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MATRIX-VALUED POSITIVE DEFINITE KERNELS GIVEN
BY EXPANSIONS: STRICT POSITIVE DEFINITENESS

W. FRANCA AND V. A. MENEGATTO*

Abstract. Matrix functions of the form (x,y) € Q x Q — Y, Aqfo(x,y), in which Q is a
nonempty set, the A, are positive semi-definite matrices of the same fixed order, the f, are
complex-valued positive definite kernels on €2, and the series is convergent for all x and y in
Q define matrix-valued positive definite kernels on Q. Here, the sum may be multi-indexed, Q
may be endowed with either a topological or a metric structure, and {f } may inherit properties
attached to the setting. In this paper, we present a criterion that establishes an abstract necessary
and sufficient condition in order that the kernel is strictly positive definite on Q. We point some
implications and connections of the criterion in some relevant and concrete settings in order to
motivate future work on the topic.
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