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REMARK ON THE CHAIN RULE OF FRACTIONAL

DERIVATIVE IN THE SOBOLEV FRAMEWORK

KAZUMASA FUJIWARA

Abstract. A chain rule for power product is studied with fractional differential operators in the
framework of Sobolev spaces. The fractional differential operators are defined by the Fourier
multipliers. The chain rule is considered newly in the case where the order of differential oper-
ators is between one and two. The study is based on the analogy of the classical chain rule or
Leibniz rule.
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