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MATRIX–VALUED POSITIVE DEFINITE KERNELS GIVEN

BY EXPANSIONS: STRICT POSITIVE DEFINITENESS

W. FRANCA AND V. A. MENEGATTO ∗

(Communicated by J. Pečarić)

Abstract. Matrix functions of the form (x,y) ∈ Ω × Ω �→ ∑α Aα fα (x,y) , in which Ω is a
nonempty set, the Aα are positive semi-definite matrices of the same fixed order, the fα are
complex-valued positive definite kernels on Ω , and the series is convergent for all x and y in
Ω define matrix-valued positive definite kernels on Ω . Here, the sum may be multi-indexed, Ω
may be endowed with either a topological or a metric structure, and { fα} may inherit properties
attached to the setting. In this paper, we present a criterion that establishes an abstract necessary
and sufficient condition in order that the kernel is strictly positive definite on Ω . We point some
implications and connections of the criterion in some relevant and concrete settings in order to
motivate future work on the topic.

1. Introduction

This paper is mainly concerned with matrix functions that define matrix-valued
positive definite kernels on a nonempty set Ω . If we write Mp(C) to denote the set of
all complex matrices of order p , a matrix-valued kernel F : Ω×Ω → Mp(C) is said to
be positive definite on Ω if for n � 1 (but at most the cardinality |Ω| of Ω) and points
x1, . . . ,xn in Ω , the matrix [F(xi,x j)]ni, j=1 of order np is positive semi-definite, that is,

n

∑
i, j=1

c∗i F(xi,x j)c j � 0, (1)

when c1, . . . ,cn are (column) vectors in C
p while the star notation refers to the con-

jugate transposition of vectors. A positive definite matrix-valued kernel F is strictly
positive definite on Ω if the matrices in the definition above are all positive definite
when the xi are distinct and the ci are all nonzero. If p = 1 and we identify M1(C)
with C , then the definitions above reduce themselves to the usual notions of positive
and strict positive definiteness of a kernel on Ω frequently used in the literature (see
[2] and other references citing it).
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We observe that the quadratic forms in the previous definitions become

n

∑
i, j=1

p

∑
μ,ν=1

cμ
i cν

j fμν (xi,x j),

if we write F = [ fμν ]pμ,ν=1 and ci = (c1
i , . . . ,c

p
i ) , i = 1, . . . ,n .

Positive definite matrix valued kernels appear as an essential component in many
problems in a variety of settings (see [6, 7, 12, 15, 18] and references quoting them).
The focus in this paper will be on positive definite matrix-valued kernels F : Ω×Ω �→
Mp(C) that fit into the following general description:

F(x,y) = ∑
α∈J

Aα fα (x,y), x,y ∈ Ω, (2)

where J is a subset of Z
q for some positive integer q , each Aα is a positive semi-

definite matrix that belongs to Mp(C) , each fα : Ω×Ω→C is a positive definite kernel
and the series is absolutely convergent for all x and y in Ω . The summation symbol
needs to be specified in each instance and the set { fα : α ∈ J} may inherit specific
properties defined by the setting. We want to highlight that for the most relevant cases
found in the theory and its applications, the set Ω is endowed with a topology while F
and the fα are assumed to be at least continuous.

In this paper, we will provide an abstract criterion for the strict positive definiteness
of F as in (2), no matter what Ω , the Aα and the fα are, and we will discuss some
issues related to the criterion in some specific cases fitting in the description above
which are described in the examples below. To the best of our knowledge, Examples 3,
4, and 5 have only been investigated in the case p = 1.

EXAMPLE 1. Ω = Sm , the unit sphere in Rm+1 , with F continuous and isotropic.
In this case, we have J = Z+ and

fk(x,y) = Pm
k (cosdm(x,y)) = Pm

k (〈x,y〉), x,y ∈ Sm; k ∈ J,

where Pm
k is the Gegenbauer polynomial of degree k associated with the rational num-

ber (m−1)/2 and dm is the great circle distance on Sm . The isotropy of F refers to the
fact that the variables x and y are tied to each other through the distance dm . Clearly,
〈·, ·〉 stands for the usual inner product in Rm+1 . In this setting, the matrices Ak in
the expansion of F have real entries. Consequently, since the kernel F is symmetric,
one may use real vectors ci in the definitions of positive definiteness and strict positive
definiteness. This case was quite exploited in [6] and in the references quoted in there.

EXAMPLE 2. Ω = Hm , a compact two-point homogeneous space of dimension
m , which we assume being not a sphere, with F continuous and isotropic. In this case,
J = Z+ and

fk(x,y) = P((m−2)/2,b)
k (cosdm(x,y)), x,y ∈ Hm; k ∈ J,
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where P((m−2)/2,b)
k is a Jacobi polynomial of degree k associated with the pair ((m−

2)/2,b) , b is a number attached to the dimension of Hm , while dm is the Riemannian
distance on Hm so normalized that all geodesics in Hm have the same length π . It is
known that Hm can belong to one of the following categories: the real projective spaces
Pm(R) , m = 2,3, . . . ; b = −1/2, the complex projective spaces Pm(C) , m = 4,6, . . . ;
b = 0, the quaternionic projective spaces P

m(H) , m = 8,12, . . . ; b = 1, and the Cayley
projective plane Pm(Cay) , m = 16; b = 3. Here, as in Example 1, the matrices Ak in
the expansion of F have real entries. This case was considered in [3] and reassessed
later in [10].

EXAMPLE 3. Ω = a real inner product space (H,〈·, ·〉) of dimension at least 2
where F is a continuous ridge function, that is, F is of the form

F(x,y) = F ′(〈x,y〉), x,y ∈ H,

for some continuous function F ′ : R → Mp(C) . In this case, we have J = Z+ , real-
valued matrices Ak , and

fk(x,y) = 〈x,y〉k, x,y ∈ H; k ∈ J.

The scalar case, that is, the case in which p = 1, was analyzed in [9, 14]. As far as
we know, the other cases were never considered in the literature. We observe that the
matrices Ak in the expansion of F in this setting have real entries, and the remarks
about the vectors ci made in Example 1 apply. This setting allows the consideration
of positive definiteness and strict positive definiteness on some subsets of H such as:
H \{0} , subspaces of H , spheres of H , etc. In these cases, the concepts of positive and
strict positive definiteness refer to the restrictions of F to the cartesian product of the
subset by itself.

EXAMPLE 4. Ω = a complex inner product space (H,〈·, ·〉) of dimension at least
3 where F is again a continuous ridge function. In this case, we have J = Z2

+ and

fα(x,y) = 〈x,y〉k〈x,y〉l , x,y ∈ H; α = (k, l) ∈ J.

The scalar case p = 1 was analyzed in [13] but the matrix valued case seems to have
been forgotten.As in Example 3, this case allows us to consider the positive definiteness
and strict positive definiteness on some relevant subsets of H .

EXAMPLE 5. Here, Ω is the m-dimensional torus

Tm := {x = (x1, . . . ,xm) ∈ R
m : −π � x j < π ; j = 1,2, . . . ,m},

considered as a locally compact topological group, where F is 2π -periodic and con-
tinuous on Rm . In this case, we have J = Zm ,

fα (x,y) = eiα(x−y), x,y ∈ Tm; α ∈ J,
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and the series (2) needs to be multi-indexed (see [16]). Likewise, the product α(x− y)
needs to be understood in the multi-index sense. The strict positive definiteness in the
scalar case p = 1 was taken into consideration in [4] and references quoted in there but
the general case is nowhere to be found in the literature.

The reader is advised that there are other settings fitting the description in (2): Ω =
the unit sphere in Cm with F continuous and isotropic; Ω = a cartesian product of two
spheres with F continuous and isotropic in both variables; etc. Details on these settings
will not be included here.

Moving towards the application side, it is known that a positive definite matrix-
valued kernel F : Ω×Ω → C defines a uniquely defined reproducing kernel Hilbert
space (H ,〈·, ·〉F ) in which H is a subspace of the vector space of all functions with
domain Ω taking values in Cp . Since the strict positive definiteness of F is equiva-
lent to the non-degeneracy of H , strictly positive definite functions F are preferable
if the reproducing kernel Hilbert space H is going to be used as a source of approxi-
mations. This explains one possible need for results that characterize the strict positive
definiteness of positive definite matrix-valued functions as we will address here.

The paper proceeds as follows. In Section 2, we introduce some notations needed
in order to present our abstract characterization for the strict positive definiteness of
positive definite kernels as in (2) in Theorem 1. This description is equivalent to sim-
pler conditions in at least two particular cases which we will make explicit at the end
of the section. In Section 3, we include an alternative description for the abstract char-
acterization given in Section 2. In Section 4, we discuss further results but we restrict
ourselves to some of the concrete settings presented in Section 1.

2. Strict positive definiteness

In this section, we present an abstract necessary and sufficient condition for the
strict positive definiteness of a positive definite matrix function F as in (2). The result
itself depends upon additional notation which we now introduce.

First of all, the reader should notice that for a function F as in (2) and a vector c
from Cp , the scalar kernel c∗Fc given by

(c∗Fc)(x,y) := c∗F(x,y)c = ∑
α∈J

(c∗Aα c) fα(x,y), x,y ∈ Ω,

is positive definite on Ω . Further, if c 	= 0 and F is strictly positive definite, then c∗Fc
is actually strictly positive definite.

Keeping F as in (2), for a vector x1 of Ω and a nonzero vector c1 of Cp , we set

Qx1(x1) = c∗1F(x1,x1)c1.

Obviously, Qx1(x1) is a nonnegative number that depends upon c1 whereas our notation
does not carry that dependence. Since each Aα is a positive semi-definite matrix and
each fα is a positive definite kernel on Ω , we know already that c∗1Aαc1 � 0 and
fα(x1,x1) � 0 for all α ∈ J . Hence, Qx1(x1) > 0 if and only if there exists an index
α ∈ J so that c∗1Aαc1 > 0 and fα (x1,x1) > 0.
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For n � 2, a subset {x1, . . . ,xn} of Ω and correspondingnonzero vectors c1, . . . ,cn

in Cp , we also set

Q(x2, . . . ,xn) = ∑
α∈J

n

∑
i, j=2

c∗i Aαc j fα(xi,x j),

and

Qx1(x2, . . . ,xn) = ∑
α∈J

n

∑
i=2

[c∗1Aαci fα (x1,xi)+ c∗i Aαc1 fα(xi,x1)] .

Again, these two definitions depend upon the ci whereas the notation does not carry the
dependence explicitly. The positive definiteness of F implies that Q(x2, . . . ,xn) � 0.
Further, if F is strictly positive definite and the ci are nonzero, then we have actu-
ally that Q(x2, . . . ,xn) > 0. Since each Aα is Hermitian and each fα is positive semi-
definite, it is easily seen that

Qx1(x2, . . . ,xn) = 2 ∑
α∈J

n

∑
i=2

Re [c∗1Akci fα (x1,xi)] .

In particular, Qx1(x2, . . . ,xn) is a real number.
We are about ready to prove the main result in this section.

THEOREM 1. If F is as in (2), then following assertions are equivalent:

(i) F is strictly positive definite.

(ii) If n ∈ {1, . . . , |Ω|} , x1, . . . ,xn are distinct points in Ω and c1, . . . ,cn are nonzero
vectors in Cp , then⎧⎨

⎩
Qx1(x1) > 0, if n = 1

|Qx1(x2, . . . ,xn)| < 2Qx1(x1)1/2Q(x2, . . . ,xn)1/2, if n � 2.

Proof. Assume F is strictly positive definite and let n , the xi and the ci be as in
(ii) . If n = 1, we may apply the definition of strict positive definiteness using the point
x1 and the nonzero vector c1 to obtain

0 < c∗1F(x1,x1)c1 = Qx1(x1).

If n > 1, we apply the definition of strict positive definiteness with the points x1, . . . ,xn

and the nonzero vectors tc1,c2, . . . ,cn , where t is a nonzero real number. The outcome
is

0 < Qx1(x1)t2 +Qx1(x2, . . . ,xn)t +Q(x2, . . . ,xn). (3)

Since Q(x2, . . . ,xn) > 0, it follows that (3) holds for t ∈ R . Therefore, we can infer that

Qx1(x2, . . . ,xn)2 < 4Qx1(x1)Q(x2, . . . ,xn).
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This shows that (i) implies (ii) .
Conversely, assume (ii) holds and let n be a positive integer at most |Ω| , x1, . . . ,xn

distinct points in Ω and c1, . . . ,cn nonzero vectors in Cp . We need to show that

∑
α∈J

n

∑
i, j=1

c∗i Aαc j fα (xi,x j) > 0.

The case n = 1 follows from (ii) at once. In the case n > 1, observe that

∑
α∈J

n

∑
i, j=1

c∗i Aαc j fα (xi,x j) = Qx1(x1)+Qx1(x2, . . . ,xn)+Q(x2, . . . ,xn) = p(1),

in which
p(t) = Qx1(x1)t2 +Qx1(x2, . . . ,xn)t +Q(x2, . . . ,xn).

By (ii) , we know that

Qx1(x2, . . . ,xn)2−4Qx1(x1)Q(x2, . . . ,xn) < 0.

Since Qx1(x1) > 0, it follows that p(t) > 0 for all t ∈ R . In particular, p(1) > 0. Thus
(ii) implies (i) . �

The equivalence for strict positive definiteness provided by Theorem 1 is abstract
in the sense that Assertion (ii) cannot be easily assessed in applications. It would be
more desirable to have an equivalence easier to be checked. For instance, this is what
occurs in most of the cases described in Example 1 and also in all the cases in Example
2. We make that clear through formal statements.

THEOREM 2. Let F be as in (2) but under the setting of Example 1. If m � 2 ,
Assertions (i) and (ii) in Theorem 1 are equivalent to the following additional asser-
tions:

(iii) If c is a nonzero vector of Cp , then {k ∈ Z+ : c∗Akc > 0} contains infinitely
many even and infinitely many odd integers.

(iv) If c is a nonzero vector of Cp , then c∗Fc is a strictly positive definite scalar
kernel.

Proof. This is a consequence of Theorem 3 in [6]. �

THEOREM 3. Let F be as in (2) but under the setting of Example 2. Assertions
(i) and (ii) in Theorem 1 are equivalent to the following additional assertions:

(iii) If c is a nonzero vector of C
p , then {k ∈ Z+ : c∗Akc > 0} contains infinitely

many integers.

(iv) If c is a nonzero vector of Cp , then c∗Fc is a strictly positive definite scalar
kernel.
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Proof. This follows from Theorem 4.4 in [3] and Theorem 3 in [1]. �
The reader should not expect equivalences for strict positive definiteness as simpler

as the ones in Theorems 2 and 3 for the other settings described in Section 1. Indeed,
the proofs of these two theorems take into account the metric structure of the spaces
involved and specific asymptotic properties of the functions fα . For instance, Example
6 below points that simpler equivalences for strict positive definiteness in the setting of
Example 3 are not possible, even if one considers strict positive definiteness on subsets
of H .

EXAMPLE 6. Let Ω and F be as in Example 3. If c is a nonzero vector in C
p ,

then c∗Fc belongs to the same setting, but with p = 1. If F is strictly positive definite,
the same is true of c∗Fc . Reporting to the main theorem in [14], we can infer that
{k ∈ Z+ : c∗Akc > 0} contains infinitely many even and infinitely many odd integers.
However, this condition being true for every nonzero vector c of Cp is far from being
equivalent to the strict positive definiteness of F . Indeed, define

Ak =
1
k!

(
22k −2k

−2k 1

)
, k ∈ Z+.

Obviously each Ak is positive semi-definite and the series F ′(t) = ∑k Aktk converges
for all t ∈ R . If we write c1 = (1,0) and c2 = (0,1) , it is easily seen that

cᵀ
2Akc2 = 2−2kcᵀ

1Akc1 =
1
k!

, k ∈ Z+,

and

cᵀ
1Akc2 = cᵀ

2Akc1 = −2k

k!
, k ∈ Z+.

In particular, if H is a real inner product space and we choose {x1,x2} ⊂ H , with x1

unitary and x2 = tx1 , where t ∈ R , it follows that

g(t) =
2

∑
i, j=1

∞

∑
k=0

cᵀ
i Akc j

〈
xi,x j

〉k =
∞

∑
k=0

(
22k −2ktk −2ktk + tktk

) 1
k!

� 0

for all t ∈ R. Since, g(2) = 0, we can conclude that the matrix-valued positive definite
kernel

F(x,y) = F ′(〈x,y〉) =
∞

∑
k=0

Ak〈x,y〉k, x,y ∈ [{x1}]\ {0},

is not strictly positive definite. On the other hand, if c = (a,b) ∈ R2 \ {(0,0)} , then

cᵀAkc =
(a2k −b)2

k!
, k ∈ Z+.

If a = 0, then cᵀAkc = b2/k! > 0 for all k . The same holds true if b = 0. Otherwise,
there exists at most one integer k for which cᵀAkc = 0. In particular, {k : cᵀAkc > 0}
contains infinitely many even and infinitely many odd integers whenever c 	= 0.
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3. Strict positive definiteness: part 2

In this section, we present a counterpositive version of Theorem 1 in which the
motivation comes from Example 6.

Let us assume for a moment that a kernel F as in (2) is not strictly positive definite
on Ω and that the strict positive definiteness fails for two distinct points x1,x2 of Ω and
nonzero vectors c1,c2 of Cp , that is,

2

∑
i, j=1

∑
α∈J

c∗i Aαc j fα (xi,x j) = 0.

If we set d1 = tc1 with t ∈ R and d2 = c2 , then the polynomial

h(t) :=
2

∑
i, j=1

∑
α∈J

d∗
i Aαd j fα(xi,x j)

is nonnegative-valued by the positive definiteness of F on Ω . Now notice that h can
be written in the form

h(t) = t2 ∑
α∈J

c∗1Aαc1 fα (x1,x1)+2t ∑
α∈J

Re [c∗1Aαc2 fα (x1,x2)]+ ∑
α∈J

c∗2Aαc2 fα (x2,x2).

Its minimum value is attained at t = 1, that is, h(1) = h′(1) = 0. In particular, h is
actually of the form

h(t) = (t −1)2 ∑
α∈J

c∗1Aαc1 fα(x1,x1).

Therefore, we can infer that

∑
α∈J

c∗1Aαc1 fα(x1,x1) = ∑
α∈J

c∗2Aαc2 fα (x2,x2), (4)

and

∑
α∈J

Re [c∗1Aαc2 fα (x1,x2)] = − ∑
α∈J

c∗1Aαc1 fα(x1,x1). (5)

In short, the arguments above suggest that if a function F as in (2) is not strictly positive
definite on Ω , then either (4) and (5) must hold for two distinct points x1 and x2 of Ω
and two nonzero vectors c1 and c2 of Cp or some sort of extension of (4) and (5) must
hold for some n � 3, distinct points x1, . . . ,xn of Ω and nonzero vectors c1, . . . ,cn of
C

p . The extension itself will appear explicitly in Theorem 4 below.

THEOREM 4. If F is as in (2), then following assertions are equivalent:

(i) F is not strictly positive definite.

(ii) There exist n ∈ {1, . . . , |Ω|} , distinct points x1, . . . ,xn in Ω and nonzero vectors
c1, . . . ,cn in Cp such that⎧⎨

⎩
Qx1(x1) = 0, if n = 1

Qx1(x2, . . . ,xn) = −2Qx1(x1) = −2Q(x2, . . . ,xn) if n � 2.
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Proof. Assume F is not strictly positive definite on Ω . According to the definition
of strict positive definiteness, we can find n ∈ {1, . . . , |Ω|} , distinct points x1, . . . ,xn in
Ω and nonzero vectors c1, . . . ,cn in Cp such that

∑
α∈J

n

∑
i, j=1

c∗i Aα c j fα (xi,x j) = Qx1(x1)+Qx1(x2, . . . ,xn)+Q(x2, . . . ,xn) = 0.

If n = 1, this corresponds to Qx1(x1) = 0. Otherwise, we set

g(s, t) = Qx1(x1)t2 +Qx1(x2, . . . ,xn)st +Q(x2, . . . ,xn)s2. (6)

This polynomial is obtained by replacing c1 with ts−1c1 in the double sum above,
where t,s ∈ R and s 	= 0, and multiplying the resulting double sum by s2 . The poly-
nomial g is nonnegative-valued by the positive definiteness of F . Direct inspection
reveals that g(1,1) = 0. Hence, we must have

∂g
∂ t

(1,1) =
∂g
∂ s

(1,1) = 0,

that is,

2Qx1(x1)+Qx1(x2, . . . ,xn) = 0 = 2Q(x2, . . . ,xn)+Qx1(x2, . . . ,xn),

and (ii) holds. Conversely, assume (ii) holds. We may assume that n � 2, once F is
obviously not strictly positive definite otherwise. If x1, . . . ,xn are distinct points in Ω
and c1, . . . ,cn are nonzero vectors in Cp satisfying

Qx1(x2, . . . ,xn) = −2Qx1(x1) = −2Q(x2, . . . ,xn),

then

∑
α∈J

n

∑
i, j=1

c∗i Aαc j fα (xi,x j) = Qx1(x1)+Qx1(x2, . . . ,xn)+Q(x2, . . . ,xn) = 0.

Therefore, F is not strictly positive on Ω . �
An obvious consequence is as follows.

COROLLARY 1. Let F be as in (2). Assume Qx1(x1) > 0 whenever x1 ∈ Ω and c1

is a nonzero vector of Cp . If Qx1(x2, . . . ,xn) � 0 whenever n ∈ {2, . . . , |Ω|} , x1, . . . ,xn

are distinct points of Ω , and c1, . . . ,cn are nonzero vectors of Cp , then F is strictly
positive definite.

Proof. If F is not strictly positive on Ω and Qx1(x1) > 0 whenever x1 ∈ Ω and c1

is a nonzero vector of C
p , Theorem 4 asserts the existence of n ∈ {2, . . . , |Ω|} , distinct

points x1, . . . ,xn in Ω and nonzero vectors c1, . . . ,cn in Cp such that

Qx1(x2, . . . ,xn) = −2Qx1(x1) < 0.

The result follows. �
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4. Further results

In this section, we discuss some additional features related to the characterizations
we have presented in Sections 2 and 3. Hopefully, this will foment additional research
on the topic and will lead to simpler characterizations for strict positive definiteness of
kernels as in (2) in all the settings mentioned in Section 1. In any case, the reader is
advised that a universal simplification of the equivalences given in either Theorem 1 or
4 is very unlikely to happen. Indeed, the examples analyzed in this paper suggests that
a simplification would depend upon Ω and on additional properties in the function F
implied by the setting. Thus, it would depend on the special features of the fα as well.

Let us begin with a piece of information that, in a certain sense, makes the strict
positive definiteness in the cases p = 1 and p > 1 quite distinct from each other. If
p = 1, it is very easy to see that the strict positive definiteness of F as in (2) depends
upon the set {α : Aα > 0} , and not on the actual value that each real number Aα
assumes. This is one of the reasons why the strict positive definiteness in the case p = 1
has been already described by elementary means in all the settings we have mentioned
in Section 1.

If a setting allows a simple characterization for strict positive definiteness in the
case p = 1 or at least the determination of a necessary condition for that, then a nec-
essary condition for the strict positive definiteness in the case p > 1 can be inferred at
once, as we have done in at at least two cases in Section 2. Indeed, if the strict positive
definiteness of F as in (2) in the case p = 1 is defined by a property P that the set
{α : Aα > 0} has, then a necessary condition for the strict positive definiteness of F
as in (2) in the case p > 1 is precisely this one: {α : c∗Aαc > 0} has the property P
whenever c is a nonzero vector of Cp .

Below, we will address what this remark implies in each one of the three remaining
examples from Section 1. Needless to say that F is assumed to be positive definite
according to each setting.

Example 3: A necessary condition for the strict positive definiteness of F on H in
the case p > 1 is that {k ∈ Z+ : c∗Akc > 0} contains the index 0 along with infinitely
many even and infinitely many odd integers, whenever c is a nonzero vector in Cp , a
fact that follows from the main result in [14]. As for the case of strict positive definite-
ness on H \ {0} , the necessary condition is the same except that the integer 0 may be
excluded from {k ∈Z+ : c∗Akc > 0} . If X is a subset of H for which {x∈ X :−x∈ X}
is infinite, the necessary condition for the strict positive definiteness of F on X is the
same, and again one needs to consider two cases depending whether 0 belongs to X .
This fact is implied by Theorem 1 and Proposition 2 in [9]. It includes the case in which
X is a subspace isometrically isomorphic to R . Just for the record, the necessary condi-
tion mentioned here is equivalent to the following property: {k ∈ Z+ : c∗Akc > 0} con-
tains the index 0 and for every m ∈ Z+ , both matrices ∑2k�m A2k and ∑2k+1�m A2k+1
are positive definite. Another interesting property that deserves to be mentioned in this
case is this one: if F is strictly positive definite on X and 0 ∈ X , then A0 is positive
definite.

We also can add the following additional result in this setting.
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THEOREM 5. If H is separable, X is a sphere in H centered at 0, and F is
positive definite on H , then the following assertions are equivalent:

(i) F is strictly positive definite on X .

(ii) If c∈ C
p , then {k ∈ Z+ : c∗Akc > 0} contains infinitely many even and infinitely

many odd integers.

Proof. If H1 and H2 are real inner product spaces which are isometrically iso-
morphic, then a function F as in (2) is strictly positive definite on H1 if and only if it
is so on H2 . If φ : H1 → H2 is the isometric isomorphism and X is a nonempty subset
of H1 , then f is strictly positive definite on X if and only if it is so on φ(X) . In view
of this, it suffices to prove the theorem in the cases in which H = Rm , 2 � m < ∞ , and
H = the real �2 . Let SR be the sphere of radius R > 0 and centered at 0 in each one of
these spaces. If F is as in (2), then

F(〈x,y〉) =
∞

∑
k=0

R2kAk
〈
R−1x,R−1y

〉k
, x,y ∈ SR.

On the other hand, if c is a nonzero vector in Cp , then

{k : R2kc∗Akc > 0}∩2Z+ = {k : c∗Akc > 0}∩2Z+

and
{k : R2kc∗Akc > 0}∩ (2Z+ +1) = {k : c∗Akc > 0}∩ (2Z+ +1).

Therefore, it suffices to show the result holds in the case in which X is the unit sphere
in either case. Since {x ∈ X : −x ∈ X} is infinite in both cases, it suffices to show that
(ii) implies (i) . The first step is to write

F(〈x,y〉) = F(cosd(x,y)) =
∞

∑
k=0

Ak cosk(d(x,y)), x,y ∈ Sm, (7)

where d stands for the geodesic distance on the sphere in either case. Now, Theorem 5
in [6] takes care of the case in which X is the unit sphere in �2 . As for the other, we
invoke the well-known formula

(cosθ )k = bm
k,kPk(cosθ )+bm

k,k−2P
m
k−2(cosθ )+ · · · , θ ∈ [0,π ], (8)

in which all the bm
k, j , j = k,k−2, . . . , are positive and Pm

k denotes the Gegenbauer poly-
nomial of degree k associated with the rational number (m−2)/2 (see [17]). Returning
to (7), we obtain

F(〈x,y〉) =
∞

∑
k=0

BkP
m
k (cosdm(x,y)),

where

Bk = bm
k,kAk +bm

k+2,kAk+2 + · · · =
∞

∑
j=0

bm
k+2 j,kAk+2 j, k ∈ Z+.
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Each Bk is obviously positive semi-definite. On the other hand, if c∗Ak+2 j0c > 0 for
some c ∈ Rp \ {0}, and k and j0 ∈ Z+ , then c∗Bkc > 0. In particular, if {k : c∗Akc >
0}∩ 2Z+ (respectively, {k : c∗Akc > 0}∩ (2Z+ + 1)) is infinite, then the same is true
of {k : c∗Bkc > 0}∩2Z+ (respectively, {k : c∗Bkc > 0}∩2Z+ +1). Therefore, if (ii)
holds, then Theorem 3 in [6] shows that F is strictly positive definite on X . �

Example 4: A necessary condition for the strict positive definiteness of F on H in
the case p > 1 is that {k− l : c∗A(k,l)c > 0} intersects every full arithmetic progression
in Z , whenever c is a nonzero vector in Cp . This follows from the main result proved
in [14].

Example 5: A necessary condition for the strict positive definiteness of F on Tm

in the case p > 1 is that {α ∈ Z
m : c∗Aαc > 0} intersects all the translations of each

subgroup of Zm that has the form (n1Z, . . . ,nmZ) , with n1, . . . ,nm ∈ Z+ , whenever c
is a nonzero vector in Cp . This is implied by Theorem 1 in [4].

5. Conclusion and final comments

In this paper we have provided an abstract criterion for the strict positive defi-
niteness of matrix functions that define matrix-valued positive definite kernels given
by certain absolutely convergent series expansions on a set. Some contexts previously
discussed in the literature belong to the setting in which the criterion holds. A self-
contained characterization for strict positive definiteness already exists in some of them
but does not in others. The criterion is very difficult to be used in practice, once it de-
pends upon the setting itself and it is not explicit with respect to what properties in the
expansion of the kernel one should look for. For that reason, we have exploited quite
a bit some of the contexts exposed in the paper in an attempt to show to the readers
why self-contained characterizations were possible in some settings but were not in
others. Hopefully, future research will lead to additional characterizations of the strict
positive definiteness of matrix-valued positive definite kernels in the remaining settings
mentioned here and in others which are relevant in applications.

We close the paper with a re-interpretation for positive definiteness in the setting
of Example 4. First of all, one should notice that, keeping the notation in Theorem 1,
the positive definiteness of F corresponds to⎧⎨

⎩
Qx1(x1) � 0, if n = 1

|Qx1(x2, . . . ,xn)| � 2Qx1(x1)1/2Q(x2, . . . ,xn)1/2, if n � 2.

whenever n ∈ {1, . . . , |Ω|} , x1, . . . ,xn are points in Ω and c1, . . . ,cn are vectors in Cp .
That being said, if we restrict ourselves to the setting of Example 4 and take n = 2 and

F(x,y) = Ip〈x,y〉k〈x,y〉k = Ip|〈x,y〉|2k, x,y ∈ H,

where Ip is the identity matrix of Mp(C) and (k,k) ∈ Z2
+ , then we obtain[

2Re
(
c∗1Ipc2|〈x1,x2〉|2k

)]2
� 4

(
c∗1Ipc1|〈x1,x1〉|2k

)(
c∗2Ipc2|〈x2,x2〉|2k

)
.
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If we take p = 1 and c1 = c2 = 1, the above inequality becomes the Cauchy-Schwarz
inequality

|〈x1,x2〉|4k � 〈x1,x1〉2k〈x2,x2〉2k.

Expanding to a general n , p , and c1, . . . ,cn ∈ Cp , it is now seen that

(
Re

n

∑
i=2

c∗1Ipci|〈x1,xi〉|2k

)2

�
(
c∗1Ipc1〈x1,x1〉2k

)( n

∑
i, j=2

c∗i Ipc j|〈xi,x j〉|2k

)
.

The latter can be labeled as an extended Cauchy-Schwarz inequality.
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