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MATRIX–VALUED POSITIVE DEFINITE KERNELS GIVEN

BY EXPANSIONS: STRICT POSITIVE DEFINITENESS

W. FRANCA AND V. A. MENEGATTO ∗

Abstract. Matrix functions of the form (x,y) ∈ Ω × Ω �→ ∑α Aα fα (x,y) , in which Ω is a
nonempty set, the Aα are positive semi-definite matrices of the same fixed order, the fα are
complex-valued positive definite kernels on Ω , and the series is convergent for all x and y in
Ω define matrix-valued positive definite kernels on Ω . Here, the sum may be multi-indexed, Ω
may be endowed with either a topological or a metric structure, and { fα} may inherit properties
attached to the setting. In this paper, we present a criterion that establishes an abstract necessary
and sufficient condition in order that the kernel is strictly positive definite on Ω . We point some
implications and connections of the criterion in some relevant and concrete settings in order to
motivate future work on the topic.
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