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THE QUASI-HYPERBOLICITY CONSTANT OF A METRIC SPACE

GEORGE DRAGOMIR* AND ANDREW NICAS

Abstract. We introduce the quasi-hyperbolicity constant of a metric space, a rough isometry
invariant that measures how a metric space deviates from being Gromov hyperbolic. Gromov
hyperbolicity, and also the lack thereof, has attracted considerable interest in the theory of net-
works. The quasi-hyperbolicity constant for an unbounded space lies in the closed interval
[1,2]. It is equal to one for an unbounded Gromov hyperbolic space. For a CAT (0)-space,
it is bounded from above by v/2. The quasi-hyperbolicity constant of a Banach space that is at
least two dimensional is bounded from below by /2, and for a non-trivial L, -space it is exactly
max{ZI/",Zl’l/”}. If 0 < oo < 1 then the quasi-hyperbolicity constant of the o -snowflake of
any metric space is bounded from above by 2%. We give an exact calculation in the case of the
o -snowflake of the Euclidean real line.
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