous-trace C*-algebras, Mathe-
matical Surveys and Monographs 60, AMS, Philadelphia, 1998.

R. RAIJIC, On the algebra range of an operator on a Hilbert C*-module over compact operators,
Proc. Amer. Math. Soc. 131 (2003), no. 10, 3043-3051.

R. RAIJIC, A generalized q-numerical range, Math. Commun. 10 (2005), no. 1, 31-45.

R. RAJIC, Characterization of the norm triangle equality in pre-Hilbert C* -modules and applications,
J. Math. Inequal. 3 (2009), no. 3, 347-355.

D. THAGHIZADEH, M. ZAHRAEI, A. PEPERKO AND N. HAJ ABOUTALEBI, On the numerical
ranges of matrices in max algebra, Banach J. Math. Anal. 14 (2020), 1773-1792.

T. YAMAZAKI, On upper and lower bounds of the numerical radius and an equality condition, Studia
Math. 178 (2007), no. 1, 83-89.

A. ZAMANLI, Characterization of numerical radius parallelism in C* -algebras, Positivity 23 (2019),
no. 2, 397-411.

A. ZAMANI AND P. WOICIK, Another generalization of the numerical radius for Hilbert space oper-
ators, Linear Algebra Appl. 609 (2021), 114-128.

(Received January 20, 2021) Ali Zamani

School of Mathematics and Computer Sciences
Damghan University
Damghan, P.O. BOX 36715-364, Iran

e-mail: zamani .ali85@yahoo.com

Mathematical Inequalities & Applications

mia@

v.ele-math.com

ele-math.com



