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THE QUASI–HYPERBOLICITY CONSTANT OF A METRIC SPACE

GEORGE DRAGOMIR ∗ AND ANDREW NICAS

Abstract. We introduce the quasi-hyperbolicity constant of a metric space, a rough isometry
invariant that measures how a metric space deviates from being Gromov hyperbolic. Gromov
hyperbolicity, and also the lack thereof, has attracted considerable interest in the theory of net-
works. The quasi-hyperbolicity constant for an unbounded space lies in the closed interval
[1,2] . It is equal to one for an unbounded Gromov hyperbolic space. For a CAT (0) -space,
it is bounded from above by

√
2 . The quasi-hyperbolicity constant of a Banach space that is at

least two dimensional is bounded from below by
√

2 , and for a non-trivial Lp -space it is exactly
max{21/p,21−1/p} . If 0 < α < 1 then the quasi-hyperbolicity constant of the α -snowflake of
any metric space is bounded from above by 2α . We give an exact calculation in the case of the
α -snowflake of the Euclidean real line.
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