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REMARK ON THE CHAIN RULE OF FRACTIONAL

DERIVATIVE IN THE SOBOLEV FRAMEWORK

KAZUMASA FUJIWARA

(Communicated by J. Pečarić)

Abstract. A chain rule for power product is studied with fractional differential operators in the
framework of Sobolev spaces. The fractional differential operators are defined by the Fourier
multipliers. The chain rule is considered newly in the case where the order of differential oper-
ators is between one and two. The study is based on the analogy of the classical chain rule or
Leibniz rule.

1. Introduction

The chain rule or Leibniz rule is an essential tool to study nonlinear differential
equations. In the study of nonlinear partial differential equations (PDEs), fractional
differential operators are also known as powerful tools. So, in order to analyze nonlin-
ear PDEs, chain rules for fractional differential operators are naturally required. Even
though fractional differential operators may be non-local unlike classical operators, es-
timates for fractional derivative have been studied on the analogy of classical chain
rules. The history of this study can go back at least to the work of Kato and Ponce [9].

In this paper, we consider a chain rule corresponding to the identity

F(u)′ = F ′(u)u′

in the framework of Riesz potential space Ḣs
p = D−sLp , where s ∈ R , n � 1, and

Lp = Lp(Rn) is the usual Lebesgue space. Ḣs
p is also called as homogeneous Sobolev

space. The fractional differential operator Ds = (−Δ)s/2 is recognized as a Fourier
multiplier by Ds = F−1| · |sF , where F is the standard Fourier transform. Especially,
we study the case where F behaves like power product, that is, F(z) ∼ |z|p−1z .

In [2], Christ and Weinstein showed the following estimate:

PROPOSITION 1. ([2, Proposition:3.1]) Let n � 1 and s ∈ (0,1) . Let F ∈ C(C)
and G ∈C(C : [0,∞)) satisfy

|F(u)−F(v)| � (G(u)+G(v))|u− v|.
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Let 1 � p < ∞ , 1 < r,q < ∞ satisfy

1
p

=
1
q

+
1
r
. (1)

The estimate
‖F(u)‖Ḣs

p
� ‖G(u)‖Lq‖u‖Ḣs

r
.

holds for any u ∈ Ḣs
r with G(u) ∈ Lq .

Here a � b stands for a � Cb with some positive constant C . We also denote
a ∼ b when a � b and b � a . We use these notation through this paper. We note
that if F(z) = |z|p−1z , then G(z) = C|z|p with some positive C . Roughly speaking,
Proposition 1 asserts that DsF(u) behaves like F ′(u)Dsu . Since the Riesz operator
R = D−1∇ is bounded on Lp when p ∈ (1,∞) , ‖F(u)‖Ḣs

p
may be estimated even when

s � 1 by combining the classical chain rule, Proposition 1, and the Hölder inequality
with more regular F .

On the other hand, when ρ ∈ (1,2) and s ∈ (1,ρ) , Ds(|u|ρ−1u) cannot be con-
trolled directly by Proposition 1. Indeed, one may regard

Ds(|u|ρ−1u) ∼ Ds−1(|u|ρ−1∇u)

and distribute Ds−1 to ∇u and |u|ρ−1 by using the fractional Leibniz rule (for example,
see [7, Theorem 1], [10], [4], and references therein). However, since f (z) = |z|ρ−1 is
not Lipshitz continuous for ρ < 2, it is impossible to control Ds−1|u|ρ−1 by applying
Proposition 1 directly.

Here we note that Ds(|u|ρ−1u) is controlled by Proposition 1 for any s ∈ (0,ρ)
when ρ is a positive integer. Therefore, one may expect that Ds(|u|ρ−1u) is controlled
for any ρ � 1 and s ∈ (0,ρ) . This is what interests us in this paper; we consider a
generalization of Proposition 1 for s ∈ (1,2) . We remark that the case where s > 2
is reduced to the case where s ∈ (0,2) , so it is sufficient to show the estimate with
s ∈ (1,2) .

We generalize the form of F slightly. With ρ > 1, we put Fρ ∈C1(C) satisfying
Fρ(0) = F ′

ρ(0) = 0 and

|Fρ(u)−Fρ(v)| � max{|u|, |v|}ρ−1|u− v|,

|F ′
ρ(u)−F ′

ρ(v)| �
{

max{|u|, |v|}ρ−2|u− v| if ρ � 2,

|u− v|ρ−1 if ρ < 2.
(2)

In [5], Ginibre, Ozawa, and Velo showed the expectation above in the framework
of homogeneous Besov spaces Ḃs

p,q .

PROPOSITION 2. ([5, Lemma:3.4]) Let n � 1 , ρ � 1 , and s∈ (0,min{2,ρ}) . Let
1 � p,r � ∞ and (ρ −1)−1 � q � ∞ satisfy (1). If u ∈ Ḃs

r,2∩L(ρ−1)q , then

‖Fρ(u)‖Ḃs
p,2

� ‖u‖ρ−1
L(ρ−1)q‖u‖Ḃs

r,2
. (3)
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We note that Proposition 2 has been used to study Hs
p -valued solutions to some

nonlinear PDEs because Besov spaces may play a role in useful auxiliary spaces. The
advantage to consider the fractional chain rule in the framework of Besov space is the
following representation of homogeneous Besov norms:

‖u‖Ḃs
p,q

∼
(∫ ∞

0
λ−sq−1 sup

|y|<λ
‖(τy −2+ τ−y)u‖q

Lpdλ
)1/q

, (4)

where τyu = u(·+ y) , s ∈ (0,2) , and 1 � p,q � ∞ (See [1, 6.2.5. Theorem], for
example.). With this representation, the term (τy −2+ τ−y)u gives a clear explanation
of the connection between the classical and fractional chain rules. We remark that
even though the fractional differential operators are defined by Fourier multipliers, it is
nontrivial why F ′(u) ∼ |u|ρ−1 appears as an upper bound of (3) from the viewpoint of
Fourier transform. However, we further remark that when ρ = 2, the chain rule may be
shown by the argument of Fourier multipliers. For the detail, we refer the reader to [4].

Proposition 2 is an effective estimate but it seems more handy to close the argu-
ment only with Sobolev spaces. So one of the main purpose of this paper is to show
a similar estimate to Proposition 2 in the framework of Ḣs

p . This is one of the main
statement of this paper.

PROPOSITION 3. Let n � 1 . Let ρ > 1 and s ∈ (1,min{2,ρ}) . Let 1 < p,r < ∞
and (ρ −1)−1 < q < ∞ satisfy (1). The estimate

‖Fρ(u)‖Ḣs
p
� ‖u‖ρ−1

L(ρ−1)q‖u‖Ḣs
r

holds for any u ∈ Ḣs
r ∩L(ρ−1)q .

We remark that the case when p or r = 1,∞ is included in the assumption of
Proposition 2 but not in that of Proposition 3. It is because our proof is based on the
boundedness of Hardy-Littlewood maximal operators. See the next section.

The main idea for the proof of Proposition 3 is to express ‖F(u)‖Ḣs
p

with (τy −
2+τ−y)F(u) like the proof of Proposition 2. Since Ḣs

p norms seem not to be expressed
like (4), we rewrite each dyadic components of F(u) by (τy −2+ τ−y)F(u) . Namely,
the identity

QjF(u)(x) =
1
2

∫
(τy −2+ τ−y)F(u)(x)ψ j(y)dy

plays a critical role in this paper, where Qj is the standard j -th Littlewood-Paley dyadic
operator and ψ j is the corresponding kernel. The details of Qj and ψ j are stated in the
next section. We note that the identity

QjF(u)(x) =
∫

(τy −1)F(u)(x)ψ j(y)dy

plays an essential role in [2] as well. In this paper, we deploy a similar but more careful
approach with the identities above.

Our second purpose is to extend Proposition 1 for the difference between two
functions. Here we put a+ = max{a,0} and a− = min{a,0} for a ∈ R .
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COROLLARY 1. Let n � 1 . Let s ∈ (0,1) and ρ � 1 . Let 1 � p < ∞ and 1 <
q,r < ∞ satisfy (1). Then the estimate

‖Fρ(u)−Fρ(v)‖Ḣs
p
� (‖u‖Lq(ρ−1) +‖v‖Lq(ρ−1))ρ−1‖u− v‖Ḣs

r

+(‖u‖Ḣs
r
+‖v‖Ḣs

r
)(‖u‖Lq(ρ−1) +‖u‖Lq(ρ−1))(ρ−2)+‖u− v‖min{ρ−1,1}

Lq(ρ−1)

holds for any u,v ∈ Ḣs
r ∩Lq(ρ−1) .

Corollary 1 corresponds to the identity

∇(uρ − vρ) = ρuρ−1∇(u− v)+ ρ(uρ−1− vρ−1)∇v.

Corollary 1 is as worthy as Proposition 1 to show the locally-in-time well-posedness of
semilinear PDEs. We remark that Corollary 1 is not necessary to construct solutions
with a contraction argument because one may deploy a contraction argument in the ball
of Hs

p with the distance of Lp , for example. However, the proof of the continuous
dependence of solution maps on initial data may require Corollary 1.

We also extend Corollary 1 to the case where s ∈ (1,2) :

PROPOSITION 4. Let n � 1 . Let ρ > 1 and s∈ (1,ρ) . Let 1 � p < ∞ , 1 < r < ∞ ,
(ρ −1)−1 < q < ∞ satisfy (1). Let dρ ,s ∈ (0,min{ρ − s,1}) . Then

‖Fρ(u)−Fρ(v)‖Ḣs
p
� (‖u‖Lq(ρ−1) +‖v‖Lq(ρ−1))ρ−1‖u− v‖Ḣs

r

+(‖u‖Ḣs
r
+‖v‖Ḣs

r
)(‖u‖Lq(ρ−1) +‖v‖Lq(ρ−1))ρ−1−dρ,s‖u− v‖dρ,s

Lq(ρ−1).

(5)

We note that if ρ � max{s′ ∈Z | s′ � s}+2, then one may obtain (5) with dρ ,s = 1
by combining Corollary 1, boundedness Riesz operator, and classical chain rule. We
remark that an extension of Corollary 1 in the framework of Besov spaces was given in
[11, Proposition 2.1] and [3, Lemma 6.2]. We remark that on the analogy of classical
chain rules, it is expected that Proposition 4 may hold with dρ ,s = ρ − s but a similar
technical difficulty arises in both Sobolev and Besov frameworks. The case where ρ = s
is similar.

In the next section, we collect some notation and basic estimates. In Section 3, we
revisit the proofs of Proposition 1 and Corollary 1 for the completeness. In Section 4,
we give the proofs of Propositions 3 and 4

2. Preliminary

2.1. Notation

Here we collect some notation.
Let ψ be a radial Schwartz function and satisfy

supp Fψ ⊂ {ξ | 1/2 � |ξ | � 2}, range Fψ ⊂ [0,1]
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and

∑
j

Fψ(2− jξ ) = 1

for any ξ �= 0. For j ∈ Z , let ψ j = 2 jnψ(2 j·) satisfy that ‖ψ j‖L1 = ‖ψ‖L1 and let
Qj = ψ j∗ . We also put Q̃ j = Qj−1 + Qj + Qj+1 and ψ̃ j = ψ j−1 + ψ j + ψ j+1 . We
remark that Q̃ jQ j = Qj holds for any j . It is known that for s ∈ R and 1 < p,q < ∞ ,
the homogeneous Sobolev and Triebel-Lizorkin norms are equivalent:

‖ f‖Ḣs
p
∼ ‖2 jsQ j f‖Lp(�2).

For the details of this equivalence, we refer the reader to [6, Theorem 5.1.2], for exam-
ple. For f ∈ L1

loc , we define the Hardy-Littlewood maximal operator by

M f (x) = sup
r>0

1
|B(r)|

∫
B(r)

| f (x+ y)|dy

and set
M(P) f (x) = M(| f |P)1/P

for P > 0, where B(r)⊂ Rn is the ball with radius r centered at the origin. It is known
that M is bounded operator on Lp and Lp(�q) for 1 < p,q < ∞ (See [6, Theorems
2.1.6 and 4.6.6] and references therein). Moreover, for 1 � p < ∞ , we define weighted
Lp norm with weight function w by

‖ f‖Lp
w

=
(∫

| f (x)|p|w(x)|dx

)1/p

.

2.2. Basic Estimates

Here we collect some estimates.

LEMMA 1. ([6, Theorem :2.1.10]) Let w ∈ L1 be a positive radially decreasing
function. Then the estimate

|w∗ g(x)|� ‖w‖L1Mg(x)

holds for any x ∈ Rn .

LEMMA 2. The estimate

|Q̃kg(x)| � Mg(x)

holds for any k ∈ Z and x ∈ Rn . Moreover, if |y| < 2−k , then the estimates

|Q̃kg(x+ y)− Q̃kg(x)| � 2k|y|Mg(x),

|Q̃kg(x+ y)−2Q̃kg(x)+ Q̃kg(x− y)|� 22k|y|2Mg(x)

hold for any x ∈ R
n .
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Proof. The first estimate follows directly from Lemma 1.
The estimate for |Q̃kg(x + y)− Q̃kg(x)| is given in [2] but for completeness, we

give the proof.
By the fundamental theorem of calculus implies that the identities

ψk(x+ y)−ψk(x) =
∫ 1

0
(∇ψ)k(x+ θy)dθ ·2ky

and

ψk(x+ y)−2ψk(x)+ ψk(x− y)

=
∫ 1

0
((∇ψ)k(x+ θy)− (∇ψ)k(x−θy))dθ ·2ky

= ∑
|α |=2

∫ 1

0

∫ 1

0
(∂ α ψ)k(x+(2θ ′ −1)θy))dθ ′dθ ·22ky2.

hold for any x,y . Since for |α| � 2, the estimates

(∂ α ψ)k(x+ y) � 2kn(2+2k|x+ y|)−n−1 � 2kn(1+2k|x|)−n−1,

hold for |y| < 2−k . Therefore, the last two estimates are obtained by combining this
and Lemma 1. �

LEMMA 3. For 0 < S < S′ , Q � 1 , and a ∈ �Q , the following estimate holds:

‖2 jS ∑
k

2(k− j)−S′ak‖�Q
j
�

(
2S

2S −1
+

1

2S′−S −1

)
‖2kSak‖�Q

k
.

Proof. By the Minkowski inequality, we have

‖2 jS ∑
k

2(k− j)−S′ak‖�Q
j
= ‖2 jS ∑

�<0

2�S′a�+ j‖�Q
j
+‖2 jS ∑

��0

a�+ j‖�Q
j

� ∑
�<0

2�(S′−S)‖2S(�+ j)a�+ j‖�Q
j
+ ∑

��0

2−�S‖2S(�+ j)a�+ j‖�Q
j

� 1

2S′−S −1
‖2Skak‖�Q

k
+

2S

2S −1
‖2Skak‖�Q

k
. �

LEMMA 4. Let 0 < S < 1 and 1 � P,Q < ∞ . The following estimate holds:

‖2 jS‖v(y+ x)(u(y+ x)−u(x))‖LP
ψ j,y

‖
�Q

j

� M(P)v(x)‖2ksMQku‖�Q
k
+‖2ksM(P)(vMQku)(x)‖

�Q
k
.
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Proof. Lemmas 1 and 2 imply that we have

‖v(y+ x)(u(y+ x)−u(x))‖LP
ψ j,y

= ∑
k

‖v(y+ x)(Q̃kQku(y+ x)− Q̃kQku(x))‖LP
ψ j ,y

� ∑
k< j

MQku(x)2k− j
(∫

|y|<2−k
|ν(y+ x)|P|2 jy|P|ψ j(y)|dy

)1/P

+ ∑
k< j

(∫
|y|>2−k

|(MQku(x)+MQku(x+ y))ν(y+ x)|P|ψ j(y)|dy

)1/P

+ ∑
k� j

(
‖v(y+ x)MQku(x+ y)‖LP

ψ j,y
+MQku(x)‖v(y+ x)‖LP

ψ j,y

)
� ∑

k

2(k− j)−
(

M(P)(vMQku)(x)+M(p)v(x)MQku(x)
)

,

where we have used the estimates∫
|y|>2−k

|ψ j(y)|dy =
∫
|y|>2−k+ j

|ψ(y)|dy �
∫
|y|>2−k+ j

|y|−n−Pdy � 2P(k− j)

with Lemma 1 for the last estimate. Therefore, Lemma 4 follows from these estimates
above and Lemma 3. �

COROLLARY 2. Let 0 < S < 1 and 1 � P0 < 2 . Let P0 < P < ∞ and 1 < Q,R < ∞
satisfy

1
P

=
1
Q

+
1
R

.

The estimates

‖2 jS‖(u(y+ ·)−u(·))‖
L

P0
ψ j,y

‖LP(�2
j)

� ‖u‖Ḣs
P

and

‖2 jS‖v(y+ ·)(u(y+ ·)−u(·))‖
L

P0
ψ j,y

‖LP(�2
j )

� ‖v‖LQ‖u‖ḢS
R

hold.

Proof. For P1 > P0 , the boundedness of M implies that we have

‖M(P0) f‖LP1 = ‖M| f |P0‖1/P0

LP1/P0
� ‖| f |P0‖1/P0

LP1/P0
= ‖ f‖LP1 .

Since P0 < P < Q , Corollary 2 follows from Lemma 4 and the Hölder inequality. �
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3. Revisit of the Chain rules when s ∈ (0,1)

In this section, we revisit the proof of Proposition 1 and Corollary 1. The proofs
are essentially given in [2] but for completeness, we give the proofs.

Proof of Proposition 1. Since
∫

ψ(y)dy = 0, the identity

QjF(u)(x) =
∫ (

F(u)(x+ y)−F(u)(x)
)

ψ j(y)dy

holds for any x ∈ Rn and j ∈ Z . Therefore, Proposition 1 follows from Corollary 2
with (v,P0,P,Q,R,S) replaced by (G(u),1, p,q,r,s) . �

Proof of Corollary 1. The identity

QjFρ(u)(x)−QjFρ(v)(x)

=
∫ (

Fρ(u)(x+ y)−Fρ(u)(x)−Fρ(v)(x+ y)+Fρ(v)(x)
)
ψ j(y)dy

holds. The fundamental theorem of calculus implies that the identity

Fρ(u)(x+ y)−Fρ(u)(x)−Fρ(v)(x+ y)+Fρ(v)(x)

=
(
(u− v)(x+ y)− (u− v)(x)

)∫ 1

0
F ′

ρ
(
θu(x+ y)+ (1−θ )u(x)

)
dθ

+
(
v(x+ y)− v(x)

)
×

∫ 1

0

(
F ′

ρ
(
θu(x+ y)+ (1−θ )u(x)

)−F ′
ρ
(
θv(x+ y)+ (1−θ )v(x)

))
dθ

holds. The identity above and (2) imply that the estimate

|Fρ(u)(x+ y)−Fρ(u)(y)−Fρ(v)(x+ y)+Fρ(v)(x)|
� (|u(x+ y)|ρ−1 + |u(x)|ρ−1)|(u− v)(x+ y)− (u− v)(x)|

+(|u(x+ y)|+ |u(x)|+ |v(x+ y)|+ |v(x)|)(ρ−2)+

× (|(u− v)(x+ y)|+ |(u− v)(x)|)min{ρ−1,1}|v(x+ y)− v(x)|
holds. Therefore, Corollary 1 follows from Corollary 2 and the estimates above. �

4. Proofs of the Chain rules when s ∈ (1,2)

Proof of Proposition 3. We note that it is shown in [5, (3.23) and (3.26)] that the
estimate

|(τy −2+ τ−y)Fρ(u)(x)| � |u(x)|ρ−1|u(x+ y)−2u(x)+u(x− y)|
+max{|u(x)|, |u(x+ y)|, |u(x− y)|}(ρ−2)+

× (|u(x+ y)−u(x)|min{ρ ,2} + |u(x− y)−u(x)|min{ρ ,2}).
(6)
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holds. Moreover, the symmetry of ψ and
∫

ψ = 0 imply that we have

QjFρ(u)(x) =
∫

Fρ(u)(x+ y)ψ j(y)dy

=
∫

Fρ(u)(x− y)ψ j(y)dy

=
1
2

∫
(Fρ(u)(x+ y)+Fρ(u)(x− y))ψ j(y)dy

=
1
2

∫
(τy −2+ τ−y)Fρ(u)(x)ψ j(y)dy. (7)

From (6) and (7), the estimate

|QjFρ(u)(x)|
� |u(x)|ρ−1

∫
|u(x+ y)−2u(x)+u(x− y)||ψ j(y)|dy

+
∫

max{|u(x)|, |u(x+ y)|, |u(x− y)|}(ρ−2)+|u(x+ y)−u(x)|min{ρ ,2}|ψ j(y)|dy (8)

follows. By Lemma 2, when k < j , we estimate∫
|Q̃kQku(x+ y)−2Q̃kQku(x)+ Q̃kQku(x− y)||ψ j(y)|dy

� MQku(x)
∫
|y|<2−k

22(k− j)|ψ j(y)|dy+
∫
|y|>2−k

(
MQku(x+ y)+MQk(u)(x)

)|ψ j(y)|dy

� 22(k− j)(MQku(x)+M2Qku(x)),

where for the last estimate, we have used the estimates∫
|y|>2−k

|ψ j(y)|dy �
∫
|y|>2 j−k

|ψ(y)|dy �
∫
|y|>2 j−k

|y|−n−2dy � 22(k− j).

Similarly, when k � j , it is estimated by∫
|Q̃kQku(x+ y)−2Q̃kQku(x)+ Q̃kQku(x− y)||ψ j(y)|dy

�
∫

(MQku(x+ y)+MQku(x))|ψ j(y)|dy

� (MQku(x)+M2Qku(x)).

Therefore, the estimates above and Lemma 3 imply that we have

‖2 js|u|ρ−1
∫

|u(·+ y)−2u(·)+u(·− y)||ψ j(y)|dy‖Lp(�2
j)

� ‖2ks|u|ρ−1(MQku+M2Qku)‖Lp(�2
k)

� ‖u‖ρ−1
Lq(ρ−1)‖u‖Ḣs

r
. (9)
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Moreover, for ρ < 2, by the Lemma 4, the second term of the RHS of (8) satisfy the
estimate

‖2 js‖u(·+ y)−u(·)‖ρ
Lρ

ψ j,y
‖Lp(�2) = ‖2 js/ρ‖u(·+ y)−u(·)‖Lρ

ψ j,y
‖ρ

Lρ p(�2)

� ‖2ks/ρM(ρ)Qku‖ρ
Lρ p(�2)

� ‖u‖ρ
Ḣ

s/ρ
ρ p

� ‖u‖ρ−1
Lq(ρ−1)‖u‖Ḣs

r
, (10)

where we have used the Gagliardo-Nirenberg inequality to obtain the last estimate. For
the details of the Gagliardo-Nirenberg inequality, we refer the reader to [8, Corollary
2.4] and references therein. Combining (9) and (10), we obtain Proposition 3. The case
where ρ > 2 is shown similarly. �

Proof of Proposition 4. For simplicity, we denote dρ ,s by d . We note that the
estimate

|(τy −2+ τ−y)(Fρ(u)−Fρ(v))(x)|
� max

z∈{x,x+y,x−y}
|u(z)|ρ−1|(τy −2+ τ−y)(u− v)(x)|

+ μ (ρ−2)+ max
z∈{x,x+y,x−y}

|(u− v)(z)|min{ρ−1,1}|(τy −2+ τ−y)v(x)|

+ μ (ρ−2)+(|(τy −1)u(x)|+ |(τ−y−1)u(x)|)min{ρ−1,1}|(τy −1)(u− v)(x)|
+ μ (ρ−2)+|(τ−y −1)u(x)|min

{
σ , max

z∈{x,x+y,x−y}
|(u− v)(z)|}min{ρ−1,1}

(11)

holds, where

μ = max{|u(x+ y)|, |u(x)|, |u(x− y)|, |v(x+ y)|, |v(x)|, |v(x− y)|},
σ = |(τy −1)u(x)|+ |(τ−y−1)u(x)|+ |(τy−1)v(x)|+ |(τ−y−1)v(x)|.

For the details of the estimate above, see [3, Lemma:A.1]. Therefore, for the proof of
proposition 4, it is sufficient to show

‖2 js‖B(u,v)(·,y)‖L1
ψ j ,y

‖Lp(�2)

� (‖u‖Ḣs
r
+‖v‖Ḣs

r
)(‖u‖Lq(ρ−1) +‖v‖Lq(ρ−1))ρ−1−d‖u− v‖d

Lq(ρ−1), (12)

where ρ < 2 and

B(u,v)(x,y) = |u(x+ y)−u(x)||v(x+ y)− v(x)|ρ−1−d|u(x+ y)− v(x+ y)|d.
(12) is used to control the last term on the RHS of (11). The other terms on the RHS of
(11) may be treated like the argument above so we omit the detail. Put

q0 = q
ρ −1

d
and r0 =

pq0

q0− p
.
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Then the Hölder inequality and Lemma 1 imply that we have

‖B(u,v)(x,y)‖L1
ψ j ,y

� ‖|(u− v)(x+ y)|d‖
L

q0/p
ψ j ,y

‖|u(x+ y)−u(x)||v(x+ y)− v(x)|ρ−1−d‖
L

r0/p
ψ j ,y

� (M(q(ρ−1)/p)|u− v|(x))d

×‖u(x+ y)−u(x)‖
L

(ρ−d)r0/p
ψ j,y

‖v(x+ y)− v(x)‖ρ−d−1

L
(ρ−d)r0/p
ψ j,y

.

Then Lemma 1 and Corollary 2 imply that the estimates

‖2 js‖B(u,v)(·,y)‖L1
ψ j ,y

‖Lp(�2)

� ‖M(q(ρ−1)/p)|u− v|‖d
Ldq0

×‖2 js/(ρ−d)‖u(·+ y)−u(·)‖
L

(ρ−d)r0/p
ψ j,y

‖Lr0(ρ−d)(�2)

×‖2 js/(ρ−d)‖v(·+ y)− v(·)‖
L

(ρ−d)r0/p
ψ j,y

‖ρ−d−1

Lr0(ρ−d)(�2)

� ‖u− v‖d
Lq(ρ−1)‖u‖Ḣs/(ρ−d)

r0(ρ−d)
‖v‖ρ−d−1

Ḣ
s/(ρ−d)
r0(ρ−d)

hold. Then (12) follows from the estimates above and the Gagliardo-Nirenberg inequal-
ity. �

REMARK 1. In the proof above, one cannot take d = ρ − s because

‖2 j‖u(·+ y)−u(·)‖
L

(ρ−d)r0/p
ψ j,y

‖Lr0(ρ−d)(�2)

is not controlled by Lemma 4.
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